Optimization Design for Sparse Planar Array in Satellite Communications
Abstract
:1. Introduction
2. Sparse Planar Array Optimization Design Model
2.1. Array Antenna Mathematical Underpinnings
2.2. Sparse Area Array Pattern Mathematical Model
2.3. Optimization Model Based on Minimum Peak Sidelobe Level
2.4. Optimization Model Based on Antenna Pattern Reconstruction
2.5. The Main Problems to Be Solved in the Optimization Design of the Sparse Area Array
3. Sparse Surface Array and Material Design
3.1. Planar Array Geometry
3.2. Sparse Planar Array
3.3. Sparse Planar Array Material Design
4. Sparse Planar Array Optimization Design Method
4.1. Sparse Area Array Optimization Based on Analysis Methods
4.2. Intelligent Optimization Methods
4.2.1. Sparse Area Array Optimization Based on Traditional Intelligent Methods
4.2.2. Sparse Area Array Optimization Based on Artificial Intelligence Methods
4.2.3. Local Optimization Methods
4.2.4. Sparse Array Optimization Design Based on Hybrid Algorithm
5. Summary and Outlook
5.1. Future Research Directions
5.1.1. The New Method Brings a New Dawn to the Optimization Design of Sparse Area Arrays
5.1.2. Intelligent Reconfigurable Antennas Have Become the Focus of Research
5.1.3. Array Material Design Will Be Closely Integrated with Metamaterial Technology
5.2. Key Challenges
5.2.1. The Array Can Be Located on Any Undulating Carrier and Terrain
5.2.2. The Element Spacing Leads to a Contradiction between the Gate Lobe and the Coupling
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wang, L.; Zheng, J.; He, C.; Yan, X. Resource allocation method for high throughput multi-beam communication satellite systems. Chin. Space Sci. Tech. 2021, 41, 85–94. [Google Scholar]
- He, G.; Gao, X.; Sun, L.; Zhang, R. A review of multibeam phased array antennas as LEO satellite constellation ground station. IEEE Access. 2021, 9, 147142–147154. [Google Scholar] [CrossRef]
- Ding, W.; Tao, X.; Ye, W.; Zhang, X. Research progress of multi-beam antenna for high-orbit high-throughput satellites. Space Electron. Tech. 2019, 16, 62–69. [Google Scholar]
- Toso, G.; Mangenot, C.; Roederer, A.G. Sparse and thinned arrays for multiple beam satellite applications. In Proceedings of the Second European Conference on Antennas and Propagation, Edinburgh, The Netherlands, 11–16 November 2007; pp. 1–4. [Google Scholar]
- Hoft, D.J. Solid state transmit/receive module for the PAVE PAWS (AN/FPS-115) phased array radar. In Proceedings of the IEEE-MTT-S International Microwave Symposium Digest, Ottawa, ON, Canada, 27–29 June 1978; pp. 239–241. [Google Scholar]
- Weiß, M.; Peters, O.; Ender, J. First flight trials with ARTINO. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, VDE, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Scaife, A.M.M. Big telescope, big data: Towards exascale with the Square Kilometre Array. Philos. Trans. R. Soc. A 2020, 378, 20190060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Z.; Liu, K.; Ren, M.; Deng, Y. The Present Situation and Development for Spaceborne Synthetic Aperture Radar Antenna Arrays. In Antenna Arrays-Applications to Modern Wireless and Space-Born Systems; IntechOpen: London, UK, 2022. [Google Scholar]
- Rao, S.G. Design of Wideband Silicon-Germanium RF Front End Circuits for Broadband Communications Systems. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2019. [Google Scholar]
- Chen, J.; Bulgan, N.; Xue, X.; Fan, X.; Zhang, X. Planar thinned antenna array synthesis using modified brain storm optimization. In Proceedings of the International Conference on Swarm Intelligence, Chiang Mai, Thailand, 26–30 July 2019; Tan, Y., Shi, Y., Niu, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 276–285. [Google Scholar]
- Komeylian, S.; Paolini, C. Implementation of a three-class classification LS-SVM model for the hybrid antenna array with bowtie elements in the adaptive beamforming application. arXiv 2022, arXiv:2210.00317,. [Google Scholar]
- Bucci, O.M.; Isernia, T.; Perna, S.; Pinchera, D. Isophoric sparse arrays ensuring global coverage in satellite communications. IEEE Trans. Antennas Propag. 2013, 62, 1607–1618. [Google Scholar] [CrossRef]
- Mahmoud, K.; El-Adawy, M.; Ibra-hem, S.; Bansal, R.; Mahmoud, K.; Zainud-Deen, S. A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm. Prog. Electromagn. Res. 2007, 72, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Li, J.; Xu, R.; Ma, Y.; Qi, Y. Improving the performance of wide-angle scanning array antenna with a high-impedance periodic structure. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1819–1822. [Google Scholar] [CrossRef]
- Shi, S.; Yang, P.; Feng, W.; Zhou, L.; Lu, Q.; Chen, W.; Che, W. Wideband planar phased array antenna based on artificial magnetic conductor surface. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1909–1913. [Google Scholar] [CrossRef]
- Zou, W.M.; Qu, S.W.; Yang, S. Wideband wide-scanning phased array in triangular lattice with electromagnetic bandgap structures. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 422–426. [Google Scholar] [CrossRef]
- Dolph, C.L. A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proc. IRE 1946, 34, 335–348. [Google Scholar] [CrossRef]
- Taylor, T.T. Design of line-source antennas for narrow beamwidth and low side lobes. Trans. IRE Prof. Group Antennas Propag. 1955, 3, 16–28. [Google Scholar] [CrossRef]
- Bayliss, E.T. Design of mono-pulse antenna difference patterns with low sidelobes. Bell Syst. Tech. J. 1968, 47, 623–650. [Google Scholar] [CrossRef]
- Elliott, R. Design of line-source antennas for sum patterns with sidelobes of individually arbitrary heights. IEEE Trans. Antennas Propag. 1976, 24, 76–83. [Google Scholar] [CrossRef]
- Gu, L.; Zhao, Y.W.; Cai, Q.M.; Zhang, Z.P. Wideband quasi-Yagi antenna design and its usage in MIMO/diversity applications. Prog. Electromagn. Res. 2017, 71, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, G.; Manica, L.; Massa, A. ADS-based guidelines for thinned planar arrays. IEEE Trans. Antennas Propag. 2010, 58, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Woodward, P.M.; Lawson, J.D. The theoretical precision with which an arbitrary radiation pattern may be obtained from a source of finite size. J. IEE 1948, 95, 363–370. [Google Scholar]
- Skolnik, M.I.; Nemhauser, G.; Iii, J.S. Dynamic programming applied to unequally spaced arrays. IEEE Trans. Antennas Propag. 1964, 12, 35–43. [Google Scholar] [CrossRef]
- Skolnik, M.I. Statistically designed density-tapered arrays. IEEE Trans. Antennas Propag. 1964, 12, 408–417. [Google Scholar] [CrossRef]
- Kumar, B.P.; Branner, G.R. Design of unequally spaced arrays for performance improvement. IEEE Trans. Antennas Propag. 1999, 47, 511–523. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.H.; Nie, Z. Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods. IEEE Trans. Antennas Propag. 2014, 62, 652–660. [Google Scholar] [CrossRef]
- Shen, H.; Wang, B. An effective method for synthesizing multiple-pattern linear arrays with a reduced number of antenna elements. IEEE Trans. Antennas Propag. 2017, 65, 2358–2366. [Google Scholar] [CrossRef]
- Gu, P.; Wang, G.; Fan, Z.; Chen, R. An efficient approach for the synthesis of large sparse planar array. IEEE Trans. Antennas Propag. 2019, 67, 7320–7330. [Google Scholar] [CrossRef]
- Wang, M.; Ping, X. Synthesis of thinned planar arrays using 0–1 integer linear programming method. Appl. Comput. Electromagn. Soc. J. 2022, 37, 191–198. [Google Scholar] [CrossRef]
- Liu, W.; Weiss, S. Design of frequency invariant beamformers for broadband arrays. IEEE Trans. Signal Process. 2008, 56, 855–860. [Google Scholar] [CrossRef]
- Keizer, W.P. Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering. IEEE Trans. Antennas Propag. 2011, 59, 4520–4524. [Google Scholar] [CrossRef]
- Keizer, W.P. Synthesis of thinned planar circular and square arrays using density tapering. IEEE Trans. Antennas Propag. 2013, 62, 1555–1563. [Google Scholar] [CrossRef]
- Sallam, T.; Attiya, A. Low sidelobe cosecant-squared pattern synthesis for large planar array using genetic algorithm. Prog. Electromagn. Res. 2020, 93, 23–34. [Google Scholar] [CrossRef]
- Wang, X.K.; Jiao, Y.C.; Tan, Y.Y. Synthesis of large thinned planar arrays using a modified iterative Fourier technique. IEEE Trans. Antennas Propag. 2014, 62, 1564–1571. [Google Scholar] [CrossRef]
- Gu, L.; Zhao, Y.W.; Zhang, Z.P.; Wu, L.F.; Cai, Q.M.; Zhang, R.R.; Hu, J. Adaptive learning of probability density taper for large planar array thinning. IEEE Trans. Antennas Propag. 2020, 69, 155–163. [Google Scholar] [CrossRef]
- Yang, F.; Yang, S.; Chen, Y.; Qu, S.; Long, W. Synthesis of large-scale non-uniformly spaced 4D arrays using an IFT method. IET Microw. Antennas Propag. 2018, 12, 1973–1977. [Google Scholar] [CrossRef]
- Chen, D. Application of an improved iterative Fourier transform method in array low sidelobe synthesis. Mod. Radar 2022, 44, 90–94. [Google Scholar]
- Haupt, R.L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 1994, 42, 993–999. [Google Scholar] [CrossRef]
- Neill, D.J.O. Element placement in thinned arrays using genetic algorithms. In Proceedings of the OCEANS′94, Brest, France, 13–16 September 1994. [Google Scholar]
- Sallam, T.; Attiya, A. Different array synthesis techniques for planar antenna array. Appl. Comput. Electromagn. Soc. J. 2019, 716–723. [Google Scholar]
- Trucco, A. Thinning and weighting of large planar arrays by simulated annealing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qu, Z.; Wang, J.; Zhang, W. Design method of large-scale sparse circular array based on simulated annealing algorithm. Inf. Sys. Eng. 2020. [Google Scholar]
- Xu, S.; Rahmat-Samii, Y. Boundary conditions in particle swarm optimization revisited. IEEE Trans. Antennas Propag. 2007, 55, 760–765. [Google Scholar] [CrossRef]
- Donelli, M.; Martini, A.; Massa, A. A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays. IEEE Trans. Antennas Propag. 2009, 57, 2491–2495. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Huang, X.; Zhang, S.; Jiang, W. Modified PSO algorithm for planar arrays pattern optimization. J. Electron. Inf. Tech. 2017, 39, 2340–2345. [Google Scholar]
- Quevedo-Teruel, O.; Rajo-Iglesias, E. Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 349–352. [Google Scholar] [CrossRef]
- Zare, A.S.; Baghaiee, S. Application of ant colony optimization algorithm to pattern synthesis of uniform circular antenna array. Appl. Comput. Electromagn. Soc. J. 2015, 30, 810–818. [Google Scholar]
- Zhang, Z.; Li, W. Subarray-level adaptive multi-beamforming based on ant colony algorithm. Appl. Sci. Tech. 2022, 49, 83–89. [Google Scholar]
- Recioui, A.; Arhab, N.; Zeghad, I. Pattern design of 2D antenna arrays using biogeography-based optimization. Int. J. Comput. Sci., Commun. Inf. Tech. 2019, 6, 38–43. [Google Scholar]
- Dutta, K.P.; Mahanti, G.K.; Panda, G. Effective minimization of side lobe level of sparse thinned planar array antenna in multiple planes with constraints. Electromagn. 2021, 41, 303–314. [Google Scholar] [CrossRef]
- Dib, N. Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organism’s search. Neural Comput. Appl. 2018, 30, 3859–3868. [Google Scholar] [CrossRef]
- Kundu, K.; Bera, R.; Pathak, N.N. Synthesis of concentric circular antenna array using whale optimization algorithm. IETE J. Res. 2022. [Google Scholar] [CrossRef]
- Das, A.; Mandal, D.; Ghoshal, S.P.; Kar, R. Concentric circular antenna array synthesis for side lobe suppression using moth flame optimization. AEU-Int. J. Electron. Commun. 2018, 86, 177–184. [Google Scholar] [CrossRef]
- Pappula, L.; Ghosh, D. Constraint-based synthesis of linear antenna array using modified invasive weed optimization. Prog. Electromagn. Res. 2014, 36, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Pavani, T.; Padmavathi, K.; Kumari, C.U.; Ushasree, A. Design of array antennas via atom search optimization. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Yoshimoto, E.; Heckler, M.V.T. Optimization of planar antenna arrays using the firefly algorithm. J. Microw. Optoelectron. Electromagn. Appl. 2019, 18, 126–140. [Google Scholar] [CrossRef]
- Javali, A.; Sahoo, A.; Gupta, J. Machine learning algorithms in smart antenna and arrays for internet of things applications. In Proceedings of the IEEE International Conference on Artificial Intelligence and Smart Systems, Coimbatore, India, 25–27 March 2021; pp. 297–301. [Google Scholar]
- Long, X.Y.; Zhao, S.K.; Jiang, C.; Li, W.P.; Liu, C.H. Deep learning-based planar crack damage evaluation using convolutional neural networks. Eng. Fract. Mech. 2021, 246, 107604. [Google Scholar] [CrossRef]
- Bilel, H.; Taoufik, A. Radiation pattern synthesis of the coupled almost periodic antenna arrays using an artificial neural network model. Electronics 2022, 11, 703. [Google Scholar] [CrossRef]
- Wei, W.Y.; Shi, Y.; Yang, J.X.; Meng, H.X. Artificial neural network and convex optimization enable antenna array design. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22593. [Google Scholar] [CrossRef]
- Zardi, F.; Nayeri, P.; Rocca, P.; Haupt, R. Artificial intelligence for adaptive and reconfigurable antenna arrays: A review. IEEE Antennas Propag. Mag. 2020, 63, 28–38. [Google Scholar] [CrossRef]
- Lecci, M.; Testolina, P.; Rebato, M.; Testolin, A.; Zorzi, M. Machine learning-aided design of thinned antenna arrays for optimized network level performance. In Proceedings of the IEEE 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Boyd, S.; Vandenberg-he, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lebret, H.; Boyd, S. Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process. 1997, 45, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, D.A.; Floriano, G.H.F.; Chaves, L.S. A tutorial on the CVX system for modeling and solving convex optimization problems. IEEE Lat. Am. Trans. 2015, 13, 1228–1257. [Google Scholar] [CrossRef]
- Sturm, J.F. Using SeDuMi 1.02, A MATLAB Toolbox for Optimization over Symmetric Cones (Updated for Version 1.05). Optim. Methods Softw. 1999, 11–12, 625–653. [Google Scholar] [CrossRef]
- Lobo, M.S.; Vandenberghe, L.; Boyd, S.; Lebret, H. Applications of second-order cone programming. Linear Algebra Appl. 1998, 284, 193–228. [Google Scholar] [CrossRef] [Green Version]
- Tsui, K.M.; Chan, S.C. Pattern synthesis of narrowband conformal arrays using iterative second-order cone programming. IEEE Trans. Antennas Propag. 2010, 58, 1959–1970. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.; Skrivervik, A.; Mosig, J.R. Shaped beam synthesis of arrays via sequential convex optimizations. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1049–1052. [Google Scholar] [CrossRef]
- Nai, S.E.; Ser, W.; Yu, Z.L.; Chen, H. Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization. IEEE Trans. Antennas Propag. 2010, 58, 3923–3930. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Chen, B.; Zhou, Z. Research and application of large aperture ultra-sparse array synthesis algorithm. Radar Sci. Tech. 2020, 18, 452–456. [Google Scholar]
- Qi, Z.; Bai, Y.; Zhang, X. Synthesis of linear and planar arrays via sequential convex optimizations. IEEE Access 2019, 8, 6717–6728. [Google Scholar] [CrossRef]
- Qi, Z.; Bai, Y.; Wang, Q.; Zhang, X.; Chen, H. Synthesis of pattern reconfigurable sparse arrays via sequential convex optimizations for mono-pulse radar applications. J. Electromagn. Waves Appl. 2020, 34, 183–200. [Google Scholar] [CrossRef]
- Lou, M.; Jin, J.; Wang, H.; Wu, D.; Xia, L.; Wang, Q.; Wang, J. Performance analysis of sparse array based massive MIMO via joint convex optimization. China Commun. 2022, 19, 88–100. [Google Scholar] [CrossRef]
- Vescovo, R. Reconfigurability and beam scanning with phase-only control for antenna arrays. IEEE Trans. Antennas Propag. 2008, 56, 1555–1565. [Google Scholar] [CrossRef]
- Fuchs, B. Application of convex relaxation to array synthesis problems. IEEE Trans. Antennas Propag. 2013, 62, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, Y.; Xu, K.D.; Zhu, C.H.; Liu, Q.H. Synthesizing multiple-pattern sparse linear array with accurate sidelobe control by the extended reweighted L1-norm minimization. Electron. Lett. 2018, 54, 548–550. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Araújo, D.C.; de-Almeida, A.L.F.; Mota, J.C.M. Compressive sensing-based channel estimation for massive MIMO systems with planar arrays. In Proceedings of the IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, 13–16 December 2015; pp. 413–416. [Google Scholar]
- Yan, F.; Yang, P.; Yang, F.; Zhou, L.J.; Gao, M. Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method. IEEE Trans. Antennas Propag. 2016, 65, 602–611. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Kong, Y.; Qiu, M.; Huang, S.; Qi, Z.; Chen, H. Scannable sparse array synthesis based on convex optimization theory. Radar Countermeas. 2020, 40, 33–37. [Google Scholar]
- Wang, T.; Zhang, Y.; Wang, F.; Yang, X. Application of compressed sensing theory to sparse array orientation graph synthesis. J. Hebei Univ. Tech. 2020, 49, 22–27. [Google Scholar]
- Bencivenni, C.; Ivashina, M.V.; Maaskant, R. Reconfigurable aperiodic array synthesis by compressive sensing. In Proceedings of the IEEE 10th European Conference on Antennas and Propagation, Davos, Switzerland, 10–15 April 2016; pp. 1–3. [Google Scholar]
- Yu, G.; Xiao, S.; Yu, Z.; Wang, B. Synthesis of multiple-pattern planar arrays by the multitask Bayesian compressive sensing. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1587–1591. [Google Scholar]
- Morabito, A.F. Synthesis of maximally-sparse square or rectangular arrays through compressive sensing. In Proceedings of the IEEE 11th European Conference on Antennas and Propagation, Paris, France, 19–24 March 2017; pp. 2829–2832. [Google Scholar]
- Huang, Z.X.; Cheng, Y.J. Near-field pattern synthesis for sparse focusing antenna arrays based on Bayesian compressive sensing and convex optimization. IEEE Trans. Antennas Propag. 2018, 66, 5249–5257. [Google Scholar] [CrossRef]
- Li, Z.; Hao, C.; Yan, S. Review of sparse linear array optimization design algorithms. J. Commun. Univ. China: Nat. Sci. Ed. 2021, 28, 20–32. [Google Scholar]
- Wang, X.K.; Jiao, Y.C.; Liu, Y.; Tan, Y.Y. Synthesis of large planar thinned arrays using IWO-IFT algorithm. Prog. Electromagn. Res. 2013, 136, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, X.K.; Wang, G.; Jia, J.K. A two-step method for the low-sidelobe synthesis of uniform amplitude planar sparse arrays. Prog. Electromagn. Res. 2019, 86, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Jiao, Y.C. Multiple-constraint synthesis of rotationally symmetric sparse circular arrays using a hybrid algorithm. Prog. Electromagn. Res. 2019, 79, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Capozzoli, A.; Curcio, C.; Liseno, A. CUDA-based particle swarm optimization in reflect-array antenna synthesis. Adv. Electromagn. 2020, 9, 66–74. [Google Scholar] [CrossRef]
- Isernia, T.; Pena, F.J.A.; Bucci, O.M.; D’Urso, M.; Gómez, J.F.; Rodriguez, J.A. A hybrid approach for the optimal synthesis of pencil beams through array antennas. IEEE Trans. Antennas Propag. 2004, 52, 2912–2918. [Google Scholar] [CrossRef]
- du-Plessis, W.P. Ultra-wideband array synthesis using the IFT technique. In Proceedings of the IEEE 2012 International Conference on Electromagnetics in Advanced Applications, Cape Town, South Africa, 2–7 September 2012; pp. 820–823. [Google Scholar]
- Yang, J.; Yang, F.; Yang, P.; Xing, Z. A Hybrid Approach for the Synthesis of Planar Thinned Arrays with Sidelobes Reduction. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 269–270. [Google Scholar]
- Yang, K.; Zhao, Z.; Liu, Q.H. An iterative FFT based flat-top footprint pattern synthesis method with planar array. J. Electromagn. Waves Appl. 2012, 26, 1956–1966. [Google Scholar] [CrossRef]
- Qi, Z.; Lu, Y.; Kong, Y.; Cong, Y. Hybrid optimization algorithm and its application for pattern synthesis of planar arrays. J. Eng. 2019, 20, 6612–6615. [Google Scholar] [CrossRef]
- He, Z.; Chen, G. Synthesis of planar circular arrays with quantized amplitude weights. Sensors. 2021, 21, 6939. [Google Scholar] [CrossRef]
- Chen, J.; Bulgan, N.; Xue, X.; Fan, X.; Zhang, X. Planar Thinned Antenna Array Synthesis Using Modified Brain Storm Optimization. In Advances in Swarm Intelligence: 10th International Conference, ICSI 2019, Chiang Mai, Thailand, July 26–30, 2019, Proceedings, Part I 10; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 276–285. [Google Scholar]
- Li, H.; Jiang, Y.; Ding, Y.; Tan, J.; Zhou, J. Low-sidelobe pattern synthesis for sparse conformal arrays based on PSO-SOCP optimization. IEEE Access. 2018, 6, 77429–77439. [Google Scholar] [CrossRef]
- Gottardi, G.; Oliveri, G.; Massa, A. New antenna design concept for future generation wireless communication systems. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
Subject | Method | Number of Referenced Array Elements | Number of Optimized Array Elements | Reference PSLL (dB) | Optimized PSLL (dB) | Filling Factor | Directivity (dB) |
---|---|---|---|---|---|---|---|
An efficient approach for the synthesis of large sparse planar array [30] | MEPM | 196 | 100 121 | −30.0 dB | −25.11 dB −29.96 dB | 0.51 0.62 | 20.05 dB 22.39 dB |
Synthesis of Thinned Planar Arrays Using 0–1 Integer Linear Programming Method [31] | 0–1 ILP | 144 144 144 144 256 256 256 | 49 69 76 88 128 128 128 | −17.60 dB −19.40 dB −23.07 dB −18.65 dB −26.72 dB −25.30 dB −25.84 dB | −19.54 dB −23.20 dB −24.26 dB −23.77 dB −31.04 dB −30.95 dB −29.74 dB | 0.34 0.48 0.53 0.61 0.50 0.50 0.50 | / / / / 25.80 dB 25.42 dB 25.15 dB |
Research and application of large aperture ultra-sparse array synthesis algorithm [73] | ADMM | 400 | 129 | −20.0 dB | −20.2 dB | 0.32 | / |
Synthesis of maximally-sparse square or rectangular arrays through compressive sensing [90] | CS | 162 | 94 | −30.3 dB | −28.9 dB | 0.58 | / |
Application of compressed sensing theory to sparse array orientation graph synthesis [87] | OMMP | 27 | 19 | −30.0 dB | −29.9 dB | 0.70 | / |
Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method [84] | FOCUSS | 20 | 16 | −19.50 dB | −19.80 dB | 0.8 | / |
Near-field pattern synthesis for sparse focusing antenna arrays based on Bayesian compressive sensing and convex optimization [91] | BCS | 121 | 52 | −20.00 dB | −20.30 dB | 0.43 | / |
Synthesis of linear and planar arrays via sequential convex optimizations [74] | SCO | 49 121 121 121 121 | 35 77 89 102 105 | −17.6 dB −24.33 dB −24.33 dB −24.33 dB −24.33 dB | −17.64 dB −24.35 dB −24.37 dB −24.32 dB −24.34 dB | 0.71 0.64 0.74 0.84 0.87 | / |
Synthesis of Concentric Circular Antenna Array Using Whale Optimization Algorithm [54] | WOA | 60 90 126 168 | 33 58 73 87 | −18.09 dB −21.89 dB −20.88 dB −27.81 dB | −24.15 dB −26.71 dB −25.46 dB −27.98 dB | 0.55 0.64 0.58 0.52 | / |
Pattern design of 2D antenna arrays using biogeography-based optimization [51] | BBO | 49 100 | 49 100 | −12.65 dB −12.96 dB | −20.96 dB −20.82 dB | 1 | 17.14 dB 20.27 dB |
Effective minimization of side lobe level of sparse thinned planar array antenna in multiple planes with constraints [52] | TLBO | 108 | 84 | −26.35 dB | −22.27 dB | 0.78 | / |
Planar Thinned Antenna Array Synthesis Using Modified Brain Storm Optimization [103] | BSO | 200 | 100 | −20.0 dB | −19.9 dB | 0.50 | / |
Concentric circular antenna array synthesis for side lobe suppression using moth flame optimization [55] | MFO | 18 30 | 18 30 | −11.23 dB −9.55 dB | −36.84 dB −27.92 dB | 1 | 12.15 dB 10.76 dB |
Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organism’s search [53] | SOS | 105 | 51 | −18.26 dB | −18.19 dB | 0.48 | / |
A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays [46] | HSPSO | 36 144 576 | 21 75 323 | −13.06 dB −16.74 dB −18.97 dB | −13.57 dB −18.01 dB −22.22 dB | 0.58 0.52 0.56 | / |
Adaptive Learning of Probability Density Taper for Large Planar Array Thinning [37] | PLIFT | 7790 | 3116 | −31.80 dB | −33.30 dB | 0.40 | / |
Synthesis of large planar thinned arrays using IWO-IFT algorithm [93] | IWO-IFT | 1928 | 772 578 | −23.0 dB −22.4 dB | −27.13 dB −25.93 dB | 0.40 0.30 | 32.92 dB 31.79 dB |
A two-step method for the low-sidelobe synthesis of uniform amplitude planar sparse arrays [94] | IFT-DE | 144 | 70 | −17.26 dB | −20.91 dB | 0.48 | / |
Multiple-constraint synthesis of rotationally symmetric sparse circular arrays using a hybrid algorithm [95] | VM-HSDE | 231 | 201 | −23.74 dB | −24.21 dB | 0.87 | / |
Low-sidelobe pattern synthesis for sparse conformal arrays based on PSO-SOCP optimization [104] | PSO-SOCP | 62 | 50 40 30 | −21.53 dB | −22.12 dB −21.65 dB −21.20 dB | 0.81 0.65 0.48 | / |
A Hybrid Approach for the Synthesis of Planar Thinned Arrays with Sidelobes Reduction [99] | CP-GA | 891 | 265 | −20.00 dB | −22.50 dB | 0.30 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wang, C. Optimization Design for Sparse Planar Array in Satellite Communications. Electronics 2023, 12, 1763. https://doi.org/10.3390/electronics12081763
He Y, Wang C. Optimization Design for Sparse Planar Array in Satellite Communications. Electronics. 2023; 12(8):1763. https://doi.org/10.3390/electronics12081763
Chicago/Turabian StyleHe, Yuanzhi, and Changxu Wang. 2023. "Optimization Design for Sparse Planar Array in Satellite Communications" Electronics 12, no. 8: 1763. https://doi.org/10.3390/electronics12081763
APA StyleHe, Y., & Wang, C. (2023). Optimization Design for Sparse Planar Array in Satellite Communications. Electronics, 12(8), 1763. https://doi.org/10.3390/electronics12081763