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Abstract: Pixel clustering is a technique of content-adaptive data embedding in the area of high-
performance reversible data hiding (RDH). Using pixel clustering, the pixels in a cover image can
be classified into different groups based on a single factor, which is usually the local complexity.
Since finer pixel clustering seems to improve the embedding performance, in this manuscript, we
propose using two factors for two-dimensional pixel clustering to develop high-performance RDH.
Firstly, in addition to the local complexity, a novel factor was designed as the second factor for
pixel clustering. Specifically, the proposed factor was defined using the rotation-invariant code
derived from pixel relationships in the four-neighborhood. Then, pixels were allocated to the two-
dimensional clusters based on the two clustering factors, and cluster-based pixel prediction was
realized. As a result, two-dimensional prediction-error histograms (2D-PEHs) were constructed, and
performance optimization was based on the selection of expansion bins from the 2D-PEHs. Next,
an algorithm for fast expansion-bin selection was introduced to reduce the time complexity. Lastly,
data embedding was realized using the technique of prediction-error expansion according to the
optimally selected expansion bins. Extensive experiments show that the embedding performance was
significantly enhanced, particularly in terms of improved image quality and reduced time complexity,
and embedding capacity also moderately improved.

Keywords: reversible data hiding; rotation-invariant code; two-dimensional pixel clustering; expansion-
bin selection; multiple-histogram-based modification

1. Introduction

In the area of data hiding, reversible data hiding (RDH) is capable of completely
recovering both the embedded information and the cover image, it specifically effective in
data-sensitive applications, where no permanent distortion to the cover media is allowed [1].
In RDH, the embedding performance usually refers to image quality, embedding capacity
(EC), and time complexity. Image quality is often measured by the level of image distortion
due to data embedding operations. Embedding capacity refers to the maximum amount of
information which can be embedded into a cover image. Time complexity measures the
computational cost for data embedding procedures.

Many RDH implementations focus on improving the image quality with a considerable
embedding capacity. Among them, the most employed techniques include prediction-error
expansion (PEE) [2], pixel sorting [3], pixel clustering [4], and multiple-histogram-based
modification (MHM) [4]. PEE is usually implemented together with histogram modification
to construct prediction-error histograms (PEHs), from which proper expansion bins are
selected for histogram shifting and histogram expansion [3–10]. Existing high-performance
prediction algorithms include rhombus prediction [3], directionally enclosed prediction
(DEP) [5], CNN-based prediction [11–13], etc.

The technique of pixel sorting [3] prefers embedding data into low-complexity (LC)
image regions, where prediction errors are assumed to be relatively smaller. As a result, pixel
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sorting is usually employed together with PEE for performance improvement [3,8–11]. The
most employed sorting criteria is the local complexity. Pixel clustering adheres to the same
assumption followed by pixel sorting, but aims to realize cluster-based data embedding by
classifying pixels into different groups according to some measurements [4,5,14–16]. Based
on pixel clustering, MHM [4,14–23] extends PEE by constructing multiple PEHs based on
the pixel clusters and employs PEE for data embedding according to the optimally selected
expansion bins.

MHM is well-known for its high image quality, and thus many MHM extensions [10,14–23]
have been advanced to further improve its performance. Qin et al. [15] combined the pair-
wise embedding technique into the framework of MHM and designed a two-dimensional
MHM-based method. Hou et al. [16] presented a similar method, but employed a deep
neural network (DNN) to generate multiple histograms. Wang et al. [18] employed the
fuzzy c-means for pixel clustering instead of directly constructing multiple histograms
based on the local complexity. Ou et al. [20] integrated MHM into pixel-value-ordering-
based RDH methods. To further exploit the local redundancy, Weng et al. [22] exploited
k-means clustering for the construction of multiple histograms, and designed an improved
crisscross optimization algorithm to accelerate the procedure of expansion-bin selection.
Chang et al. [23] extended MHM into color images with an effective reversible mapping
selection mechanism from a three-dimensional PEH.

Note that the techniques of pixel sorting and pixel clustering, as well as the framework
of MHM, have been proven to be successful in improving the embedding performance. The
common ground they share is that data embedding with finer pixel clustering can better
exploit the pixel distribution characteristics. In the light of performance improvement
based on pixel clustering, finer pixel clustering by adding more independent clustering
factors seems to be a valuable research direction for further performance enhancement, in
terms of both image quality and embedding capacity.

In addition to image quality and embedding capacity, time cost is also an important
measurement of impact in real-world RDH applications. For optimal data embedding,
especially for MHM-based RDH methods, the time cost is usually very heavy due to the
process of performance optimization, which tries to select the optimal expansion bins
from multiple PEHs. To reduce the runtime of expansion-bin selection, Yuan et al. [24]
proposed a technique of fast parameter optimization (FPO), which employs the concept of
per-bit distortion (PBC) to simplify the process of expansion-bin selection. As a result, the
solution space is significantly reduced, and the runtime of the performance optimization
is reduced to tens of milliseconds with only a tiny loss in image quality. Ma et al. [25]
proved that optimal expansion bins should have similar per-bit distortions, and developed
the expansion-bin determination (EBD) for performance optimization. Their method also
reduced the runtime of the performance optimization to about a hundred milliseconds
with a tiny loss in image quality. It is worth noting that the reduction in time cost for the
expansion-bin selection in these two methods [24,25] is obtained at the expense of a slight
reduction in image quality, and the performance is evaluated using the original MHM
framework, where only one single clustering factor is employed.

This paper aims to improve the embedding performance of RDH in terms of image
quality, embedding capacity, and time complexity. Specifically, the image quality should
be improved while increasing the embedding capacity and reducing the time complexity.
Firstly, we propose using the rotation-invariant code (RIC) of the local binary pattern [26]
as a new factor for pixel clustering. Then, a scheme of two-dimensional pixel clustering is
designed with both RIC and LC as the clustering factors, and two of the existing prediction
algorithms [3,5,11] are selected to realize cluster adaptive prediction. As a result, two-
dimensional PEHs (2D-PEHs) are constructed for two-dimensional MHM (2D-MHM)-
based data embedding. Next, a novel technique for expansion-bin selection is proposed
to reduce the time complexity of the performance optimization in 2D-PEHs. Lastly, data
embedding is realized using PEE for each of the histograms in the 2D-PEHs according to
the optimally selected expansion bins.
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The rest of this manuscript is organized as follows: The related works are briefly
introduced in Section 2. The proposed method is detailed in Section 3, and experimental
analysis is provided in Section 4. Section 5 concludes this proposed work.

2. Related Works

Some related works are briefly introduced in this section, including those that cover
existing high-performance prediction algorithms [3,5,11–13], the framework of MHM [4],
and existing fast expansion-bin selection techniques [24,25].

2.1. High-Performance Prediction Algorithms

In this section, recently developed high-performance prediction algorithms are in-
troduced, including the rhombus predictor [3], the directionally enclosed predictor [5],
and the CNN predictor [11]. The rhombus predictor takes the average of the pixels in the
four-neighborhood as the estimated value, and thus can be seen as a fully enclosed predic-
tor. Since pixel estimation is made within the four-neighborhood, rhombus prediction is
usually employed together with double-layer-based image segmentation [3,4].

The DEP [5] was used to prove that fully enclosed prediction is not accurate enough
in specific image regions, and thus the authors proposed selecting the more accurate
estimation from the two directional prediction results. As a result, the DEP selects part of
the pixels for data embedding, and thus can be seen as a kind of pixel clustering. The DEP
is well-known for its well-improved image quality.

The CNN predictor [11] considers the local features within a certain surrounding
image region for pixel estimation, and constructs a CNN module as the image predictor. To
keep reversibility, CNN-based prediction is realized as estimating one half of the image
according to the pixels in the other half. The CNN predictor has been proven to be more
accurate in pixel estimation than the rhombus predictor.

The CNN predictor is later extended to further increase the prediction accuracy [12,13].
Hu et al. [12] extended their first CNN predictor [11] by employing a scheme of four-layer
image partition to enhance the prediction accuracy and the technique of adaptive two-
dimensional mapping modification to improve the embedding performance. Xie et al. [13]
proposed a deeper CNN model, which consists of three modules, namely the feature
extraction module, the image prediction module and the reconstruction module. With
four-layer image partition, the new CNN model in [13] is proved to be effective in creating
a more centrally distracted PEH and in improving the image quality.

2.2. Multiple-Histogram-Based Modification

MHM [4] advanced a framework for high-performance data embedding by employing
the technique of pixel clustering to divide pixels into multiple groups according to the
level of local complexity. In fact, MHM assumes that the local complexity is proportional
to the absolute value of the prediction error, and thus prefers embedding information in
smooth image regions, where the local complexity tends to be smaller. As a result, MHM is
well-known for its high image quality.

In MHM, the secret to its high performance can be explained by the process of per-
formance optimization, which aims to minimize image distortion by optimally selecting
multiple expansion bins from each and every PEH. Even though the image quality is
significantly improved, MHM is also well-known for its time complexity.

2.3. Fast Expansion-Bin Selection

To solve the problem of high time complexity in MHM, two fast expansion bin se-
lection algorithms [24,25] have been proposed and proved to be effective in significantly
reducing the runtime of performance optimization to the level of tens of milliseconds in
one-dimensional MHM implementations.

The method of fast parameter optimization [24] presented the definition of per-bit
distortion and a two-step procedure for expansion-bin selection. Per-bit distortion measures
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the average distortion introduced due to PEH shifting and PEH expansion with respect to
the selected expansion bins. With this definition, the process of parameter optimization
is simplified by selecting expansion bins with lower per-bit distortion. In the two-step
expansion-bin selection, the first step tries to detect the upper bound and the lower bound
of the solution space, and the second step consists of fine-tuning to select the optimal set of
expansion bins.

Ma et al. [25] treated the pixel intensity as an amplitude continuous signal, and
designed a general form of performance optimization with differentiable objective function
and real variables. Then, after theoretical analysis using Lagrange multiplier, a conclusion
was reached that optimal expansion bins in the technique of MHM should have similar
per-bit distortion.

3. The Proposed Method

The superiority of MHM-based RDH methods has been proven to improve image
quality. However, in existing MHM implementations, there usually exists only one single
clustering factor, and only one simple prediction algorithm is employed to suit all the pixel
distributions. Furthermore, existing MHM-based works are well-known to have a high
time complexity, which prevents them from being utilized in real-world applications.

In this work, we propose three ideas to improve the embedding performance of MHM
in terms of higher image quality, higher embedding capacity, and significantly reduced time
complexity. Firstly, the rotation-invariant code of the local binary pattern is designed as a
new pixel clustering factor, and the technique of two-dimensional clustering is proposed
for the 2D-MHM-based RDH implementation. Then, existing high-performance predictors
are exploited for cluster adaptive prediction to improve the image quality and embedding
capacity by exploiting their specific advantages. Lastly, a novel algorithm is proposed
for the fast expansion-bin selection to significantly reduce the time complexity of the
performance optimization for MHM.

Note that the scheme of double-layer image partition is employed in this proposed
work to divide the cover image into two non-overlapping layers, a shadow layer and a
blank layer, as illustrated in Figure 1b. With the obtained image segmentation result, data
embedding is performed in a layer-wise manner.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 15 
 

 

2.3. Fast Expansion-Bin Selection 

To solve the problem of high time complexity in MHM, two fast expansion bin selec-

tion algorithms [24,25] have been proposed and proved to be effective in significantly re-

ducing the runtime of performance optimization to the level of tens of milliseconds in one-

dimensional MHM implementations. 

The method of fast parameter optimization [24] presented the definition of per-bit 

distortion and a two-step procedure for expansion-bin selection. Per-bit distortion 

measures the average distortion introduced due to PEH shifting and PEH expansion with 

respect to the selected expansion bins. With this definition, the process of parameter opti-

mization is simplified by selecting expansion bins with lower per-bit distortion. In the 

two-step expansion-bin selection, the first step tries to detect the upper bound and the 

lower bound of the solution space, and the second step consists of fine-tuning to select the 

optimal set of expansion bins. 

Ma et al. [25] treated the pixel intensity as an amplitude continuous signal, and de-

signed a general form of performance optimization with differentiable objective function 

and real variables. Then, after theoretical analysis using Lagrange multiplier, a conclusion 

was reached that optimal expansion bins in the technique of MHM should have similar 

per-bit distortion. 

3. The Proposed Method 

The superiority of MHM-based RDH methods has been proven to improve image 

quality. However, in existing MHM implementations, there usually exists only one single 

clustering factor, and only one simple prediction algorithm is employed to suit all the 

pixel distributions. Furthermore, existing MHM-based works are well-known to have a 

high time complexity, which prevents them from being utilized in real-world applica-

tions. 

In this work, we propose three ideas to improve the embedding performance of 

MHM in terms of higher image quality, higher embedding capacity, and significantly re-

duced time complexity. Firstly, the rotation-invariant code of the local binary pattern is 

designed as a new pixel clustering factor, and the technique of two-dimensional clustering 

is proposed for the 2D-MHM-based RDH implementation. Then, existing high-perfor-

mance predictors are exploited for cluster adaptive prediction to improve the image qual-

ity and embedding capacity by exploiting their specific advantages. Lastly, a novel algo-

rithm is proposed for the fast expansion-bin selection to significantly reduce the time com-

plexity of the performance optimization for MHM. 

Note that the scheme of double-layer image partition is employed in this proposed 

work to divide the cover image into two non-overlapping layers, a shadow layer and a 

blank layer, as illustrated in Figure 1b. With the obtained image segmentation result, data 

embedding is performed in a layer-wise manner. 

  
(a) (b) 

Figure 1. The scheme of double-layer division and the local neighborhood: (a) Double-layer Di-
vision; (b) The local neighborhood, where x is the current pixel, vk, 1 ≤ k ≤ 4 composes the
four-neighborhood, both vk and wj, 1 ≤ j ≤ 4 forms the local context.

3.1. Rotation-Invariant Code

In this subsection, we exploit the rotation-invariant code [26] of the local binary pattern
of pixels in the four-neighborhood to denote the local distribution characteristic. Let x
denote a cover pixel, vk, 1 ≤ k ≤ 4 be the pixels in its four-neighborhood (see Figure 1b),
and ri, 1 ≤ k ≤ 4 represent the relationship with vk. The local distribution characteristic
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for x can be described using the local binary pattern formed by the relationships between
rk, as specified by Equation (1),

P(x)=
4

∑
k=1

rk · 2k−1 (1)

where P(x) denotes the local binary pattern, and ri is defined by

rk =

{
1 vk − vk+1 ≥ 0
0 vk − vk+1 < 0

}
(2)

Note that in Equation (2), r4 is obtained from the relationship between r4 and r1.
With the local binary pattern P(x), the rotation-invariant code (denoted by C) for

x can be obtained [26]. In the four-neighborhood condition, the value of the rotation-
invariant code C falls in the set of Sc = {1, 3, 5, 7, 15}. Let Mc denote the number of the
rotation-invariant code; thus, Mc = 5.

3.2. Two-Dimensional Pixel Clustering

Traditional pixel clustering is often realized with only a single clustering factor, which
is usually the local complexity. With a rotation-invariant code, two-dimensional pixel clus-
tering can be realized by using both the RIC and the LC. Let ρ denote the local complexity.
The LC can be calculated in a traditional way by summing up the local differences in the
horizontal and vertical directions, as specified by Equation (3),

ρ = |v1 − w1|+ |w2 − w3|+ |w3 − v4|+ |v4 − w4|+ |w4 − w5|+ |w6 − w7|+ |w7 − w8|+ |v3 − w3|+
|v1 − w4|+ |w1 − w5|+ |w3 − w6|+ |v4 − w7|+ |w4 − w8|.

(3)

Let n (1 ≤ n ≤ Mn) be the level of local complexity, and Mn be the number of local
complexity levels. The value of n can be obtained by evenly distributing pixels into Mn pixel
clusters. Specifically, pixels are first sorted in an ascending order according to the value of ρ,
and then evenly divided into Mn clusters. As a result, pixels in each cluster can be treated
as the same level, whereas pixels in different clusters can be assigned different complexity
levels. From this point of view, the value of n reflects the level of local complexity for a
pixel cluster.

Therefore, each pixel can be labeled with two tags: the rotation-invariant code and
the level of local complexity. Consequently, the pixels in each layer (see Figure 1a) can
be categorized into a set of two-dimensional clusters according to the specific values of C
and n. Let G denote a pixel cluster; then, G(C, n) (C ∈ Sc and 1 ≤ n ≤ Mn) can be used to
represent a pixel cluster tagged by the same values of C and n. Based on the definition of
the rotation-invariant code and the level of local complexity, we can assume that they are
independent of each other and are suitable for pixel clustering.

3.3. 2D-PEH Construction with Cluster Adaptive Prediction

With the obtained two-dimensional pixel clusters, the prediction errors for the pixels
in a cluster G(C, n) can be organized into a prediction-error histogram. Let hCn(e) denote the
PEH obtained from pixel cluster G(C, n), hCn(e), which can be constructed using Equation
(4), as specified by

hCn(e) = #{ei|Ci = C, ni = n, 1 ≤ i ≤ N} (4)

where #{·} represents the cardinality; N is the number of pixels; i is the index of a pixel;
and ei, Ci, and ni denote the prediction error, the rotation-invariant code, and the level of
local complexity for pixel xi, respectively. Thus, two-dimensional PEHs are constructed.

Since data embedding is performed in a layer-wise manner and is realized by scanning
pixels in a top-to-bottom and left-to-right order, the values of both C and n are reversible
at the stage of data extraction and image recovery; thus, the reversibility of the clustering
result is guaranteed. Therefore, pixel estimation can be performed in a cluster-wise manner,
and the prediction algorithm for each and every cluster can be selected from a batch of
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prediction algorithms in order to improve the overall prediction accuracy. Thus, cluster
adaptive prediction can be achieved in a 2D-PEH for high-performance data embedding.

3.4. Performance Optimization

In PEE-based reversible data hiding, data embedding is realized with two operations,
bin shifting and bin expansion. The operation of bin shifting aims to ensure reversibility by
creating rooms in the PEH for data embedding, whereas bin expansion utilizes the created
room for data embedding via the expansion of the selected bins. Let aCn , bCn (aCn < bCn ) be a
pair of bins selected from the PEH hCn(e); then, data embedding in pixel cluster G(C, n) can
be performed using Equation (5), as specified by

é =


e− 1 if e = bCn ,
e−m if e < aCn ,
e + m if e = aCn ,
e + 1 if e > bCn ,

e otherwise,

 (5)

where é is the marked version of prediction error e, e∓ 1 represents bin shifting, and e∓m
denotes bin expansion.

Note that in Equation (5), image distortion comes from the two operations of bin
shifting and bin expansion. Therefore, when assuming that the secret information follows
the independent identical distribution, the overall image distortion, denoted by D, can be
denoted by the number of modified pixels, as specified by Equation (6):

D = ∑
C∈Sc

Mn

∑
n=1

0.5 ∗ [hCn
(

aCn
)
+ hCn

(
bCn
)
] + ∑

e<aCn

hCn(e) + ∑
e>bCn

hCn(e)

 (6)

For optimal data embedding, the overall image distortion should be minimized whilst
satisfying the requirement of the payload. If PS denotes the size of the payload, we
have to ensure PS ≥ ∑C∈Sc ∑Mn

n=1[h
C
n
(
aCn
)
+ hCn

(
bCn
)
]. Then, the problem of performance

optimization can be described using Equation (7), as specified by

minimize D w.r.t.
PS ≥ ∑C∈Sc ∑Mn

n=1[h
C
n
(
aCn
)
+ hCn

(
bCn
)
]

(7)

Note that in Equations (6) and (7), the introduced image distortion due to the embed-
ding of a given payload is determined by the following parameters:

1. The number of rotation-invariant codes Mc;
2. The number of levels of local complexity Mn;
3. The selected expansion bins aCn , bCn ;
4. The prediction algorithm for each pixel cluster.

In fact, performance optimization specified by Equation (7) is a process of expansion-
bin selection from Mc ×Mn PEHs. If we assume that bCn (or aCn ) is selected from Me choices
and only two predictors are involved in cluster adaptive prediction, then the solution
space for Equation (7) is 2× 2×Me

Mc×Mn , the time cost of which is extremely heavy in
real-world applications.

3.5. Fast Expansion-Bin Selection

To reduce the time cost of expansion-bin selection, the following three rules are
provided to simplify the process of performance optimization:

1. aCn = −bCn + b, where b ∈ {1,−1} and is predictor specific;
2. Narrow down the range of aCn and bCn by 0 ≤ bCn ≤ T , where T is a positive integer;
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3. Allocate the pixels where C = 15 into the cluster where C = 1. The reason for this is that
too few pixels are tagged with C = 15, and the two clusters with C = 1 or 15 present a
similar PEH distribution.

With these two simplifications, and with the objective of reducing the image quality
while improving the embedding capacity and reducing the time complexity, we propose an
algorithm for fast expansion-bin selection based on the existing algorithms [24,25]. Before
illustrating the algorithm details, the following five definitions are given for clarity.

Definition 1. Per bit cost (PBC), which measures the average cost of selecting a pair of expansion
bins for data embedding in a pixel cluster G(C, n), as specified by Equation (8).

PBC
(
C, n, bCn

)
=

 ∑
e>bCn

hCn(e) + ∑
e<aCn

hCn(e)

/
(

hCn
(

bCn
)
+ hCn

(
aCn
))

. (8)

Definition 2. The PBC matrix is the set of PBCs for data embedding via the expansion of the
corresponding expansion bins. Let C denote a PBC matrix. The shape of a PBC matrix is Mc ×
Mn × (T + 1).

Definition 3. The matrix of expansion bins is denoted by P, the shape of which is Mc ×Mn. Let E
denote the corresponding capacity of P.

Definition 4. The embedding capacity has minimum image distortion (denoted by EC1). EC1 is
obtained by always selecting the cluster-based prediction algorithm with the minimum PBC. The
corresponding PBC matrix for EC1 is denoted by C1, and the matrix of corresponding expansion
bins is denoted by P1. When the size of the payload is no bigger than EC1, C1 will be employed
during expansion-bin selection.

Definition 5. The maximum embedding capacity is denoted by EC2. EC2 is obtained by always
selecting cluster-based predictor algorithms with the maximum capacity. The corresponding PBC
matrix for EC2 is denoted by C2, and the matrix of corresponding expansion bins is denoted by P2.
When the size of the payload is bigger than EC1 but no bigger than EC2, both C1 and C2 will be
employed for expansion-bin selection.

With these definitions, the implementation details of the proposed fast expansion-bin
selection algorithm are illustrated in Algorithm 1.

Algorithm 1: Fast bin selection.

Input: PS,EC1, EC2, C1, C2, P1, P2
Output: P ∗ and the corresponding prediction algorithms for each selected bin.
Procedures:

Step 1. If PS ≤ EC1, go to Step 2, or else go to Step 5.
Step 2. Sort C1 in ascending order, and denote the sorted version by KC.
Step 3. Select an element κj from KC using binary searching, find all bCn satisfying

PBC
(

bCn
)
≤ κj, and then find the P with E ≥ PS.

Step 4. Repeat Steps 2 and 3 until the minimum κj with EC ≥ PS is found. If P ∗ is obtained, go
to Step 7.

Step 5. If PS ≤ EC2, go to Step 6, or else no solution can be detected and process ends.
Step 6. Set P ∗ = P1, replace bCn in P ∗ with the corresponding one in P2 until the corresponding

capacity E ≥ PS, and record the corresponding prediction algorithms for each selected

bin. Note that bCn is selected from P∗ according to PBC
(

bCn
)

in ascending order.

Step 7. Record the corresponding predictor for each bin in P ∗; process ends.
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3.6. A Simple Implementation

This subsection presents the procedure of data embedding for the proposed method,
as illustrated below:

Step 1. Image pre-processing. Given a cover image, add 1 to the pixels with an intensity of
0 and subtract 1 from the ones with 255. The locations of the modified pixels are
recorded in a location map, which is first compressed and then embedding along
with the payload [9].

Step 2. Double-layer image division. The pre-processed image is segmented into two
layers, the shadow layer and the blank layer (see Figure 1a). Data embedding is
performed in a layer-wise manner.

Step 3. Perform data embedding in an image layer. Take the shadow layer as an example.

3-1. Image prediction. The shadow layer is individually estimated using two
prediction algorithms.

3-2. Obtain the rotation-invariant code (see Section 3.1) and the level of local com-
plexity (see Section 3.2). Then, the two-dimensional pixel clusters are obtained.

3-3. Construct the two-dimensional PEHs (see Section 3.3), and calculate the PBC,
the PBC matrix for each and every predictor, the embedding capacity with
minimum image distortion (EC1 and P1), and the maximum embedding
capacity (EC2 and P2) (see Section 3.5).

3-4. Perform Algorithm 1 for fast expansion-bin selection. Then, the optimal
parameters are obtained, including the selected bins P∗ and the corresponding
prediction algorithm for each pair of selected bins aCn , bCn .

3-5. Data embedding is executed using Equation (5). Thus, data embedding is
completed for the shadow layer.

Step 4. After data embedding in both the shadow layer and the blank layer, some necessary
side information is recorded in a preserved region, which refers to the boundary
pixels in this implementation. The recorded side information includes:

• The selected bins aCn , bCn in P∗;
• The corresponding prediction algorithm;
• The location of the last modified pixel.

4. Experimental Analysis

In this section, the experimental results are presented and discussed to evaluate
the embedding performance from three perspectives, namely image quality, embedding
capacity, and time complexity. The image quality is measured by the peak-signal-to-noise
ratio (PSNR) in dB. The embedding capacity measures the maximum amount of pure
payload in bits to be hidden in a cover image. The time complexity refers to the runtime of
performance optimization in seconds. Ten typical USC SIPI [27] grayscale images with a
size of 512× 512, which are commonly used in the area of RDH, are employed as the cover
images, as illustrated in Figure 2.

For the performance comparison, we employ three high-performance predictors,
rhombus [3], DEP [5], and CNN [11], for cluster adaptive prediction. Then, the com-
bination of two predictors with the least amount of image distortion are employed to
further evaluate the image quality, the embedding capacity, and the time complexity. After
that, the embedding performance of the proposed work is compared with the typical
high-performance RDH implementations, including MHM [4], DEP [4], CNN [5], FPO-
APD [24], fast expansion-bins selection (FEBS) [25], and the new CNN-based predictor
(CNN New) [13].

In the following subsections, we first illustrate the PEH distributions in Figure 3 and
select the preferred combination of prediction algorithms for performance evaluation. Then,
we present the image quality in Figures 4 and 5. Lastly, the embedding capacity and the
time complexity are provided in Tables 1 and 2, respectively.
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Figure 2. Ten typical test images.
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Table 1. Comparison of average PSNRs (dB) with different parameter configurations. The best
performance is marked in bold.

Parameters Size of Payload (Kbits)

Predictors Mn 5 15 25 35 45 55 65

DEP, CNN
4 57.96 54.74 53.01 51.92 52.85 51.44 50.31
8 58.50 54.43 52.50 51.94 53.00 51.86 50.39
16 62.40 56.45 54.12 52.30 53.46 51.99 50.53

DEP,
rhombus

4 62.41 57.17 54.72 53.04 53.13 51.57 50.97
8 62.92 57.46 54.84 53.09 53.15 51.61 51.01
16 62.93 57.21 54.67 52.99 53.20 51.79 50.95

Table 2. Comparison of embedding capacity (bits) of the shadow layer of typical images. The best
performance is marked in bold.

Method Lena Baboon Couple Peppers Boat Lake Elaine Man Tank Tiffany Average

MHM 34,393 10,997 29,689 21,815 20,508 19,617 18,587 33,612 22,104 37,819 24,914
DEP 30,520 10,614 30,317 20,413 19,045 18,359 17,728 29,816 20,613 35,807 23,323
CNN 35,422 12,348 36,891 21,815 21,262 53,110 18,493 39,337 23,937 39,727 30,234

Proposed 34,567 11,598 32,256 22,045 20,853 19,789 18,737 33,923 22,376 38,745 25,489

4.1. Parameter Configuration

In the proposed two-dimensional pixel clustering, some parameters need configuration
in the simple implementation, including the combination of the prediction algorithms and
the number of PEHs (Mn). The prediction algorithms were selected from the existing
high-performance predictors including rhombus, DEP, and CNN. In general, selecting a
prediction algorithm with a sharper PEH distribution would produce a high image quality,
and another one with higher PEH peak points would generate a larger embedding capacity.

To obtain the combination of a higher image quality and larger embedding capacity,
we compared the PEH distributions under different RICs, as illustrated in Figure 3, where
Figure 3a–d shows the PEHs obtained from the shadow layer of Lena with RIC = 1, 3, 5, and 7,
respectively, and Figure 3e–h shows the normalized version of Figure 3a–d, respectively.
It is obvious that the PEHs produced by DEP are more sharply distributed to the origin
(see Figure 3e–h). Therefore, DEP is selected as one of the prediction algorithms to preserve
the high image quality.

Note that in Figure 3a–d, the two highest peak points (e = 0 and e =1, see Figure 3e–h)
of both rhombus and CNN are higher than that of DEP, thus, selecting either rhombus or
CNN would help in improving the embedding capacity. However, since the embedding
capacity is improved by restricting the high image quality, the second prediction algorithm
should be selected according to the derived image quality, as illustrated in Table 1.

Note that in Table 1, the predictor combination of DEP and rhombus presents a much
better performance than that of the combination of DEP and CNN. With different Mn
configurations, the image quality tends to be better when Mn = 8. As a result, in the
following subsections, we will use DEP and rhombus as the predictor combination, and set
Mn = 8 for pixel sorting in the proposed method.

4.2. Image Quality

Figure 4 presents the average PSNR obtained from all ten typical test images, from
which it can be observed that the proposed method provides the highest image quality
under all payload conditions. For smaller payload conditions when the EC is less than
40 Kbits, the value of the PSNR is slightly improved, but for bigger payload conditions
when the EC is larger than 40 Kbits, the improvement of PSNR is more than 0.40 dB. When
the size of the payload is 65 Kbits, the PSNR is improved by 1.0 dB. Note that the PSNR for
CNN-New [13] is relatively lower, because this method employed the difference-expansion-
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based data embedding technique, which presents higher embedding capacity but at the
cost of lower image quality.

The comparison of individual typical test images generally echoes the results of the
average PSNRs, as illustrated in Figure 5. The only exception is that CNN generates a better
PSNR result in the image Tank (see Figure 5d) when the size of the payload is higher; the
reason for this is probably that the image contrast is relatively lower and the background is
simpler, which leads to a high prediction accuracy when using the CNN predictor.

4.3. Embedding Capacity

The embedding capacity of the shadow layer in typical test images is presented in
Table 2, where the largest EC value is marked in bold. It is not difficult to see that CNN
provides the best embedding capacity and the EC of the proposed method comes in second,
whereas DEP ranks lowest in nearly all images (except in the image Couple). Note that the
embedding capacity of CNN-New [13] is provided, because the implementation of CNN-
New employs the difference-expansion technique for data embedding, whose embedding
capacity of is one bit per pixel.

It is worth noting that the EC of the proposed method is higher compared with that
of DEP and rhombus, and the image quality is also improved. This result confirms the
effectiveness of the proposed technique of two-dimensional pixel clustering in improving
both the image quality and embedding capacity.

Since the focus of FPO-APD [24] is to reduce the time complexity of MHM, the
corresponding EC is similar to that of MHM, and thus is not presented.

4.4. Time Complexity

In multiple-histogram-based RDH implementations, performance optimization is
usually rather time consuming, which prevent them from being utilized in real-world
applications. To reduce the computational power, the proposed method was designed with
an expansion-bin selection technique for fast performance optimization in 2D-PEHs.

Table 3 presents the runtime (in seconds) of the parameter optimization for the shadow
layer of typical test image, Lena. Note that the number of histograms in both MHM and
FPO-APD [24] are set to Mn = 16, whereas it is set to 32 (Mc = 4, Mn = 8) in this proposed
work. Therefore, the complexity of parameter selection is significantly increased compared
to that of MHM, FPO-APD and FEBS [25]. We can see that even though the PEH numbers
are doubled, the runtime of the proposed method is still only about 0.10 s, which is good
enough for real-world applications.

Table 3. Comparison of runtime (in seconds) of parameter optimization for the shadow layer of
image Lena. * The runtime of FEBS is an average value.

Method
Size of Payload (Kbits)

5 15 25 35 45

MHM 0.50 0.53 0.54 0.53 0.52
FPO-APD 0.01 0.01 0.02 0.02 0.02

FEBS * 0.05 0.05 0.05 0.05 0.05
Proposed 0.08 0.11 0.09 0.07 0.11

It is worth noting that the performance optimization in both MHM and FPO-APD
applies to one-dimensional MHM only, whereas the proposed expansion-bin selection suits
both 1D- and 2D-MHM conditions, as well as even higher dimensional cases. This result
confirms the effectiveness of the proposed technique of expansion-bin selection. The time
complexity for DEP [5] and CNN [11] is similar to that of MHM, and thus, is not illustrated.
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4.5. Discussion

The experimental results proved the effectiveness of our proposed work in improving
the image fidelity and the embedding capacity, and in reducing the computational com-
plexity. The image fidelity improved because the proposed technique of two-dimensional
pixel clustering is effective in creating finer pixel divisions (Mc × Mn = 32) with good
intra-cluster correlation, and thus more accurate prediction can be obtained using pattern
adaptive prediction result selected via the combination of prediction algorithms. The
embedding capacity improved moderately because performance optimization is updated
to select expansion bins with higher occurrence frequency when the size of payload exceeds
a certain level (see Algorithm 1).

The significantly reduced computational complexity (see Section 4.4) proved the
effectiveness of the presented method in performance optimization (see Section 3.4), which
firstly designed several concepts based on the concept of per-bit distortion, and then
simplified the procedure of expansion-bin selection using dichotomy based on the sorted
sequence of per-bit distortion. Note that even though the presented method of performance
optimization (see Section 3.4) is implemented to handle optimization in two-dimensional
PEH condition, it can also be easily implemented to suit the requirement of one-dimensional
or multi-dimensional PEH conditions.

5. Conclusions

This study presented two techniques to improve the embedding performance of
multiple-histogram-based modification. The first proposed technique aimed to improve
both image quality and embedding capacity by designing a technique of two-dimensional
pixel clustering with cluster adaptive prediction. The second technique is the fast expansion-
bin selection, which aimed to reduce the time complexity. The performance of the proposed
cluster adaptive prediction depends highly on existing prediction algorithms, which is
heuristically selected during the combination of prediction algorithms, and thus may not be
effective enough in adapting to the characteristics of pixel clusters. In future investigations,
efforts will be paid to design more effective cluster adaptive prediction algorithms and the
combination of multiple predictors.

Author Contributions: Conceptualization, J.Y. and H.Z.; methodology, J.Y. and H.Z.; software, J.Y.;
validation, J.Y.; investigation, J.Y.; resources, J.Y. and J.N.; writing—original draft preparation, J.Y.;
writing—review and editing, H.Z. and J.N.; supervision, H.Z. and J.N.; project administration, H.Z.
and J.N.; funding acquisition, J.Y. and J.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded in part by the Guangdong scientific research promotion project for
key construction disciplines under grant number 2021ZDJS132, in part by the Guangdong engineering
technology center of regular universities under grant number 2021GCZX001, and in part by the
scientific research program of Guangzhou under grant number 202201010098.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, X.; Shi, Y.Q.; Zhang, X.; Wu, H.; Ma, B. Reversible data hiding: Advances in the past two decades. IEEE Access 2016, 4, 3210–3237.
2. Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
3. Sachnev, V.; Kim, H.J.; Nam, J.; Suresh, S.; Shi, Y.Q. Reversible watermarking algorithm using sorting and prediction. IEEE Trans.

Circuits Syst. Video Technol. 2009, 19, 989–999. [CrossRef]
4. Li, X.; Zhang, W.; Gui, X.; Yang, B. Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf.

Forensics Secur. 2015, 10, 2016–2027.
5. Chen, H.; Ni, J.; Hong, W.; Chen, T. High-fidelity reversible data hiding using directionally enclosed prediction. IEEE Signal

Process. Lett. 2017, 24, 574–578. [CrossRef]
6. Ou, B.; Li, X.; Wang, J.; Peng, F. High-fidelity reversible data hiding based on geodesic path and pairwise prediction-error

expansion. Neurocomputing 2017, 226, 23–34. [CrossRef]

http://doi.org/10.1109/TCSVT.2009.2020257
http://doi.org/10.1109/LSP.2017.2679043
http://doi.org/10.1016/j.neucom.2016.11.017


Electronics 2023, 12, 1645 14 of 14

7. Xiao, M.; Li, X.; Wang, Y.; Zhao, Y.; Ni, R. Reversible data hiding based on pairwise embedding and optimal expansion path.
Signal Process. 2019, 158, 210–218. [CrossRef]

8. He, W.; Cai, Z.; Wang, Y. High-fidelity reversible image watermarking based on effective prediction error-pairs modification.
IEEE Trans. Multimed. 2021, 23, 52–63. [CrossRef]

9. Hong, W.; Chen, T.S. A local variance-controlled reversible data hiding method using prediction and histogram-shifting. J. Sys.
Softw. 2010, 83, 2653–2663. [CrossRef]

10. Kaur, G.; Singh, S.; Rani, R.; Kumar, R.; Malik, A. High-quality reversible data hiding scheme using sorting and enhanced pairwise
PEE. IET Image Process. 2022, 4, 1096–1110. [CrossRef]

11. Hu, R.; Xiang, S. CNN prediction based reversible data hiding. IEEE Signal Process. Lett. 2021, 28, 464–468. [CrossRef]
12. Hu, R.; Xiang, S. Reversible data hiding by using CNN prediction and adaptive embedding. IEEE Trans. Pattern Anal. Mach. Intell.

2022, 44, 10196–10208. [CrossRef] [PubMed]
13. Xie, Y.; Huang, F. New CNN-based predictor for reversible data hiding. IEEE Signal Process. Lett. 2022, 29, 2627–2631.
14. Wang, W.; Wang, C.; Wang, J.; Bian, S.; Huang, Q. Improving multi-histogram-based reversible watermarking using optimized

features and adaptive clustering number. IEEE Access 2020, 8, 134334–134350. [CrossRef]
15. Qin, J.; Huang, F. Reversible data hiding based on multiple two dimensional histograms modification. IEEE Signal Process. Lett.

2019, 26, 843–847. [CrossRef]
16. Hou, J.; Ou, B.; Tian, H.; Qin, Z. Reversible data hiding based on multiple histograms modification and deep neural networks.

Signal Process. Image Comm. 2021, 92, 116118. [CrossRef]
17. Wang, J.; Chen, X.; Ni, J.; Mao, N.; Shi, Y.Q. Multiple histograms based reversible data hiding: Framework and realization. IEEE

Trans. Circuits Syst. Video Technol. 2020, 30, 2313–2328. [CrossRef]
18. Wang, J.; Mao, N.; Chen, X.; Ni, J.; Wang, C.; Shi, Y.Q. Multiple histograms based reversible data hiding by using FCM clustering.

Signal Process. 2019, 159, 193–203. [CrossRef]
19. Wang, J.; Ni, J.; Zhang, X.; Shi, Y.Y. Rate and distortion optimization for reversible data hiding using multiple histogram shifting.

IEEE Trans. Cybern. 2016, 47, 315–326. [CrossRef]
20. Ou, B.; Li, X.; Wang, J. Improved PVO-based reversible data hiding: A new implementation based on multiple histograms

modification. J. Vis. Commun. Image Represent. 2016, 38, 328–339. [CrossRef]
21. Qi, W.; Li, X.; Zhang, T.; Guo, Z. Optimal reversible data hiding scheme based on multiple histograms modification. IEEE Trans.

Circuits Syst. Video Technol. 2020, 30, 2300–2312. [CrossRef]
22. Weng, S.; Tan, W.; Ou, B.; Pan, J.-S. Reversible data hiding method for multi-histogram point selection based on improved

crisscross optimization algorithm. Inf. Sci. 2021, 549, 13–33. [CrossRef]
23. Chang, Q.; Li, X.; Zhao, Y. Reversible data hiding for color images based on adaptive three-dimensional histogram modification.

IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5725–5735. [CrossRef]
24. Yuan, J.; Zheng, H.; Ni, J. Multiple histograms-based reversible data hiding using fast performance optimization and adaptive

pixel distribution. Comput. J. 2022, bxac109. [CrossRef]
25. Ma, S.; Li, X.; Xiao, M.; Ma, B.; Zhao, Y. Fast expansion-bins-determination for multiple histograms modification based reversible

data hiding. IEEE Signal Process. Lett. 2022, 29, 662–666. [CrossRef]
26. Ojala, T.; Pietikäinen, M. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE

Trans. PAMI 2002, 24, 971–987. [CrossRef]
27. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database (accessed on 1 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.sigpro.2019.01.008
http://doi.org/10.1109/TMM.2020.2982042
http://doi.org/10.1016/j.jss.2010.08.047
http://doi.org/10.1049/ipr2.12212
http://doi.org/10.1109/LSP.2021.3059202
http://doi.org/10.1109/TPAMI.2021.3131250
http://www.ncbi.nlm.nih.gov/pubmed/34847020
http://doi.org/10.1109/ACCESS.2020.3009275
http://doi.org/10.1109/LSP.2019.2909080
http://doi.org/10.1016/j.image.2020.116118
http://doi.org/10.1109/TCSVT.2019.2915584
http://doi.org/10.1016/j.sigpro.2019.02.013
http://doi.org/10.1109/TCYB.2015.2514110
http://doi.org/10.1016/j.jvcir.2016.03.011
http://doi.org/10.1109/TCSVT.2019.2942489
http://doi.org/10.1016/j.ins.2020.10.063
http://doi.org/10.1109/TCSVT.2022.3153796
http://doi.org/10.1093/comjnl/bxac109
http://doi.org/10.1109/LSP.2022.3149706
http://doi.org/10.1109/TPAMI.2002.1017623
http://sipi.usc.edu/database

	Introduction 
	Related Works 
	High-Performance Prediction Algorithms 
	Multiple-Histogram-Based Modification 
	Fast Expansion-Bin Selection 

	The Proposed Method 
	Rotation-Invariant Code 
	Two-Dimensional Pixel Clustering 
	2D-PEH Construction with Cluster Adaptive Prediction 
	Performance Optimization 
	Fast Expansion-Bin Selection 
	A Simple Implementation 

	Experimental Analysis 
	Parameter Configuration 
	Image Quality 
	Embedding Capacity 
	Time Complexity 
	Discussion 

	Conclusions 
	References

