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Abstract: A response surface method for reliability analysis based on iteratively-reweighted-least-
square extreme learning machines (IRLS-ELM) is explored in this paper, in which, highly nonlinear
implicit performance functions of structures are approximated by the IRLS-ELM. Monte Carlo sim-
ulation is then carried out on the approximate IRLS-ELM for structural reliability analysis. Some
numerical examples are given to illustrate the proposed method. The effects of parameters involved
in the IRLS-ELM on accuracy in reliability analysis are respectively discussed. The results exhibit that
a proper number of samples and neurons in hidden layer nodes, an appropriate regularization pa-
rameter, and the number of iterations for reweighting are of important assurance to obtain reasonable
precision in estimating structural failure probability.

Keywords: iteratively reweight; least square method; extreme learning machines; reliability analysis;
Monte Carlo simulation

1. Introduction

Uncertainty factors involved in structure have been widely concerned around the
world in practical engineering problems, mostly coming from the load, thermal effect,
material strength, section size, connection conditions, etc. There is evidence that uncer-
tainty plays a crucial role in the safety assessment of engineering structures. Generally, this
uncertainty occurs because lacks some related information to construct a precise model
which measures the uncertain parameters. This uncertainty or imprecision could be in-
creasingly reduced by gaining more information. Meanwhile, the uncertainty of a factor in
engineering structure is usually described as a probability variable, which is the foundation
of structural reliability analysis.

At present, various reliability analysis methods have been proposed for use, including
the first-order reliability method (FORM) [1–7], the asymptotic analysis method [8], the
Monte Carlo simulation method (MCS) [9–12], the moment method [13–16], the importance
sampling method [12,17–19], etc.

To begin with, the MCS generates random variable samples based on the probability
distribution, and calculates the values of the performance function from the samples, and
the reliability of the structure. Under the circumstance of the performance function known,
the MCS can be convenient and effective to provide an accurate means to predict the
reliability of the structure. However, the performance function is often highly nonlinear
and implicitly expressed for the most practical engineering structures. In this case, the effi-
ciency of analyzing the reliability of structures will be reduced with a large computational
cost for the MCS [20]. Especially when large numerical methods such as finite element
executions are required to analyze a large number of the structural response, it is difficult
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to simultaneously satisfy the efficiency and accuracy requirements of reliability analysis
in engineering structural [21]. The performance function of structures generally cannot
be expressed explicitly, resulting in difficulty for the FORM to calculate the first-order
derivatives of these functions [22,23].

The moment method is a popular reliability analysis technique that involves calcu-
lating the statistical moments of a performance function given known probability distri-
butions for input variables, and obtaining its probability density function. By integrating
this density function over the failure domain, one can obtain an estimate of the failure
probability [15]. However, the moment method involves transforming original variables
into standard normal variables which is typically a nonlinear process. This transformation
can alter the properties of performance functions and reduce the accuracy of the moment
method in reliability analysis [16].

The response surface method (RSM) is an appropriate approach to estimating the
failure probability of structure, which is based on a small amount of representative struc-
tural response analyses. It typically involves the use of a simple function to replace the
performance function near the most probable point of failure, making the performance
function explicit and facilitating the determination of information such as the gradient of
the performance function at the most probable point of failure. This approach enables the
combination with MCS methods for reliability analysis [24–26]. It is worth noting that, the
RSM combined with the MCS avoids a large number of structural response analyses, and
ensures high accuracy of the reliability analysis. Thus, it greatly improves the efficiency of
reliability analysis and has been widely applied in engineering practice.

In order to enhance the adaptability of the response surface method in highly nonlinear
problems, an artificial neural network is introduced into the RSM to construct the relation
between the input random variables and structural responses, then combined with a
reliability method, such as FORM to calculate the failure probability [27–29]. In addition, the
support vector machine is also employed for the same purpose by constructing the response
surface function to substitute the original implicit performance function in structural
reliability analysis [30–32].

As a kind of neural network with much less training time and much simpler calcula-
tion, the extreme learning machines [33,34] could approximate a function of any degree
of nonlinearity in theory. Compared with the traditional neural network based on the
optimization method [35], calculating the output weights of neural network structure by
the least-square method improves the training efficiency. Huang summed up the idea
of parameter iteration and raised extreme learning machines algorithms to train single
hidden layer feedforwards neural networks [36]. In the event that the hidden units can
be increased gradually, the number of hidden neurons becomes the only factor affecting
the learning ability of extreme learning machines [37]. Nevertheless, an ordinary extreme
learning machine algorithm is based on the empirical risk minimization, and no considera-
tion was given to the structural risk, so it is prone to cause over-fitting problems and too
many random factors in training can impair poor robustness of the final neural network.
The iteratively-reweighted-least-square extreme learning machines (IRLS-ELM) is a single
hidden layer feedforward neural network algorithm, which calculates the weights and bias
values of the network directly through iterative weighted least squares methods instead of
optimization method more efficiently and avoids the problem of over-fitting [38].

The present study aims at comprehensive research on constructing response surface
functions using a kind of extreme learning machines, IRLS-ELM with good robustness and
carrying on structural reliability analysis. For the highly-nonlinear and implicitly expressed
performance function, the IRLS-ELM approximates the original performance function
by introducing the L1 and L2 norm of loss function to enhance the robustness and are
applied in reliability analysis as a response surface method, advantages of high precision
from the Monte Carlo and high efficiency from the substitute function from the iteratively-
reweighted-least-square extreme learning machines are simultaneously obtained, avoiding
the low precision of the FORM in the front of those highly nonlinear performance functions
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L1 and L2 norm regularization of the output weight to avoid overfitting. Subsequently, the
MCS is carried out on the obtained IRLS-ELM for structural reliability analysis. Compared
with the traditional reliability analysis methods, such as MCS and FORM, the IRLS-ELM
combined with MCS for reliability analysis have the advantages of high precision stemming
from the Monte Carlo, and high efficiency stemming from the substitute function for the
performance function, that is, the iteratively-reweighted-least-square extreme learning
machines, are simultaneously obtained, avoiding the low precision of the FORM in the
front of those highly nonlinear performance functions.

The rest of this paper is organized as follows. In Section 2, some knowledge is
introduced briefly, including the extreme learning machines, L1 norm regularization and
L2 norm regularization. In Section 3, we present the structural reliability analysis based
on IRLS-ELM and the MCS. In Section 4, the effectiveness of proposed method is verified
through four examples. Section 5 presents a comprehensive analysis of the above examples.
Finally, conclusions are drawn in Section 6.

2. Extreme Learning Machine

The extreme learning machines, proposed by Professor Huang [39], is a simple and
efficient method for training single-hidden layer feedforward neural networks. It consists
of an input layer, a hidden layer, and an output layer, as demonstrated in Figure 1.
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Figure 1. The network structure of extreme learning machines.

For a given set of training samples S = (Xi, Ti), where i = 1, 2, . . . , N,
Xi = [xi1, xi2, . . . xim]

T ∈ Rm and Ti = [ti1, ti2, . . . tin]
T ∈ Rn. m, n are the input and

output data dimensions respectively. Meanwhile, the model has a hidden layer neurons
whose number is L. The hidden layer activation function is g(•) and the input weight is
Wi = [Wi1, Wi2, . . . , Wim]. Then the network model can be expressed as:

L

∑
i=1

βig(Wi · Xj + bi) = TT
j , j = 1, 2, . . . , N (1)

where bi is the bias of the i-th neuron in the hidden layer. βi is the output weight vector
between hidden layer nodes and output nodes, it can be expressed in terms of the matrix:

Hβ = T (2)
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where

H =

 g(W1 · x1 + b1) · · · g(WL · x1 + bL)
... · · ·

...
g(W1 · xN + b1) · · · g(WL · xN + bL)


N×L

(3)

β =

β
T
1
...

βT
L


L×n

, T =

TT
1
...

TT
N


N×n

(4)

The training of an ordinary extreme learning machines (OELM) is equivalent to the
least squares norm solution of β, which can be written as follows:

^
β = H†T (5)

where H† is the Moore-Penrose generalized inverse of the hidden layer output matrix H.
The robust extreme learning machines based on the iteratively-reweighted-least-square

method is to solve the problem of minimizing a loss function:

min
β

: ‖Hβ− T‖2 (6)

The output weight β can be calculated according to Equation (7).

β =

{(
HTH

)−1HTT, N ≥ L
HT(HHT)−1T, N < L

(7)

To enhance the robustness of the extreme learning machines, the loss function (6) of
the model is usually adjusted as follows using L2 norms:

min
β

:
1
2
‖β‖2

2 + C
1
2

n

∑
i=1
‖ξ(i)‖

2

2

s.t. :
L

∑
j=1

βjg(Wj · Xi + bj) = Ti − ξ(i) ∀i (8)

where C is the regularization parameter that trades off the norm of output weights and
least squares training error. Several studies indicate that the larger the value C, the more
accurate the imitative effect. As a reference, C can be taken as 2× 1030. Then, training
the extreme learning machines is correspond to solving a ridge regression problem. β is
calculated as:

β =

{(
HTH + I

C
)−1HTT, N ≥ L

HT(HHT + I
C
)−1T, N < L

(9)

In order to mitigate the effects of noisy data on the model, M-estimate loss function is
introduced. The loss function is then written as Equation (10).

min
β

: r(β) + Cσ̂2
N

∑
i=1

ρ

(
ξ(i)

σ̂

)
s.t. :

L

∑
j=1

βjg(Wj · Xi + bj) = Ti − ξ(i) ∀i (10)

where r(β) is the regularization item to improve the generalization ability, ρ(•) is the robust
loss function, and σ̂ is the preliminary estimate of scale. Usually, σ̂ is taken as MAR/0.6745,
where MAR is the median absolute residual. The robust loss function ρ(z), its gradient
ψ(Z), and corresponding weight function w(z) are defined as:

Ψ(z) = ∂ρ(z)/∂z (11)
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w(z) =
{

Ψ(z)/z, z 6= 0
Ψ′(0), z = 0

(12)

Five frequently used robust loss functions, their corresponding gradients and weight
functions are listed in Table 1.

Table 1. Robust loss function and its gradient and weight function.

Method Robust Loss Function ρ(z) Gradient Ψ(z) Weight Function w(z) k

L1-norm |z| sign(z) 1
max(|z|,ε) , ε = 10−6 −

L2-norm 1
2 z2 z 1 −

Huber
{ 1

2 (z)
2, |z| ≤ k

k(|z| − k/2), |z| > k

{
z, |z| < k

k · sign(z), |z| ≥ k
min

(
1, k
|z|

)
1.345

Bsquare
 1

6 k2
(

1−
(

1−
( z

k
)2
)3
)

, |z ≤ k|
1
6 k2, |z| > k

z
(

1−
( z

k
)2
)2
· I(|z| ≤ k)

(
1−

( z
k
)2
)2
· I(|z| ≤ k) 4.685

Welsch k2
(

1− exp
(
− 1

2
( z

k
)2
))

z exp
(
− 1

2
( z

k
)2
)

exp
(
− 1

2
( z

k
)2
)

2.985

There are two most commonly used ways for regularization items r(β): L2 norm
regularization and L1 norm regularization. Given that the output data is one-dimensional,
the algorithm to determine the output weight β can be formulated as follows:

(1) Extreme learning machines with L2 norm regularization

The loss function in Equation (10) can be expressed as follows using L2 norm regular-
ization term:

min
β

:
1
2
‖β‖2

2 + Cσ̂2
n

∑
i=1

ρ

(
ξ(i)

σ̂

)
s.t. :

L

∑
j=1

β jg(Wj · Xi + bj) = Ti − ξ(i) ∀i (13)

The output weight β can be solved according to the optimization theory as:

β =

{( I
C + HTWNH

)−1HTWNT, N ≥ L
HT( I

C + WNHHT)−1WNT, N < L
(14)

where WN = diag
(

w
(

ξ(1)

σ̂

)
, w
(

ξ(2)

σ̂

)
, . . . , w

(
ξ(N)

σ̂

))
denotes the sample weights.

(2) Extreme learning machines with L1 norm regularization

The loss function in Equation (10) can be expressed as the following use the L1 norm
regularization term:

min
β

: ‖β‖1 + Cσ̂2
n

∑
i=1

ρ

(
ξ(i)

σ̂

)
s.t. :

L

∑
j=1

β jg(Wj · Xi + bj) = Ti − ξ(i) ∀i (15)

The output weight β can be solved iteratively according to the optimization theory as:

β =


(

WL
C + HTWNH

)−1
HTWNT, N ≥ L

W−1
L HT

(
I
C + WNHW−1

L HT
)−1

WNT, N < L
(16)

where WL = diag
(
wL1(β1), wL1(β2), . . . , wL1(βL)

)
denotes the weights of hidden nodes

and WN = diag
(

w
(

ξ(1)

σ̂

)
, w
(

ξ(2)

σ̂

)
, . . . , w

(
ξ(N)

σ̂

))
denotes the samples weights.
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3. Structural Reliability Analysis Based on the IRLS-ELM and the MCS

In this paper, the IRLS-ELM in combination with the MCS is used to analyze structural
reliability. The algorithm is shown in Figure 2. The following steps provide details about
the algorithm.
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Figure 2. Structural reliability analysis based on the IRLS-ELM and the MCS.

Step 1. Input basic parameters including the number of samples N, the number of hidden
layer neurons of the neural network L, and the number of random variables m.

Step 2. Construct the training samples: The low-discrepancy samples Xi (i = 1, · · · , N)
are obtained by the probability distribution of random variables from the Latin hypercube,
the Halton Quasi random sequence, and etc. Accordingly, the structural response and the
performance function values Ti (i = 1, · · · , N) can be calculated.

Step 3. Train extreme learning machines: In the first place, the random input weight
matrix Wi = [Wi1, · · · , Wim] and the hidden layer offset bi (i = 1, · · · , N) are generated
randomly. Then the Equation (3) is used to calculate the matrix H. For the case of L2-
norm regularized robust extreme learning machines, Equation (14) is employed to solve
the output weight vector β of the extreme learning machines iteratively. For the case of
L1-norm regularized robust extreme learning machines, the output weight vector β is
evaluated by Equation (16).

Step 4. Structural reliability analysis: Input the number of samples in the MCS NS and the
sample counter in the failure domain NF. NF is set to be 0. The samples Xi (i = 1, · · · , NS)
are generated in terms of the distribution of random variables. The response ĝi of the
samples Xi (i = 1, · · · , NS) are computed by the obtained extreme learning machines.
The number of ĝi < 0 is iteratively counted as NF. In the end, the failure probability is
calculated as Pf = NF/NS.

4. Numerical Examples

In this section, four examples are illustrated below. In order to facilitate the analysis,
the sample sizes are defined as N = 100 and the number of hidden layer neurons is taken
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as 60. Two regularization methods and five robust loss functions form ten combinations
of the IRLS-ELM for these examples. For the sake of description, the names of these
ten combinations are abbreviated and listed in Table 2. The ordinary extreme learning
machines, as a comparison, is also abbreviated as the OELM. In addition, the answer of the
MCS is regarded as the most accurate.

Table 2. Ten combination methods and their name abbreviations.

Regularization Methods Robust Loss Function Type Name Abbreviations

L1 regularization method

L1 norm L1-L1
L2 norm L1-L2
Huber L1-H

Bisquare L1-B
Welsch L1-W

L2 regularization method

L1 norm L2-L1
L2 norm L2-L2
Huber L2-H

Bisquare L2-B
Welsch L2-W

4.1. Example 1

A highly non-linear performance function

g(X) = 567X1X2 − 0.5X2
3 = 0 (17)

contains three non-normal random variables and their distribution parameters are pre-
sented in Table 3.

Table 3. Random variables and their distribution in Example 1.

Variable Means Variable Coefficient Distribution

X1 0.6 0.131 Normal
X2 2.18 0.03 Type I extreme value for maxima
X3 32.8 0.03 Lognormal

The means of failure probability and its standard deviations calculated by these ten
combinations of the IRLS-ELM, along with the traditional MCS and the OELM are given
in Table 4. The coefficient of variation is less than 0.9% for all these ten combinations
of the IRLS-ELM. The results of failure probability show little dispersion. The failure
probability yielded by the MCS is 0.025215 with 106 samples. The relative error of failure
probability obtained by the ten combined methods is shown in Figure 3. It can be seen
that the combination L2-L2 yields the most accurate mean failure probability with the
relative error 0.08%. The relative error of the OELM is 1.62%, which has lower accuracy
than the combination L2-L1, L2-L2, L2-B, L2-W, L1-L2, L1-B, and L1-W. The relative error of
the combination L2-L1, L2-B, L2-W, L1-L1, L1-L2, L1-H and L1-B is varying between 1–3%.
Additionally, the combination L2-H achieves the largest relative error 3.64%.

4.2. Example 2

Consider the following performance function

G(u) = exp[0.4(u1 + 2) + 6.2]− exp(0.3u2 + 5)− 200 (18)

where u1, u2 are independent random variables with normal distribution u1 ∼ N(0, 1),
u2 ∼ N(0, 1). The failure probability using the MCS is 0.003715 with the sample size 106.
The means of failure probability and its standard deviations using ten combinations of the
IRLS-ELM are shown in Table 5. The relative error of failure probability obtained by ten
methods and the OELM, compared with the result by MCS, are exhibited in Figure 4. The
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coefficient of variation is less than 1.7% for all these ten combinations of the IRLS-ELM. The
results of failure probability show less dispersion.

Table 4. The mean and its standard deviation of failure probability in Example 1.

Method
Failure Probability

Method
Failure Probability

Mean Standard Deviation Mean Standard Deviation

MCS 0.025215 0.00022 L2-L1 0.025606 0.00022
L1-L1 0.024504 0.00022 L2-L2 0.025234 0.00022
L1-L2 0.024878 0.00022 L2-H 0.024298 0.00022
L1-H 0.024516 0.00022 L2-B 0.024814 0.00022
L1-B 0.025476 0.00022 L2-W 0.025534 0.00022
L1-W 0.025082 0.00022 OELM 0.024804 0.00022
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Table 5. The mean and its standard deviation of failure probability in Example 2.

Method
Failure Probability

Method
Failure Probability

Mean Standard Deviation Mean Standard Deviation

MCS 0.003715 0.000061 L2-L1 0.003899 0.000062
L1-L1 0.004053 0.000064 L2-L2 0.003871 0.000062
L1-L2 0.003761 0.000064 L2-H 0.004047 0.000063
L1-H 0.003927 0.000063 L2-B 0.004022 0.000063
L1-B 0.003467 0.000059 L2-W 0.003846 0.000062
L1-W 0.004345 0.000066 OELM 0.003554 0.00006

From the Table 5 and Figure 4, it can be observed that among the ten combination
methods, the combination L1-L2 has the minimum relative error. The relative errors of
failure probability calculated by the combination L2-L1, L2-L2, L2-W and OELM are less
than 5% with satisfactory accuracy. The relative errors obtained by the combination L2-H,
L2-B, L1-L1, L1-H and L1-B are found to be slightly larger but within 10%. The relative
error of the OELM is 4.3%. Compared with the OELM, the combination L2-L2, L2-W, and
L1-L2 have higher accuracy. The combination L1-W stands out in delivering relative error
beyond 15%.
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4.3. Example 3

A series structure system with three main failure modes and three performance
functions are written as:

Z1 = (Y1 + Y2 −Y3)/
√

3 + 2.0 (19)

Z2 = (Y1 −Y3)/
√

2 + 3.4 (20)

Z3 = (Y2 −Y3)/
√

2 + 3.6 (21)

where Y1, Y2, Y3 are independent standard normal random variables. Y1 ∼ N(0, 1), Y2 ∼
N(0, 1), Y3 ∼ N(0, 1).

In Table 6, the means of failure probability and its standard deviations using ten com-
binations of the IRLS-ELM are presented. Simultaneously, the relative errors of the failure
probability yielded by different methods, compared to the result by MCS, are displayed
in Figure 5. The coefficient of variation is less than 2.2% for all these ten combinations of
the IRLS-ELM. We can observe that the answer of the combination L1-W is in agreement
with that of the MCS, whose relative error is only 0.13%. The combination L2-B, L2-W and
L1-W also have high accuracy, with the relative error 0.18%, while the OELM gives a wrong
answer with relative error 597%.

Table 6. The mean and its standard deviation of failure probability in Example 3.

Method
Failure Probability

Method
Failure Probability

Mean Standard Deviation Mean Standard Deviation

MCS 0.02241 0.00047 L2-L1 0.02216 0.00047
L1-L1 0.02285 0.00047 L2-L2 0.02201 0.00047
L1-L2 0.02229 0.00047 L2-H 0.02343 0.00048
L1-H 0.02245 0.00047 L2-B 0.02245 0.00047
L1-B 0.02262 0.00047 L2-W 0.02237 0.00047
L1-W 0.02238 0.00047 OELM 0.1562 0.0011

4.4. Example 4

As shown in Figure 6, a ten-bar truss structure is considered. The area of each bar
is denoted by Ai(i = 1, 2, . . . , 10) which follows the same normal distribution N

(
10, 0.52),

Ai ∼ N
(
10, 0.52), (i = 1, 2, . . . , 10) namely. The allowable value of structural stress is

σallow = 2.1× 104. Generally, the structure as invalid is defined when the stress value of
any bar is greater than the allowable value, which σi > σallow(i = 1, 2, . . . , 10).
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The means of failure probability and its standard deviations using ten combinations
of the IRLS-ELM are represented in Table 7. The relative errors of failure probability
calculated by ten combination methods and the OELM compared with the result by the
MCS are depicted in Figure 7. The coefficient of variation is less than 0.5% for all these
ten combinations of the IRLS-ELM. It can be found that the failure probability by the
combination L1-B is very close to the result by the MCS, that is to say, the relative error
of the combination L1-B is nearly zero. Besides, the combination L2-L2, L2-H, L2-B, L2-W,
L1-L1, and L1-H have good accuracy with the relative errors below 5%. The relative error
of the OELM is 3.24%. The relative errors of the combination L1-L2 and L1-W are greater
than 5% but less than 10%. Most typically, the relative error of the combination L1-W
reaches 7.5%.

Table 7. The mean and its standard deviation of failure probability in Example 4.

Method
Failure Probability

Method
Failure Probability

Mean Standard Deviation Mean Standard Deviation

MCS 0.06562 0.00035 L2-L1 0.065954 0.00035
L1-L1 0.068612 0.00036 L2-L2 0.068596 0.00036
L1-L2 0.070054 0.00036 L2-H 0.068818 0.00036
L1-H 0.068438 0.00036 L2-B 0.067884 0.00036
L1-B 0.065862 0.00035 L2-W 0.068876 0.00036
L1-W 0.07054 0.00036 OELM 0.067752 0.00036
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5. Discussion

Different loss functions together with two regularization approaches are combined
for reliability analysis in the IRLS-ELM. The ranks of these combinations in terms of the
mean relative error of failure probability for the above four numerical examples are listed
in ascending order in Table 8. The methods with the mean relative error less than 5% are
marked in bold. Table 9 summarizes the maximum and minimum relative errors and the
corresponding methods for each example. We can see that: the combination L2-L2 and
L2-W are ranked in the top five with the minimum relative errors with the relative error
below 5%. It indicates that these two combinations are more accurate than the others in
reliability analysis. Conversely, the combination L1-W exhibits relative instability with the
relative error more than 15% in Example 2, less than 1% in Example 3. The OELM even
gives a wrong answer with the relative error more than 500% in Example 3 despite less
than 5% in the other examples. The most accurate relative error of the combination L1-W
0.13% is observed in Example 3.

Table 8. Rank of the ten methods in terms of the relative error of failure probability.

Example Method (in Ascending Order of the Relative Error)

1 L2-L2 L1-W L1-B L2-W L1-L2 L2-L1 L2-B L1-H L1-L1 L2-H
2 L1-L2 L2-W L2-L2 L2-L1 L1-H L1-B L2-B L2-H L1-L1 L1-W
3 L1-W L2-B L2-W L1-H L1-L2 L1-B L2-L1 L2-L2 L1-L1 L2-H
4 L1-B L2-L1 L2-B L1-H L2-L2 L1-L1 L2-H L2-W L1-L2 L1-W

The relative error of the bolded method is less than 5%.

Table 9. Minimum error and maximum relative errors for the four examples.

Example
Minimum Error

Method
Maximum Error

Method Mean Relative Error (%) Mean Relative Error (%)

1 L2-L2 0.08 L2-H −3.64
2 L1-L2 1.24 L1-W 16.96
3 L1-W −0.13 L2-H 4.55
4 L1-B 0.37 L1-W 7.50

In order to explore the effects of parameters on the accuracy of structural failure
probability involved in the above algorithm for reliability analysis, including the number
of samples N, the number of hidden layer neurons L, the regularization parameters C and
the reweighted number of iterations t. The L2-W method for Example 2 is taken as an
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illustration to find the underlying regularity. The variation trend of mean failure probability
with respect to the parameters compared with the MCS is shown in Figure 8. Tables 10–13
present the mean failure probabilities and their relative error in Example 2 for different
parameters with different values.
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Figure 8. The variation trend of failure probability with parameters, including (a) number of samples;
(b) number of hidden layer neurons; (c) regularization parameter; (d) reweighted number of iterations.

Table 10. The mean failure probability and its relative error for different number of samples.

Sample Sizes N Mean of the Failure Probability Relative Error

30 0.007349 97.82%
50 0.002784 −25.06%
70 0.003236 −12.89%
90 0.004179 −12.49%

110 0.004204 13.16%
130 0.003551 −4.41%
150 0.003806 2.45%

Table 11. The mean failure probability and its relative error for different number of hidden layer neurons.

Number of the Hidden Layer Neurons L Mean of the Failure Probability Relative Error

5 0.024829 568.34%
20 0.003011 −18.95%
40 0.003868 4.12%
60 0.003871 4.20%
80 0.003581 3.61%
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Table 12. The mean failure probability and its relative error for different regularization parameters.

Regularization Parameter C Mean of the Failure Probability Relative Error

2× 10−10 0 -
2 0.00736 98.12%

2× 1010 0.005226 40.67%
2× 1020 0.003664 1.37%
2× 1030 0.003824 2.93%

Table 13. The mean failure probability and its relative error for different reweighted number of iterations.

Number of Iterations t Mean of the Failure Probability Relative Error

2 0.003463 −6.78%
5 0.004324 16.39%
10 0.004273 15.02%
15 0.003991 7.43%
20 0.003824 2.93%

It can be found that, with the increase of the number of samples N, the error of failure
probability gradually decreases. When the number of samples increases to 130, the relative
error of the mean failure probability is less than 5%. It demonstrates that a relatively large
number of samples is critical to obtain a satisfactory accuracy on failure probability by the
IRLS-ELM. Likewise, we can conclude from the Table 11 that, as the number of hidden layer
neurons increases, the errors of failure probability decrease significantly. When the number
of neurons reaches 40, the error of failure probability is less than 5%. It indicates that the
number of neurons has an important role in determining the accuracy of failure probability.
However, the neurons beyond a certain number have only a minor impact on the accuracy
of failure probability. Generally, if the regularization parameter C is too small, least squares
training error will not work and the algorithm will give an answer with a great error.
From the Figure 8c we can see that the error of failure probability decrease as the C value
increases. When the regularization parameters C equal 2 × 1020, the relative error of failure
probability is less than 2%. As the number of iterations t increases (shown in Table 13 and
Figure 8d), the relative error of failure probability decreases. As the reweighted number of
iterations increases to 20, the relative error of failure probability decreases to 2.93%.

6. Conclusions

The response surface method based on the IRLS-ELM, combined with the MCS for
structural reliability analysis is conducted in this paper. In the case of highly nonlinear
implicit performance functions in engineering, the IRLS-ELM shows good generalization
performance and high efficiency, more accurate and robust than the OELM. It achieves
this by introducing L1, L2 norm, Huber, Bisquare, and Welsch loss function to enhance the
robustness, and L1 and L2 norm regularization method of output weight to avoid overfitting.
Four examples are used to compare the accuracy of failure probability employing ten
methods that utilize different combinations of loss functions and regularization methods
of the IRLS-ELM. In addition, the accuracy of failure probability will be affected by the
parameters, including the number of samples N, the number of neurons L, the regularization
parameters C, and the reweighted number of iterations t. Some concluding remarks are
as follows:

(1) For those highly nonlinear performance functions, an appropriate number of samples
and hidden layer neurons are critical to obtaining high accuracy in structural failure
probability for the proposed algorithm to perform reliability analysis. Too few samples
or too few hidden layer neurons will result in lower accuracy. An excess of samples
or hidden layer neurons has little significance in improving the accuracy of the failure
probability. If the regularization parameter C is too small or the reweighted number of
iterations is not enough, it is difficult to obtain the failure probability with satisfactory
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accuracy. Generally, it is suggested that the regularization parameter C is taken as
2 × 1020 and the reweighted number of iterations is set to 20.

(2) The loss function and regularization method also affect the accuracy of the failure
probability. The combination chosen of the loss function and regularization method
may have an important influence on the accuracy of final results of structural failure
probability. The results of the above numerical examples indicate that the combination
of L2-L2 and L2-W yields more accuracy than the other combinations. To sum up, the
relative error of failure probability in the combinations of L2 norm regularization and
L2 norm or Welsch loss function is less than 5%, while the other combinations exhibit
more dispersity in the accuracy of failure probability for different problems.
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