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Abstract: The recently proposed novel unidirectional multilevel rectifier, a three single-phase star-
connected multilevel rectifier, has the characteristic of having a large number of DC-side capacitors
and a complex capacitor voltage balancing control structure under conventional carrier-based phase-
shift sine wave pulse-width modulation (SPWM). Hence, a space vector pulse-width modulation
(SVPWM) algorithm for the novel multilevel rectifier is proposed in this paper, which can quickly
balance the capacitor voltage without an additional voltage balancing control structure. Firstly,
it divides the space vectors of the rectifier, then it determines the two basis voltage vectors that
synthesize the output reference voltage. After that, based on the analysis of the relationship between
switching states and the charge–discharge of capacitors, the final action sequences of redundant
vectors are determined according to the principle of keeping the capacitor charge–discharge time
consistent. Thus, the capacitor voltages can be automatically balanced without an additional voltage
balancing control structure. Finally, simulation and experimental results validated the feasibility and
effectiveness of the proposed SVPWM algorithm. The results also show improvements in current
quality, capacitor voltage balance and the fluctuation of the neutral point voltage on the DC-link,
allowing for further reduction in the overall volume and cost of the rectifier.

Keywords: single-phase; multilevel; space vector pulse-width modulation (SVPWM); capacitor
voltage balance

1. Introduction

Multilevel rectifiers have been widely used and studied because of their advantages
in harmonic characteristics, device stress, filter volume, power density and electromagnetic
interference [1–3]. The existing multilevel rectifiers are mainly divided into three types:
diode-clamped (neutral point clamped, NPC) rectifier [4], flying capacitor (FC) rectifier [5,6]
and cascaded H-bridge (CHB) rectifier [7]. These rectifiers are bidirectional power trans-
mission. However, in view of the numerous industrial applications, bidirectional power
transmission is not necessary, such as power supplies for aircraft, naval propulsion systems,
pumps and blowers, etc. [8–12]. Especially in the medium-voltage (MV) applications,
the unidirectional rectifiers have better economic benefits due to the use of fewer active
switches, and the lower switching loss of the system, so the system has higher safety and re-
liability and has attracted many research scientists and engineers to conduct comprehensive
research on it.

Ref. [13] discussed the derivation of some of the unidirectional rectifiers from the
traditional converters, such as the NPC, FC and CHB converters. The topology in Ref. [14]
has the same circuit structure as the 3L-NPC and in which some of active switches are
replaced by diodes. Further, the Vienna rectifier in Ref. [15] was proposed which is modified
from [14]. Moreover, several multilevel unidirectional rectifiers have been proposed in
Refs. [16–19]. Although these rectifiers have lower cost and volume over traditional
bidirectional converters, there are still some shortcomings, such as high device stress and
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uneven switching loss. Especially in MV applications, its front stage still needs a bulky and
expensive line-frequency transformer to achieve voltage step-down, line harmonic-current
mitigation and galvanic isolation. So that canceling the line-frequency transformer has
become a hotspot in the research of unidirectional rectifiers.

Ref. [20] proposed a 6.6 kV transformer-less motor drive using a five-level clamped
pulse-width modulation (PWM) inverter for energy savings of pumps and blowers. In
which the diode rectifier and the voltage balancing can be defined as a five-level rectifier.
Although the transformer can be canceled in MV scenarios, it is replaced by two bulky
inductors and it needs an additional active filter to mitigate the harmonics. Hence, the total
volume and cost are still large. Ref. [21] modified the circuit structure in Ref. [20], where the
two inductors were replaced by a single coupled inductor. The overall volume is still large.
Ref. [22] proposed a unidirectional five-level rectifier which can be used in MV scenarios
without transformer at the grid side. Compared with the traditional unidirectional five-
level rectifier, there are four switches per phase and it has lower cost and device stress
and higher efficiency. It adopts the conventional carrier-based phase-shift PWM method
and additional control structure to balance the capacitor voltage on the DC side, so the
voltage balancing accuracy and switching loss need to be further improved. Ref. [23]
proposed a novel unidirectional three single-phase star-connected five-level rectifier. It
can also cancel the transformer to reduce the cost and volume of the system. Compared
with the topology in Ref. [22], they both have four switches and eight diodes per phase
and can be extended to higher levels, but it can generate more levels on the input side so
that the harmonic characteristics and filter volume can be further improved. Similarly, it
adopts the conventional carrier-based PWM method and the capacitor voltage balance
needs an additional control structure. In general, the rectifiers in Refs. [22,23] have great
advantages in device stress, cost, filter volume and power efficiency; they are still in the
research and development stage. The conventional carrier-based PWM and additional
voltage balance control structure will increase the switching loss of the system and the
difficulty of engineering implementation, thus limiting its promotion and application in
industrial scenarios.

Considering the complexity and variability of industrial scenarios, it is necessary to
further improve the dynamic performance and voltage balancing accuracy. Space vector
pulse-width modulation (SVPWM) is widely used in the modulation method of converters
because of its easy digital implementation, lower switching loss and harmonic currents,
etc. [24–26]. For the multilevel rectifier proposed in Refs. [22,23], this paper takes the
unidirectional single-phase five-level as an example to present an SVPWM algorithm
with the function of automatically equalizing the capacitor voltage so as to simplify the
voltage balance control structure and improve voltage balancing accuracy and dynamic
performance of the rectifier. This paper presents a variety of applicable SVPWM sequences,
gives a most recommended sequence by comparing the switching loss and midpoint
voltage fluctuation range of the system in simulation and presents experimental results.
The proposed SVPWM algorithm in this paper is also applicable and can be easily extended
to the three-phase or higher level rectifiers in Refs. [22,23].

The rest of this article is organized as follows: The topology and operating principle of
the single-phase five-level rectifier are introduced in Section 2. The design of the SVPWM
algorithm and different sequences are presented in Section 3. In Section 4, the simulation
and experimental results are given to validate the proposed SVPWM algorithm. The main
conclusion is drawn in Section 5.

2. Topology and Principle of the Single-Phase Five-Level Rectifier

Figure 1 shows the topology of a single-phase five-level rectifier, which consists of
a diode bridge rectifier and a five-level DC/DC unit. AC grid voltage is us. The filter
inductance at the AC side is L, which has the function of boosting voltage. The AC
inductive current is iL. The diode bridge rectifier consists of four common diodes D1, D2,
D3 and D4. PWM driving signals of switches T1, T2, T3 and T4 are represented by S1, S2, S3
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and S4, respectively. When Si (i = 1,2,3,4) = 1, the corresponding power switch is on. When Si

(i = 1,2,3,4) = 0, the corresponding power switch is off. D5, D6, D7 and D8 are freewheeling
diodes with voltage-clamped functions. The voltages of C1, C2, C3 and C4 are represented
by uc1, uc2, uc3 and uc4, respectively. The DC load voltage is udc.
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Figure 1. Topology of single-phase five-level rectifier.

Taking a power frequency cycle as an example. The principle of the single-phase
five-level rectifier is introduced as follows.

Taking the point O on the DC-link as the reference point, the output level uao from the
point a on the AC-side port to the point O is analyzed.

If iL > 0:
When both switches T1 and T2 are off, uao = udc/2.
When only one of the switches T1 and T2 is on, uao = udc/4.
When both switches T1 and T2 are on, uao = 0.
If iL < 0:
When both switches T3 and T4 are off, uao = −udc/2.
When only one of the switches T3 and T4 is on, uao = −udc/4.
When both switches T3 and T4 are on, uao = 0.
Accordingly, the voltage uao outputs five levels, −udc/4, −udc/2, 0, udc/4, udc/2.

Therefore, the port voltage uab can output nine levels, −udc, −3udc/4, −udc/2, −udc/4,
0, udc/4, udc/2, 3udc/4, udc. Table 1 shows the relationship between output levels and
switching states in detail.

Table 1. The relationship between output level and switching states.

(S1S2S3S4) uao (iL > 0) uao (iL < 0) uab (iL > 0) uab (iL < 0)

0000 udc/2 −udc/2 udc −udc
1000 udc/4 −udc/2 3udc/4 −3udc/4
0100 udc/4 −udc/2 3udc/4 −3udc/4
0010 udc/2 −udc/4 3udc/4 −3udc/4
0001 udc/2 -udc/4 3udc/4 −3udc/4
1100 0 −udc/2 udc/2 −udc/2
0110 udc/4 −udc/4 udc/2 −udc/2
0011 udc/2 0 udc/2 −udc/2
1010 udc/4 −udc/4 udc/2 −udc/2
0101 udc/4 −udc/4 udc/2 −udc/2
1001 udc/4 −udc/4 udc/2 −udc/2
1110 0 −udc/4 udc/4 −udc/4
1011 udc/4 0 udc/4 −udc/4
0111 udc/4 0 udc/4 −udc/4
1101 0 −udc/4 udc/4 −udc/4
1111 0 0 0 0
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Since the front stage of the topology is diode uncontrolled rectification, the current
flow path at the DC side has nothing to do with the positive or negative half cycle of the
AC voltage, but only with the switching on or off at the DC side. Taking the positive half
cycle of the AC voltage as an example, the current flow paths under different switching
states are shown in Figure 2.
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3. The Proposed SVPWM Algorithm for Single-Phase Five-Level Rectifier
3.1. Sector Division and Selection of Basis Synthetic Voltage Vector

According to the nine levels of output voltage uab, input current direction at the AC
side and 16 switching states, the space vector diagram of the single-phase five-level rectifier
is divided into 8 sectors, I, II, III, IV, V, VI, VII, VIII. Figure 3 shows the space vector diagram
of the rectifier. The boundary of sector I corresponds to voltage vectors V4 and V3. The
case is similar for the rest of sector boundaries in Figure 3 and it will not be repeated here.
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Figure 3. Space vector diagram for the single-phase five-level rectifier.

As shown in Figure 3, V is a virtual vector with angular velocity ω rotating counter-
clockwise. The projection on the α axis of V is the output reference voltage vector Vref of the
rectifier. Considering the different input current directions at the AC side, the single-phase
five-level rectifier has a total of thirty-one space voltage vectors. Except for the zero vector
(1111), each switching state corresponds to two voltage vectors with different directions
and the same length.

All voltage vectors are defined according to Figure 3. V4 and V−4 (0000) are long
vectors. V3 and V−3 are medium-long vectors, in which (1000), (0100), (0010) and (0001)
are redundant vectors. V2 and V−2 are medium vectors, in which (1100), (0110), (0011),
(1001), (0101) and (1010) are redundant vectors. V1 and V−1 are short vectors, in which
(1110), (0111), (1101) and (1011) are redundant vectors. V0 is a zero vector.

Before selecting the basis synthetic voltage vector, the sector to which the reference
voltage vector Vref belongs should be judged first. The sector judgment rules and the
selection of the basis synthetic voltage vector are as follows:

If Vref ≥ 3udc/4, select vectors V4 and V3 for synthesis in sector I.
If 3udc/4 > Vref ≥ udc/2, select vectors V3 and V2 for synthesis in sector II.
If udc/2 > Vref ≥ udc/4, select vectors V2 and V1 for synthesis in sector III.
If udc/4 > Vref ≥ 0, select vectors V1 and V0 for synthesis in sector IV.
When Vref < 0, the sector judgment is similar to the above rules with Vref ≥ 0 and is

easy to understand from Figure 3.
After determining the sector to which Vref belongs and selecting the basis synthetic

vector, the existence of the relevant redundant vector makes the selection of the basis
vector more flexible. When selecting redundant vectors, the influence of each vector on
the charge and discharge of each DC-side capacitor should be considered, so as to better
maintain the voltage balance between capacitors. Table 2 shows the relationship between
different switching states, namely different voltage vectors, and the charge–discharge of
DC-side capacitors.
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Table 2. The relationship between switching states and the charge–discharge of DC-side capacitors.

(S1S2S3S4) C1 C2 C3 C4

0000 Null Null Null Null
1000 Null Null Discharge Null
0100 Discharge Charge Charge Null
0010 Charge Discharge Null Charge
0001 Null Null Null Discharge
1100 Discharge Charge Null Null
0110 Null Null Charge Charge
0011 Charge Discharge Null Null
1010 Charge Discharge Discharge Charge
0101 Discharge Charge Charge Discharge
1001 Null Null Discharge Discharge
1110 Null Null Null Charge
1011 Charge Discharge Discharge Null
0111 Null Null Charge Null
1101 Discharge Charge Null Discharge
1111 Null Null Null Null

“Null” means neither charging nor discharging.

3.2. Determine the SVPWM Sequence and Vector Action Time

After determining which basis vectors are composed of Vref in each sector, the specific
SVPWM sequence is determined based on the principle that the capacitors recover balance
as soon as possible.

In sector I, there is no redundant vector for V4, and only the redundant vectors of
V3 need to be reasonably configured. According to the relationship between redundant
vectors and the charge–discharge of each capacitor in Table 2, select (0000) as the first vector.
Considering the minimum switching times per switching cycle, conduct in the order of
(0000)→ (1000)→ (0100)→ (0010)→ (0001)→ (0000).

In sector II, the redundant vectors of V3 and V2 need to be reasonably configured.
According to the relationship between redundant vectors and the charge–discharge of each
capacitor in Table 2, select (1010) as the first vector. Considering the minimum switching
times per switching cycle, conduct in the order of (1010)→ (1000)→ (0100)→ (0010)→
(0001)→ (0101).

In sector III, the redundant vectors of V2 and V1 need to be reasonably configured.
According to the relationship between redundant vectors and the charge–discharge of each
capacitor in Table 2, select (1010) as the first vector. Considering the minimum switching
times per switching cycle, conduct in the order of (1010)→ (1110)→ (1101)→ (1011)→
(0111)→ (0101).

In sector IV, there is no redundant vector for V0, and only the redundant vectors of
V1 need to be reasonably configured. According to the relationship between redundant
vectors and the charge–discharge of each capacitor in Table 2, select (1111) as the first vector.
Considering the minimum switching times per switching cycle, conduct in the order of
(1111)→ (1110)→ (1101)→ (1011)→ (0111)→ (1111).

In sector V, the switching states of the redundant vectors of V1 and V−1 are the same;
that is, the charge–discharge impact on the DC-side capacitors is the same. For this reason,
the same SVPWM sequence as sector IV is selected to synthesize Vref.

In sector VI, the switching states of the redundant vectors of V1 and V−1, V2 and V−2
are the same; that is, the charge–discharge impact on the DC-side capacitors is the same.
The same SVPWM sequence as sector III is selected to synthesize Vref.
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In sector VII, the switching states of the redundant vectors of V3 and V−3, V2 and V−2
are the same; that is, the charge–discharge impact on the DC-side capacitors is the same.
The same SVPWM sequence as sector II is selected to synthesize Vref.

In sector VIII, the switching states of the redundant vectors of V4 and V−4, V3 and
V−3 are the same; that is, the charge–discharge impact on the DC-side capacitors is the
same. The same SVPWM sequence as sector I is selected to synthesize Vref.

SVPWM-1:
Sector I: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
Sector II: (1010)→ (1000)→ (0100)→ (0101)→ (0001)→ (0010).
Sector III: (1010)→ (1110)→ (1101)→ (0101)→ (0111)→ (1011).
Sector IV: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector V: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector VI: (1010)→ (1110)→ (1101)→ (0101)→ (0111)→ (1011).
Sector VII: (1010)→ (1000)→ (0100)→ (0101)→ (0001)→ (0010).
Sector VIII: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
SVPWM-2:
Sector I: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
Sector II: (1100)→ (1000)→ (0100)→ (0011)→ (0001)→ (0010).
Sector III: (1100)→ (1110)→ (1101)→ (0011)→ (0111)→ (1011).
Sector IV: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector V: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector VI: (1100)→ (1110)→ (1101)→ (0011)→ (0111)→ (1011).
Sector VII: (1100)→ (1000)→ (0100)→ (0011)→ (0001)→ (0010).
Sector VIII: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
SVPWM-3:
Sector I: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
Sector II: (1001)→ (1000)→ (0100)→ (0110)→ (0001)→ (0010).
Sector III: (1001)→ (1110)→ (1101)→ (0110)→ (0111)→ (1011).
Sector IV: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector V: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector VI: (1001)→ (1110)→ (1101)→ (0110)→ (0111)→ (1011).
Sector VII: (1001)→ (1000)→ (0100)→ (0110)→ (0001)→ (0010).
Sector VIII: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
SVPWM-4 (hybrid):
Sector I: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
Sector II: (1001)→ (1000)→ (0100)→ (0110)→ (0001)→ (0010).
Sector III: (1001)→ (1110)→ (1101)→ (0110)→ (0111)→ (1011).
Sector IV: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector V: (1111)→ (1110)→ (1101)→ (1111)→ (0111)→ (1011).
Sector VI: (1010)→ (1110)→ (1101)→ (0101)→ (0111)→ (1011).
Sector VII: (1010)→ (1000)→ (0100)→ (0101)→ (0001)→ (0010).
Sector VIII: (0000)→ (1000)→ (0100)→ (0000)→ (0001)→ (0010).
For sequence SVPWM-1, Figure 4 shows the conduction sequence and output of the

four switches in each sector, respectively:
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Figure 4. Switching states and output level corresponding to the SVPWM-1. (a) Sector I, II. (b) Sector
III, IV. (c) Sector V, VI. (d) Sector VII, VIII.

For other diagrams of SVPWM sequences given in this paper, the analysis method is
similar to the above, and will not be shown here one by one.

As for the action time of each basis synthetic vector, it is calculated according to the
volt-second principle, and the relevant formulas are shown as follows:{

VxTx + VyTy = VrefTs

Tx + Ty = Ts
(1)

 Tx =
|Vref−Vy|
|Vx−Vy| Ts

Ty = Ts − Tx

(2)

where the action time of the basis synthetic vectors Vx and Vy are Tx and Ty, respectively.
The switching cycle is Ts. It is necessary to ensure that the action time between the
redundant vectors of each basis synthetic vector is equal so as to realize the voltage balance
between the DC-side capacitors.

4. Simulation and Experimental Results

In this section, the simulation and experimental results of a single-phase five-level
rectifier prototype are presented to verify the effectiveness and feasibility of the proposed
SVPWM algorithm. The system parameters applied in the simulation are listed in Table 3.
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Table 3. System parameters.

Parameters Value

The AC grid voltage us/V 220
The AC inductance L/mH 3

DC-link reference voltage udc/V 400
Load resistance RL/Ω 100

Fundamental frequency f 0/Hz 50
Switching frequency f s/kHz 5

DC-side capacitor C1/µF 1100
DC-side capacitor C2/µF 1100
DC-side capacitor C3/µF 40
DC-side capacitor C4/µF 40

4.1. Simulation Results

Figure 5 shows the sector judgment curve of Vref under the SVPWM algorithm pro-
posed in this paper. Meanwhile, the waveforms of grid voltage us, inductive current iL,
port input voltage uab, and the voltage uao from point “a” on the AC side to point “o” on
the DC side under the SVPWM algorithm proposed in this paper are shown in Figure 6.
According to Figures 5 and 6, the feasibility of the proposed SVPWM algorithm and the
given sequences are verified.
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Figure 6. Voltage and current at AC side of rectifier during steady-state operation.



Electronics 2023, 12, 1637 11 of 18

Figure 7 shows the voltage and current at the AC side under the conventional carrier-
based phase-shift SPWM and the SVPWM algorithm with different SVPWM sequences
proposed in this paper. It can bet seen from the figure that the unit power factor oper-
ation can be realized under the conventional carrier-based phase-shift SPWM and the
SVPWM algorithm and the harmonic distortion rate of input current iL is lower under the
SVPWM algorithm.
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Figure 7. Grid voltage and inductive current under different modulation methods during steady-state
operation. (a) SPWM. (b) SVPWM-1. (c) SVPWM-2. (d) SVPWM-3. (e) SVPWM-4(hybrid).

Figure 8 shows the voltages of DC-side capacitors C1 and C2 during steady-state
operation of the rectifier under conventional carrier-based phase-shift SPWM and the
SVPWM proposed in this paper. Figure 9 shows the corresponding DC-side midpoint
voltage fluctuation ∆uc12. It can be seen from the curves that both SPWM and SVPWM
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can achieve the stable output of DC-link voltage. However, through comparison, it can
be found that under the SVPWM algorithm proposed in this paper, especially under the
SVPWM-4 sequence, the neutral point voltage ∆uc12 is significantly reduced by about 60%,
which reduces the transmission loss of the DC-link voltage to a certain extent and provides
space for reducing the capacitance C1 and C2.
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Figure 10 shows the voltages of flying capacitors C3 and C4 under the conventional
carrier-based phase-shift SPWM and the SVPWM proposed in this paper. Figure 11 shows
the voltage fluctuation ∆uc34 between the two flying capacitors C3 and C4. It can be seen
from the figures that both SPWM and SVPWM can realize the charge and discharge of flying
capacitors, and the voltage value is stable at about 1/4 of the reference voltage. Moreover,
through comparison, it can be found that under the SVPWM algorithm proposed in this
paper, especially under the SVPWM-4, the voltage fluctuation ∆uc34 is greatly reduced by
about 98%. This advantage provides space for further reducing the size of flying capacitors,
and has certain economic benefits. It is proved that the SVPWM algorithm proposed in this
paper can not only realize better AC-side current quality, but also greatly reduce the volume
and cost of the single-phase five-level rectifier, which has better engineering application
and promotion value.
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4.2. Experimental Results

In order to verify the proposed SVPWM algorithm for a single-phase five-level rectifier
with DC-side capacitor voltage balance, a down-scaled prototype, as shown in Figure 12,
was built. The power supply used was a programmable AC power supply, Chroma 61503,
while the oscilloscope was Tektronix DPO 3054. The controller used was TMS320F28335
DSP from Texas Instruments. In the experimental test, a reduced power level was used,
with an effective input voltage of 110 V on the AC side, and a desired DC-link voltage
of 200 V. Furthermore, all other parameters are consistent with the simulation section, as
shown in Table 3. Meanwhile, this section only selects SVPWM-4 sequence with the best
overall performance to verify the effectiveness and feasibility of the SVPWM algorithm
proposed in this paper. The main experimental results are as follows.

Figure 13 shows the AC-side voltage and current, the total DC-link voltage udc as well
as the port voltage uab. Nine-level port voltage uab and sinusoidal AC-side current can be
realized. Moreover, the total DC-link voltage can be stabilized near the desired value with
a small voltage ripple.
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Figure 13. Experimental results of current iL and voltages us, udc and uab.

Figures 14 and 15, respectively, show the AC-side voltage us and current iL as well as
the DC-side capacitor voltages uc1 and uc2 under the load suddenly changing from 100 Ω
to 50 Ω and 50 Ω to 100 Ω. It can be seen that the capacitor voltages is still well balanced,
which verifies the effectiveness of the proposed SVPWM algorithm.
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Figure 15. Experimental results of current iL and voltages us, uc1 and uc2 with load suddenly changing
from 50 Ω to 100 Ω.

Figure 16 shows the DC-side capacitor voltages uc1, uc2, uc3 and uc4. It can be found
that the DC-side capacitor voltages can be well balanced. The voltages uc1 and uc2 can
be stabilized near the desired value with small voltage ripple. In addition, the voltages
uc3 and uc4 can be stabilized near half of the voltage uc1 or uc2 with smaller voltage ripple.
Moreover, the voltage fluctuations between uc1 and uc2, uc3 and uc4 are well suppressed
under the proposed SVPWM algorithm. Therefore, Figures 13–15 prove the feasibility and
effectiveness of the SVPWM algorithm proposed in this paper for single-phase five-level
rectifier. Meanwhile, we have also provided a comparison table with the previous work to
highlight the achievements of this paper, which is shown in Table 4.
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Table 4. Comparison with the previous work.

The Previous Work This Paper

1 Propose the novel multilevel rectifier Sort out the principle and give a space vector diagram
2 Adopt carrier-based phase-shift SPWM Propose a specific SVPWM algorithm

3 Need additional voltage balancing control Actively balancing capacitor voltage without additional
voltage balancing control

4 Current quality (THD%) on the AC side is about 3.3% Current quality (THD%) on the AC side is about 1.5%

5 The fluctuation of the neutral point voltage on the
DC-link is large

The fluctuation of the neutral point voltage on the DC-link
is reduced by about 60% compared to the SPWM

6 Voltage difference between two flying capacitors is large Voltage difference between two flying capacitors is reduced
by about 98% compared to the SPWM

5. Discussion

Aiming at the inherent disadvantages of a large number of single-phase five-level
DC-side capacitors and complex capacitor voltage balance control, an SVPWM algorithm
for improving the DC-side capacitor voltage balance is proposed in this paper. Finally,
the simulation and experimental results verify the correctness and effectiveness of the
proposed SVPWM algorithm. Moreover, this paper also gives several SVPWM sequences,
and highlights its advantages through the comparative analysis with the conventional
carrier-based phase-shift SPWM. Meanwhile, the given sequences are summarized, and
a sequence with the best performance is recommended. It is of great significance for the
promotion and application of the single-phase five-level rectifier in practical engineering,
and can be easily extended to the higher levels of the three-phase rectifiers in Refs. [22,23].

6. Conclusions

In this paper, we propose an SVPWM algorithm for the recently proposed novel
unidirectional multilevel rectifier. Compared with the conventional carrier-based phase-
shift SPWM, it can balance the DC-side capacitor voltage better without requiring additional
complex capacitor voltage balancing control structures. Furthermore, the flexibility of
the proposed SVPWM algorithm is demonstrated through different sequence selections,
providing ideas for higher-level SVPWM algorithm research in both three-phase and single-
phase unidirectional rectifiers. Additionally, it provides theoretical support for practical
engineering applications and lays a solid foundation for the research of upper control
strategies for this type of unidirectional rectifier. These contributions will facilitate further
studies in other fields, such as nonlinear control strategies and thermal losses.
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