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Abstract: The electrocardiogram (ECG) is widely used in medicine because it can provide basic
information about different types of heart disease. However, ECG data are usually disturbed by
various types of noise, which can lead to errors in diagnosis by doctors. To address this problem, this
study proposes a method for denoising ECG based on disentangled autoencoders. A disentangled
autoencoder is an improved autoencoder suitable for denoising ECG data. In our proposed method,
we use a disentangled autoencoder model based on a fully convolutional neural network to effectively
separate the clean ECG data from the noise. Unlike conventional autoencoders, we disentangle the
features of the coding hidden layer to separate the signal-coding features from the noise-coding
features. We performed simulation experiments on the MIT-BIH Arrhythmia Database and found
that the algorithm had better noise reduction results when dealing with four different types of noise.
In particular, using our method, the average improved signal-to-noise ratios for the three noises
in the MIT-BIH Noise Stress Test Database were 27.45 db for baseline wander, 25.72 db for muscle
artefacts, and 29.91 db for electrode motion artefacts. Compared to a denoising autoencoder based on
a fully convolutional neural network (FCN), the signal-to-noise ratio was improved by an average of
12.57%. We can conclude that the model has scientific validity. At the same time, our noise reduction
method can effectively remove noise while preserving the important information conveyed by the
original signal.

Keywords: disentangled representation learning; autoencoder; ECG signal denoising; deep learning

1. Introduction

At present, cardiovascular disease is one of the major threats to human life and health,
and the number of deaths due to cardiovascular disease is increasing every year [1]. The
electrocardiogram (ECG) is an important tool for cardiology research, and it is also a
powerful basis for doctors to directly analyze the cardiac status of patients. Compared with
other methods, ECG is often highly efficient and non-invasive and has low costs [2]. As
a bioelectric signal source, the signal intensity of the heart must be directly related to the
number of active cells, and the number of heart cells constituting the atrium and ventricle
is the largest. Therefore, a surface ECG waveform mainly reflects changes in the action
potentials of the atrial and ventricular cells [3]. Figure 1 shows a complete ECG cycle in
which the P wave, QRS bundle, and T wave are the most important characteristic waves.
These waves and the PR interval, QT interval, and ST segment formed on their basis are
the most important characteristic information of the ECG [4] and can reflect the conduction
system of the heart and whether the heart itself has lesions from many aspects. Therefore,
in the process of collecting ECG data, it is particularly important to ensure that the ECG is
not disturbed by noise.
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The ECG has the characteristics of low frequency and energy concentration, and the 
signal is weak, easily disturbed by noise, and also has quasi-periodicity [5]. ECG sampling 
is often accompanied by a lot of noise, mainly muscle artefacts (MA) [6], electrode motion 
artefacts (EM) [7], and baseline wander (BW) [8]. Muscle artefacts are a common type of 
high-frequency noise, usually between 30 and 300 Hz. The source of this noise comes from 
the tremor of the body’s muscles and therefore appears on the image as a discrepancy 
between the muscle image and the actual situation. In order to reduce the impact of this 
noise on the image quality, medical imaging professionals must use appropriate tech-
niques to reduce its effects. Electrode motion artefacts are instantaneous noise caused by 
poor contact between the skin and the electrodes. Baseline wander is low-frequency noise, 
mainly caused by breathing, and electrode slippage is caused by low-frequency interfer-
ence. These noises have a major impact on a clinician’s ability to diagnose the nature of a 
disease, which is likely to lead to a false diagnosis. Therefore, it is particularly important 
to denoise sampled ECG data. The purpose of this paper is to effectively reduce the noise 
in ECG data in order to improve the signal-to-noise ratio of the signal, accurately detect 
ECG data, improve the visualization and analysis of ECG data, and effectively improve 
the accuracy of diagnosis. We have been involved in researching a noise reduction method 
that separates the depth characteristics of ECG data from noisy signals, with the aim of 
reducing unnecessary noise, improving the accuracy of ECG data, better detecting heart 
disease, and improving healthcare. 

 
Figure 1. A complete ECG cycle. 
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The ECG acquisition process is often accompanied by a large amount of noise, which 
seriously affects a doctor’s accurate diagnosis of a patient. Therefore, technical research 
on removing noise from ECG data has always been a hot topic. Many researchers have 
proposed different research algorithms. In 2015, the authors of [9] proposed the use of 
multivariate empirical mode decomposition (MEMD) to remove baseline wander in ECG 
data. MEMD technology was a multivariate extension of EMD, which had recently at-
tracted the attention of researchers for many applications [10]. The basic idea of this 
method was to transform a signal into a multi-channel signal and use the MEMD algo-
rithm to process the multi-channel signal at the same time. The last intrinsic mode 
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The ECG has the characteristics of low frequency and energy concentration, and the
signal is weak, easily disturbed by noise, and also has quasi-periodicity [5]. ECG sampling
is often accompanied by a lot of noise, mainly muscle artefacts (MA) [6], electrode motion
artefacts (EM) [7], and baseline wander (BW) [8]. Muscle artefacts are a common type of
high-frequency noise, usually between 30 and 300 Hz. The source of this noise comes from
the tremor of the body’s muscles and therefore appears on the image as a discrepancy
between the muscle image and the actual situation. In order to reduce the impact of this
noise on the image quality, medical imaging professionals must use appropriate techniques
to reduce its effects. Electrode motion artefacts are instantaneous noise caused by poor
contact between the skin and the electrodes. Baseline wander is low-frequency noise, mainly
caused by breathing, and electrode slippage is caused by low-frequency interference. These
noises have a major impact on a clinician’s ability to diagnose the nature of a disease,
which is likely to lead to a false diagnosis. Therefore, it is particularly important to denoise
sampled ECG data. The purpose of this paper is to effectively reduce the noise in ECG
data in order to improve the signal-to-noise ratio of the signal, accurately detect ECG
data, improve the visualization and analysis of ECG data, and effectively improve the
accuracy of diagnosis. We have been involved in researching a noise reduction method
that separates the depth characteristics of ECG data from noisy signals, with the aim of
reducing unnecessary noise, improving the accuracy of ECG data, better detecting heart
disease, and improving healthcare.

2. Related Work
2.1. The Traditional ECG Denoising Method

The ECG acquisition process is often accompanied by a large amount of noise, which
seriously affects a doctor’s accurate diagnosis of a patient. Therefore, technical research
on removing noise from ECG data has always been a hot topic. Many researchers have
proposed different research algorithms. In 2015, the authors of [9] proposed the use
of multivariate empirical mode decomposition (MEMD) to remove baseline wander in
ECG data. MEMD technology was a multivariate extension of EMD, which had recently
attracted the attention of researchers for many applications [10]. The basic idea of this
method was to transform a signal into a multi-channel signal and use the MEMD algorithm
to process the multi-channel signal at the same time. The last intrinsic mode function
(IMF) or the last two IMFs obtained by decomposition were removed from the ECG as
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the baseline wander to obtain a baseline-corrected ECG. Simulation results showed that
this method can remove the baseline wander in ECG data and retain the morphological
characteristics of ECG data. Empirical mode decomposition technology was a data-driven
adaptive threshold method that was very suitable for non-stationary signals such as ECG
data [11]. However, it could not select IMF efficiently and adaptively, which led to the loss
of information. The authors of [12] proposed a noise removal method based on empirical
mode decomposition combined with a wavelet threshold for adaptive ECG baseline wander.
ECG data containing BW noise were denoised. First, they were decomposed into high-
frequency signals and low-frequency signals using empirical mode decomposition. Then,
the low-frequency signals were wavelet-transformed, and the high-frequency signals were
combined to reconstruct the ECG data, thereby achieving the effect of removing baseline
wander noise. The technology based on the wavelet transform was also more popular and
widely used because of its ability to characterize the time–frequency domain information of
time-domain signals [13]. The noise reduction method based on wavelets was widely used
because it had good localization properties and could fully highlight the detailed features
of ECG data in the time domain and frequency domain. However, due to the selection of
the wavelet basis function and threshold, the amplitudes of the R wave and S wave may
have been reduced after denoising [14]. Therefore, how to select the appropriate wavelet
basis function and wavelet decomposition level to remove the noise in the input signal
was still a problem [15]. In the wavelet denoising method, two thresholds [16] were used
to enhance the ECG data. Tan Xue et al. [17] proposed an improved wavelet-threshold-
function denoising method that avoided the defect of poor continuity at the threshold after
processing the signal in the traditional soft and hard threshold function. Das et al. [18]
compared the wavelet transform and proposed an ECG denoising method based on the
S-transform. Because of the sparse characteristics of the ECG itself [19], a method based
on sparse representation had been studied a lot in recent years. However, some ladder
components were introduced after sparse noise reduction [20], which made the signal
uneven after noise reduction, and most sparse representations use the L1 norm as a penalty
term, which leads to the underestimation of the original signal [21].

In the field of deep learning, an ECG denoising method based on the autoencoder
model [22] was more popular. An autoencoder composed of eight convolution blocks and
eight deconvolution blocks was proposed by Eleni et al. [23], which can effectively learn
the characteristics of ECGs and remove noise. As one of the many breakthroughs in deep
learning technology, a generative adversarial network (GAN) had been widely used. Since
Goodfellow [24] first introduced this method, many variants of generative adversarial net-
works have been developed. Radford et al. [25] proposed a deep convolutional generative
adversarial network (DCGAN) in 2015. The DCGAN used a convolutional layer to replace
the fully connected layer and replaced the original pooling layer with a convolution of the
same step size. Pratik Singh and Gayahar Pradhan [26] proposed a generative adversarial
network architecture for ECG denoising. The GAN model based on convolutional neural
networks was effectively trained for ECG noise filtering, and end-to-end GAN model train-
ing was performed using clean and noisy ECG data. Zhu et al. [27] proposed a generative
adversarial network, which was a Bi-LSTM-CNN network composed of bidirectional long
short-term memory (LSTM) and a convolutional neural network (CNN). The model in-
cluded a generator and a discriminator. The generator used a two-layer Bi-LSTM network,
and the discriminator was based on a convolutional neural network.

2.2. Disentangled Representation Learning

Disentangled representation learning [28] was first proposed by Bengio in 2013. The
feature sets being trained may be used for multiple tasks, which may have different relevant
feature subsets. Therefore, the most robust method of feature learning was to separate as
many factors as possible and discard as little information as possible. The application of
disentangled representation learning makes the black box project of deep learning more
interpretable and can show the specific meaning and function of each layer of the neural
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network. The traditional denoising autoencoder maps the signal information and noise
information to the hidden space together in the encoding phase and then decodes them
into signals through the hidden space variable. We believe that there is a phenomenon of
decoding confusion; that is, some noise information is decoded into signal information
together, thus reducing the noise reduction effect of the signal. Therefore, we are trying to
decouple the noise information and signal information in the hidden space, eliminate the
entanglement of signal information and noise information, and then decode the clean signal.

2.3. The Major Contributions of the Paper

Although the ECG denoising method based on a denoising autoencoder is robust to
different types of noise, it is still a problem that the signal features and noise features are
not completely separated, resulting in the underestimation of some ECG details. Based on
this, our contributions are as follows:

(1) Based on the denoising autoencoder, we introduce the disentangled mechanism
and propose a new disentangled autoencoder network (DANet) for ECG denoising
processing, which solves the problem of the incomplete separation of signal features
and noise features.

(2) In the realization of the disentangled mechanism, we use attention to shunt latent
variables, deconstruct the potential spatial separation between noise and the original
ECG data, and finally use two decoders to approximate the original signal and noise.

(3) Experiments demonstrated that our proposed method achieved optimal performance
and can effectively preserve useful detail characteristics.

The overall structure of this paper is as follows: Section 2 provides the related work.
Section 3 focuses on the details of the database we used and how the data were processed.
Section 4 details the implementation of the algorithm, the coding of ECG features, the
separation of signal and noise characteristics, and the signal recovery process. Section 5
presents experiments comparing the denoising effects on ECG data and four different
types of noise. Sections 6 and 7 provide a general discussion and a summary of our
proposed method.

3. The Materials
3.1. Dataset Description

We used the MIT-BIH Noise Stress Test Database and the Arrhythmia Database as
the main dataset [29]. The MIT-BIH Arrhythmia Database contains 48 half-hour dual-
channel dynamic electrocardiogram recording excerpts from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Each record was sampled at a sampling
rate of 360 Hz, with a total of 650,000 signal samples. We sliced each recorded ECG by
1024 signal samples, and 630 slices are selected for each record, so a total of 30,240 slices
were used as clean ECG datasets. In the MIT-BIH Noise Stress Test Database, baseline
wander noise, electrode motion artifact noise, and muscle artifact noise were obtained,
which also totaled 650,000 signal samples. We also sliced each noise signal by 1024 signal
samples and selected 630 slices as the noise dataset. We normalized the clean ECG dataset
and noise dataset according to the following formula to ensure that the signal value of each
ECG segment was between 0 and 1:

Normalized(xi) =
xi − xmin

xmax − xmin
, (1)

where xi is the value of the signal in a sliced signal, xmax is the largest value of the signal in
this slice signal, and xmin is the smallest value of the signal in this slice signal. We then used
Equation (2) to add different types of noise with signal-to-noise ratios of −5 dB, −2.5 dB,
0 dB, 2.5 dB, and 5 dB to the clean ECG. These noises included Gaussian white noise,
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baseline wander noise, electrode motion artifact noise, and muscle artifact noise. We used
the following expressions to add the noise:

Y = X + N, Ni = ηi

√
∑ xi

2

(∑ ηi
2) ∗ 10

snr
10

, (2)

where xi is a clean ECG, ηi is a noise signal, snr is the signal-to-noise ratio, and Y is the
ECG with noise. Ni represents the noise calculated after adding a certain signal-to-noise
intensity. We divided the ECG dataset into the training set, validation set, and test set
in the proportion of 8:1:1. Therefore, 630 data slices of each ECG record were randomly
partitioned into 504, 63, and 63 data slices according to the ratio, and a total of 24,192 data
slices were used as the training set for ECG noise reduction, 3024 data slices were used as
the validation set for ECG noise reduction, and 3024 data slices were used as the test set for
ECG noise reduction.

3.2. Verifying Indicators

In our study, we used the signal-to-noise ratio (SNR), root-mean-square error (RMSE),
and percentage root-mean-square error (PRD) as important indicators to measure the noise
reduction effect of the ECG data. The higher the signal-to-noise ratio, the better the noise
reduction effect, and the smaller the values of PRD and RMSE, the better the noise reduction
effect. These three metrics can be calculated using the following three expressions:

RMSE =
√

∑(xi − x̂i)
2, (3)

PRD = 100

√
∑(xi − x̂i)

2

∑ x2
i

, (4)

SNR = 10 log10
∑ x2

i

∑(x̂i − xi)
2 , (5)

where xi is the original ECG data and x̂i is the ECG data after noise reduction.

4. The Method

ECG denoising is a basic and lasting task in ECG processing. The main challenge is to
recover the clean signal (X) and additive noise (N) from the mixed signal (Y), namely:

Y = X + N, (6)

where Y represents the noisy ECG data, X represents the clean ECG data, and N represents
the noise. This problem is ill-posed because the ECG term X and the noise term N are
unknown and difficult to separate. Therefore, we propose a noise reduction method
for separating ECG data and noise. First, we review denoising autoencoders [30] and
disentangled representation learning.

4.1. Review of Denoising Autoencoders

Autoencoders are very popular deep learning models in the field of signal processing
and image restoration. The goal of an autoencoder is to make the output data as close
as possible to the input data so as to achieve the ability of data recovery. Vincent et al.
proposed a denoising autoencoder based on an autoencoder, adding noise to the original
input data to improve the robustness of the model. The denoising autoencoder can be
divided into two stages:

(1) Coding stage:
En(Y) : H = ϕ(Wy + b), (7)
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(2) Decoding stage:

De(H) : X̂ = ψ
(

Ŵh + b̂
)

, (8)

where En ( · ) and De ( · ) represent the encoder and decoder, respectively, which are
composed of a series of convolution layers and activation function layers. Y represents
the sum of input data (X) and noise (N), H represents the feature of the hidden layer,
X is the output data, W and b are the weights and biases of the encoder, and Ŵ
and b̂ are the weights and biases of the decoder. Figure 2 shows the structure of the
denoising autoencoder. The objective function of the denoising autoencoder is:
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4.2. Disentangled Operator

Disentangled representation learning is a new concept in machine learning [31]. In
signal vector space, H represents the coupling feature of the signal and noise, H ∈ RC×L. H
can be characterized as k basis vectors [h1, h2, · · · , hk]. Each basis vector represents a more
subtle feature of the signal and noise, and each subtle feature is coupled into H:

H = h1 ⊗ h2 ⊗ · · · ⊗ hk. (9)

Through a transformation, the coupling information of H is disentangled. We define
the disentangled operator:

f : H → Z. (10)

Because the characteristic basis vectors [h1, h2, · · · hk] are entangled with each other, H
is decomposed into each decomposition factor using a disentangled transformation. They
are independent of each other, which can be expressed as:

Z = z1 ⊕ z2 ⊕ · · · ⊕ zj. (11)

This is similar to the subspace direct sum of the solution space, but the difference is to
solve each direct sum subspace of the transformed feature space. In the ECG denoising
processing, we disentangle the noise-containing signal features using neural networks and
separate them into signal features and noise features. This is to separate the feature space
(H) of the hidden layer into two incompatible spaces (U and S). U represents the coded
feature space of noise, while S represents the clean ECG space.

4.3. Proposed Method

Using the idea of disentangled representation learning, we improve the denoising
autoencoder model and propose a new autoencoder: a disentangled autoencoder. As
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shown in Figure 3, unlike the denoising autoencoder, the features of the encoded hidden
layer are decoupled to separate the signal-coding features and the noise-coding features.
The loss function of the disentangled autoencoder can be expressed as:

L = L1 + L2 =
∣∣X− X̂

∣∣
1 +

∣∣N − N̂
∣∣
1. (12)
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We propose a new network structure called DANet for ECG denoising. As shown
in Figure 4, the disentangled autoencoder network structure consists of three parts: an
encoder, a disentangled module, and two decoders. In the encoder part, five different
coding modules are used to encode the noisy input signal. In order to obtain the detailed
features of the input signal, each coding module contains two convolution layers with the
same convolution kernel size, a maximum pooling layer, and an empty attention module.
The convolution sizes of the convolution layers of the five coding modules are 1× 15, 1 × 9,
1 × 7, 1 × 5, and 1 × 3, respectively. Each pooling layer uses a convolution kernel of 1 × 2
and a stride size of 2 to compress the signal features. The dilated attention module (DSE
block) first uses a 1 × 1 convolution on the input features, uses a convolution with dilated
rates of 2 and 4, performs feature stacking, and finally uses a residual connection to prevent
overfitting of the network model.

In the disentangled module part, this is to separate the feature map of the decoder
output, the signal features, and the noise features. The noisy ECG (Y), with a sampling size
of 1024 × 1, is used as the input and the output after the encoder obtains a feature map (H)
with a channel of 512 and a size of 32 × 1. The feature maps (S and U) are obtained using
convolution layers with convolution kernels of 1 × 3 and 1 × 5. Then, the two feature maps
are superimposed to obtain the fused feature map (H̃), which can be expressed as:

H̃ = S + U. (13)

Then, the feature map (H̃) is input into the average pooling layer to obtain a feature
map with a channel number of 1024 and a size of 1 × 1. Then, the attention coefficients
(α and β) are obtained from the two fully connected layers and multiplied by the original
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feature maps (S and U) to obtain a signal feature map
(

S̃
)

and a noise feature map
(

Ũ
)

with sizes of 32 × 1 × 1024. The formulas can be expressed as:

S̃ = S× α, (14)

Ũ = U × β. (15)

In the decoder part, two decoder network structures with the same structure are used
to decode the signal feature map

(
S̃
)

and the noise feature map
(

Ũ
)

, respectively, to
obtain the denoised ECG (X) and the approximated noise (N). The network structure of
the decoder is similar to that of the encoder. The difference is that the maximum pooling
layer in the encoder is replaced by a deconvolution layer with a convolution kernel of 1 × 2
and a stride size of 2. In addition, a convolution layer and a sigmoid activation function
layer are used in the final output layer.
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4.4. Model Optimization

In our experiment, we used a GPU (NVIDIA RTX3090) with 40 G of memory. We used
the python programming language and selected PyTorch as the deep learning framework
for model training and testing. After repeated experiments, the batch sizes were set to 256,
128, 64, 32, and 16 at the beginning, and the learning rates of the network model training
optimizer were set to 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001. As shown in Figure 5,
the original ECG was added with Gaussian white noise with a signal-to-noise ratio of 0 dB,
and the network model was trained with different batch sizes and learning rates. The
experimental results show that the learning rate of our proposed network model training
was 0.001 The experimental effect was the best when the batch size was set to 32. The
signal-to-noise ratio of the ECG was the highest.
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In our experiment, we used four different optimization algorithms to compare which
optimization algorithm had a better network training effect. These four optimization
algorithms were stochastic gradient descent (SGD) [32], adaptive moment estimation
(Adam) [33], root-mean-square prop (RMSProp) [34], and adaptive subgradient (Ada-
Grad) [35]. We added 0 dB baseline wander noise to the clean ECG and then trained the
proposed model with a batch size of 32 and a learning rate of 0.001 using these four different
optimization algorithms. This experiment aimed to compare the performance differences of
the four different optimizers under the same training settings. We used training parameters
with a batch size of 32 and a learning rate of 0.001. We tested the test set to obtain the noise
reduction effect of each optimizer, including the means and standard deviations of the SNR,
PRD, and RMSE. The relevant data are shown in Table 1. The experimental results show
that the network model training effect was better when based on Adam’s optimization
algorithm. The SNR reached 27.33 dB, the PRD was 4.81, and the RMSE was 0.0181. Adam’s
signal-to-noise ratio was about 44% higher than the SGD. As shown in Figure 6 below, our
proposed network model underwent 100 iterations of training, experimental training loss,
and verification loss. From the experimental results, it can be seen that the training loss
and verification loss were very close, so the network model was not fitted, thus verifying
the reliability of the DANet network model.

Table 1. The means and standard deviations of the SNR, PRD, and RMSE for the four optimizers.

Optimizers Adam SGD RMSProp AdaGrad

Mean

SNR 27.33 15.32 26.62 22.78

PRD 4.81 19.10 5.16 7.80

RMSE 0.0181 0.0692 0.0193 0.0289

Std

SNR 1.40 2.07 1.523 1.17

PRD 0.87 5.64 0.88 1.053

RMSE 0.0052 0.0177 0.0054 0.0066
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5. The Experiment
5.1. Denoising Performance of the Proposed Model

To verify the robustness of our proposed network model to different types of ECG
noises, we randomly selected different numbers of signals from the MIT-BIH Arrhythmia
Database and then added four different forms of ECG noises to these signals, specifically
Gaussian white noise, baseline wander noise, electrode motion artifact noise, and muscle
artifact noise. Gaussian white noise was simulated by generating random noise, while
baseline wander noise, electrode motion artifact noise, and muscle artifact noise were
simulated by the three corresponding types of noise in the MIT-BIH Noise Stress Test
Database. Figure 7 shows the noise reduction effect of the 220th recorded ECG in the MIT-
BIH Arrhythmia Database after adding baseline wander noises at an input SNR of 5 dB. We
can see that the original ECG had baseline wander after adding the baseline wander noise,
which was not conducive to a doctor’s diagnosis. In the denoising process, our proposed
method effectively restored the baseline characteristics of the original signal. Figure 8
shows the noise reduction effect of the 123rd ECG recorded in the MIT-BIH Arrhythmia
Database after adding electrode motion noise at an input SNR of 0 db. It can be seen in
Figure 8 that the original ECG was severely damaged after adding the noise. The P wave
and T wave disappeared completely. The QRS wave still existed, but some deformation
also occurred. In the denoising process, the signal details of the P wave and T wave were
reproduced, and the QRS band was completely restored.

Figure 9 shows the noise reduction effect diagram of the 117th recorded ECG in the
MIT-BIH Arrhythmia Database after adding muscle artifact noise at an input SNR of 2.5 db.
After adding muscle artifact noise to the original ECG, the original ECG retained the signal
characteristics of the R wave. In addition, other bands were damaged by different degrees
of waves. Most of the signal waves were changed into wave shapes, and the original
P wave, T wave, Q wave, and other characteristic band information were lost. In the
process of denoising, not only was all the characteristic wave information restored, but
the ECG was also smoother. Figure 10 shows the noise reduction effect diagram of the
ECG recorded in the MIT-BIH Arrhythmia Database after adding Gaussian white noise at
an input SNR of 5 db to the ECG recorded in the MIT-BIH Arrhythmia Database. It can
be seen in Figure 10 that after adding Gaussian white noise at an input SNR of 5 db, the
characteristic information of each band of the original ECG was completely lost. Compared
with the three other types of noise, the wave damage of Gaussian white noise was the
most thorough, and it was impossible to extract useful information. This damage was
catastrophic to a doctor’s diagnosis. In the process of ECG denoising, our proposed method
could make the denoised ECG retain the morphological characteristics of each band and
also made the ECG smoother. Even after adding Gaussian white noise, the band features of
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the original ECG were completely lost, and the proposed method could still recover the
feature information of each band of the ECG. This verifies that our method can effectively
eliminate Gaussian white noise.
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5.2. The Contrast Experiment

To compare the denoising performance of our proposed method, we chose an autoen-
coder based on a deep fully connected neural network (hereafter referred to as DNN) [36]
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and a denoising autoencoder based on a fully convolutional neural network (hereafter
referred to as FCN) [30] as the comparison objects. To make the comparison experiments
more scientific, we set the DNN, FCN, and DANet all to train on the same training set
and test on the same test set. For fairness, we used Adam’s optimization algorithm to
train all the models. The batch size of the training dataset was set to 32, the learning rate
was 0.001, the loss function was the root-mean-square error between the original ECG and
the denoised ECG, and the number of training iterations was set to 100. In addition, all
models were batch-normalized, and the activation function was the RELU function. At
the 0 dB input signal-to-noise ratio noise level, Tables 2–4 represent a quantitative com-
parison of the denoising effects of the various autoencoder models after adding baseline
wander noise, muscle artifact noise, and electrode motion artifact noise, respectively. In
these three tables, it can be seen that using different ECG noise reduction performance
indicators, the proposed denoising framework based on a disentangled autoencoder was
superior to a fully convolutional denoising autoencoder and a fully connected autoencoder.
These quantitative performance evaluations demonstrate the strength of the proposed
disentangled-autoencoder-based denoising framework. The proposed framework has
good generalization for EM, MA, and BW noises. It should be noted that it can be further
enhanced by larger training datasets and better DANet model design. In addition, multiple
noise cases can be trained simultaneously using a single DANet model. In the future, we
hope to use different databases and other noise conditions to train the model.

Table 2. Quantitative comparison of denoising effects of various autoencoder models after adding
baseline wander noise at 0 dB input SNR noise level.

Record
DANet FCN DNN

SNR RMSE PRD SNR RMSE PRD SNR RMSE PRD

109 26.82 0.0196 5.24 25.1 0.0236 6.31 17.02 0.0526 14.5
117 27.7 0.0215 4.31 25.92 0.0265 5.29 17.92 0.0644 12.88
118 26.23 0.0249 5.29 24.74 0.0293 6.23 17.16 0.066 14.04
119 26.5 0.0156 5.19 24.44 0.0194 6.38 15.23 0.0538 18.34
123 29.19 0.0127 3.78 27.24 0.0158 4.71 16.45 0.0514 15.37
215 26.76 0.0207 4.87 24.73 0.0255 6.14 15.1 0.075 17.68
220 30.63 0.0114 3.08 28.94 0.0137 3.74 16.15 0.058 15.71
230 26.55 0.0212 5.24 24.84 0.0252 6.19 16.46 0.0627 15.21
231 27.17 0.0141 4.9 25.78 0.0163 5.7 14.31 0.0591 20.48
233 26.96 0.0252 5.13 24.8 0.032 6.58 18.57 0.0597 12.18

Average 27.451 0.01869 4.703 25.653 0.02273 5.727 16.437 0.06027 15.639

Table 3. Quantitative comparison of denoising effects of various autoencoder models after adding
muscle artifact noise at 0 dB input SNR noise level.

Record
DANet FCN DNN

SNR RMSE PRD SNR RMSE PRD SNR RMSE PRD

109 26.15 0.0182 5.09 25.28 0.02 5.59 16.89 0.051 14.43
117 25.48 0.028 5.59 23.6 0.0345 6.88 17.13 0.0706 14.07
118 24.99 0.028 5.96 23.58 0.0324 6.89 16.71 0.0693 14.72
119 24.52 0.0187 6.31 23.14 0.0217 7.35 14.75 0.0552 19.46
123 27.5 0.0144 4.35 25.95 0.0173 5.21 16.29 0.0512 15.49
215 24.74 0.0249 6.04 23.02 0.0303 7.4 14.77 0.0776 18.33
220 28.41 0.0146 3.97 26.32 0.0184 5.02 15.8 0.0602 16.35
230 25.05 0.0259 6.01 23.51 0.0303 7.01 16.4 0.0663 15.26
231 25.08 0.0165 5.9 23.2 0.0202 7.39 13.62 0.059 22.16
233 25.29 0.028 5.89 23.16 0.0354 7.42 17.64 0.0649 13.56

Average 25.721 0.02172 5.511 24.076 0.02605 6.616 16 0.06253 16.383
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Table 4. Quantitative comparison of denoising effects of various autoencoder models after adding
electrode motion artifact noise at 0 dB input SNR noise level.

Record
DANet FCN DNN

SNR RMSE PRD SNR RMSE PRD SNR RMSE PRD

109 28.54 0.0139 3.95 23.5 0.0245 6.95 14.14 0.0693 19.82
117 31.03 0.0145 2.87 24.12 0.0325 6.39 14.83 0.0927 18.33
118 29.02 0.0177 3.71 23.66 0.0326 6.88 13.42 0.1017 21.44
119 29 0.0111 3.76 22.33 0.0238 8.13 11.56 0.0796 27.88
123 31.98 0.0098 2.85 26.4 0.0181 5.28 14.31 0.0662 19.56
215 28.6 0.0168 3.87 23.72 0.0295 6.86 11.75 0.1143 25.92
220 32.92 0.0087 2.31 28.07 0.0153 4.08 14.17 0.0738 19.7
230 30.13 0.0137 3.3 23.69 0.0285 6.83 14.1 0.0837 19.91
231 28.75 0.0108 3.96 22.99 0.0211 7.46 11.45 0.0784 27.83
233 29.18 0.0185 3.66 23.05 0.0375 7.5 14.1 0.1013 20.02

Average 29.915 0.01355 3.424 24.153 0.02634 6.636 13.383 0.0861 22.041

6. Discussion

As a model for ECG denoising, DANet is a new idea based on a disentangled autoen-
coder, which has certain advantages and disadvantages. The disentangled autoencoder
used in DANet can effectively reduce the noise interference of ECG and improve the signal
quality. The model was designed based on deep learning technology, which can use large-
scale data for training to improve prediction ability and accuracy. However, DANet also has
some limitations and shortcomings. Firstly, due to the complex structure of the decoupled
autoencoder, a large amount of computing resources and time are required during training.
At the same time, the model needs a certain amount of time to process during testing, and
there may be a certain delay. In terms of training strategies, it is necessary to consider the
issue of protecting patient privacy and how to train and test efficiently on limited datasets.
In our experimental design, the lack of separation of patient data may have affected our
accurate assessment of model performance. Therefore, in order to more accurately evaluate
the performance of the model, we have taken some measures. Specifically, we separated
the data according to the patient record number. We selected six ECG data with record
numbers of 107, 115, 123, 207, 220, and 233 as the test set and selected the remaining patient
record data as the training set. The ratio of the training set and test set was 7:1. In this
way, we could better protect the privacy and security of the patient data, more accurately
evaluate the performance of the model, and improve the credibility of the experimental
design. According to the experimental results in Table 5, compared with the experiment
(such as in Tables 2–4) without patient data separation, the noise reduction effect of the
baseline wander noise of the DANet model was reduced by 11.47%, and the noise reduction
effect of the electrode motion artifacts was reduced by 5.36%, while the signal-to-noise
ratio of the DANet model increased by 7.46% when dealing with muscle artifact noise.
The experimental results show that although the signal-to-noise ratio of the DANet model
decreased slightly in the patient data separation experiment, it could still maintain a good
noise reduction effect. Therefore, it can be concluded that the noise reduction ability of the
DANet model still performed well in different types of noise processing after the separation
of patient data.
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Table 5. The noise reduction effect of the DANet model using a training set and a test set divided
according to different patient data.

Record
BW EM MA

SNR RMSE PRD SNR RMSE PRD SNR RMSE PRD

107 26.05 0.0279 5.51 27.75 0.0219 4.30 28.18 0.0202 3.96

115 26.62 0.0194 5.10 28.98 0.0139 3.68 26.93 0.0175 4.66

123 19.77 0.0398 10.65 25.59 0.0215 5.78 24.81 0.0220 5.90

207 22.03 0.0466 8.58 28.73 0.0217 3.99 29.79 0.0179 3.28

220 25.20 0.0219 5.90 28.51 0.0143 3.86 26.18 0.0186 5.03

233 26.11 0.0286 5.41 30.31 0.0165 3.13 29.96 0.0169 3.20

Average 24.30 0.0307 6.86 28.31 0.0183 4.12 27.64 0.0189 4.34

7. Conclusions

We introduced a disentangled mechanism module into a traditional autoencoder and
proposed a new autoencoder model. We used disentangled representation learning to
decouple the hidden layer features after coding, achieved the separation of signal and
noise features, and then obtained the denoised signal by decoding. In this paper, different
types of noise were added, which proved that our proposed denoising method has good
robustness. Meanwhile, the effectiveness of the proposed method was evaluated using
the signal-to-noise ratio, percentage root-mean-square error, and mean square error. In
experiments, compared with models such as an FCN-based denoising autoencoder and a
DNN-based autoencoder, our proposed method had more advantages in the signal-to-noise
ratio and PRD. In future work, we will explore how to better extract the features of ECG,
separate ECG features and noise features, improve the noise reduction effect of ECG, and
better apply these findings to an automatic diagnosis system of ECG.
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