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Abstract: The parameter estimation of multiple frequency-hopping (multiple FH) signals with
frequency-switching time is a great challenge under conditions in which the number of signals is
unknown. Due to the increasing mobility of devices such as unmanned aerial vehicles (UAVs), speed
of parameter estimation is even more demanding. To solve this problem, an algorithm for estimating
parameters of multiple FH signals based on compressed spectrum sensing and maximum likelihood
(CSML) theory is proposed in this paper. First, the received signal is split into segments of the same
length, and the frequencies contained in each segment are extracted using compressed spectrum
sensing and kurtosis threshold. Next, the frequencies contained in adjacent segments are compared to
find the signal segment in which frequency hopping occurs and its corresponding frequency. Finally,
a hopping-time fast estimation algorithm based on the maximum likelihood theory is used to estimate
the hopping time. Simulation results show that the algorithm proposed in this paper can estimate the
parameters of multiple FH signals quickly and accurately when the number of signals is unknown
and that it is equally effective for multiple FH signals with frequency-switching time.

Keywords: frequency-hopping signal; maximum likelihood estimation; kurtosis threshold; enhanced
two-hop model; compressed spectrum sensing

1. Introduction

Radio communication is widely used in various fields as an important part of informa-
tion technology. Initially, in radio communication, the signal is modulated by a transmitter
into a constant-frequency radio frequency (RF) signal, which is then sent to a receiver. How-
ever, constant-frequency RF signals are very susceptible to interference from the complex
surrounding electromagnetic environment and to eavesdropping by third parties [1,2]. In
this case, frequency-hopping signals have gradually replaced constant-frequency RF signals
due to their strong anti-interference capability and good confidentiality and are widely
used for military communications and remote control [3–7]. Since the introduction of FH
technology in the military, research on jamming, counter jamming, counter sabotage and
sabotage for FH technology has never stopped [8]. The emergence of frequency-hopping
signals with frequency-switching time is a good proof of this. In order to intercept and
jam the frequency-hopping signals of non-cooperative targets, precise knowledge of the
parameters of their transmitted FH signals is required [9]. Therefore, parameter estimation
of frequency-hopping (FH) signals is an important task for information interception and
autonomous electronic countermeasures [10,11]. The battlefield environment is rapidly
changing, and the fast estimation of FH signals in the case of unknown frequency, an
unknown number of signals or signals with frequency-switching time is of great impor-
tance. The parameter estimation of FH signals includes hopping time, hopping speed and
frequency [12]. Researchers have conducted numerous studies on the estimation methods
of FH signal parameters.
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Time–frequency analysis algorithms, such as short-time Fourier transform (STFT) [13–15]
and the Wigner–Ville distribution (WVD) [8,16], are classical algorithms for estimating
parameters of FH signals. Although the STFT algorithm is less computationally intensive,
it cannot meet the high accuracy requirements of both the frequency and time domains at
the same time [17,18]. When used to estimate the parameters of a multiple FH signal, the
WVD algorithm is disrupted by cross terms [19,20]. In Ref. [21], an algorithm for parameter
estimation of FH signals based on adaptive smoothing of the Wigner–Ville distribution
and instantaneous frequency (SWWVD-IF) was proposed. Although this algorithm can
overcome the interference problem of cross terms, it has a high computational complexity.
In Ref. [22], a parameter estimation algorithm for multiple frequency-hopping signals
based on short-time Fourier transform and smoothed pseudo Wigner–Ville distribution
(STFT&SPWVD) was proposed. The STFT&SPWVD algorithm combines the advantages of
STFT, which avoids cross-term interference, and SPWVD, which provides higher resolution
in the frequency–time domain. However, the computational complexity of this algorithm
is slightly higher than that of the SPWVD algorithm. With the development of frequency-
hopping technology, the frequency-hopping signal hops over a larger frequency band.
The time–frequency analysis algorithm based on Nyquist’s sampling theorem must obtain
the entire signal at a high sampling rate [23]. This poses a serious challenge for signal
reception equipment.

Provided that the original signal is sparse or can be sparsely represented, compressive
sensing theory allows the signal to be acquired at a frequency lower than the sub-Nyquist
sampling frequency [24,25]. This has led to the increasing application of compressive
sensing theory to FH signal processing. Popular algorithms based on this theory include
sparse linear regression (SLR) algorithms [26–28] and sparse Bayesian learning (SBL)
algorithms [20,29,30]. These algorithms are very computationally intensive. In Ref. [31], a
new algorithm combining orthogonal matching pursuit (OMP) and sparse linear regression
named OSLR was introduced to reduce the computational effort of the algorithm. The OSLR
algorithm has a lower time complexity than the SLR algorithm. However, it requires the
number of signals of multiple FH signals as a priori information to achieve correct frequency
estimation [32], and when the signals have frequency-switching time, the number of signals
changes during the frequency-switching time, so it cannot estimate the parameters of the
signals with frequency-switching time. In [32], a new parameter estimation algorithm
(CSOMP-ASW) was introduced that combines compressed spectrum sensing, OMP, a
frequency clustering algorithm and an adaptive sliding window algorithm. The CSOMP-
ASW algorithm uses the compressed spectrum sensing algorithm to evaluate the sparsity
of the signal, then uses the OMP algorithm and the clustering algorithm to estimate the
frequency of the signal so that it is not fast enough to estimate the frequency.

In Ref. [33], a frequency-hopping synchronization algorithm based on maximum like-
lihood (ML) theory was proposed. This algorithm is computationally intensive and is
only applicable to parameter estimation of a single FH signal without frequency-switching
time. To reduce the computational complexity required to estimate parameters of multiple
frequency-hopping signals under conditions in which the number of signals is known,
in our previous work, we proposed a frequency-hopping signal parameter estimation
algorithm called OML [34]. This algorithm estimates the frequency using the OMP al-
gorithm and the hopping time using an algorithm traversing all time points based on
the maximum likelihood theory, which partially improves the speed of hopping signal
parameter estimation.

In summary, all the above research methods have different degrees of improvement
in reducing the computational complexity and increasing the accuracy of parameter esti-
mation, but there are still some shortcomings. In order to mitigate the limitations of the
above methods and realize the fast estimation of frequency and hopping time of multiple
FH signals under conditions in which the frequency is unknown, the number of signals
is unknown or the signals have frequency-switching time, a new frequency-hopping al-
gorithm (CSML) is proposed in this paper. First, based on the sparsity of multiple FH
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signals in the frequency domain, a combination of compressed spectrum sensing and
kurtosis thresholding is used to estimate the frequencies. The ML-based hopping-time fast
estimation algorithm is then used to estimate the hopping time. The main contributions of
this paper are as follows:

• An enhanced two-hop model (ETHM) is developed to characterize multiple FH signals;
then, a likelihood function is derived from the model for the estimation of the parame-
ters of the multiple FH signals. Based on this likelihood function, a hopping-time fast
estimation algorithm is proposed that reduces the time required for estimation of the
hopping time of multiple FH signals.

• The algorithm based on compressed spectrum sensing has low accuracy in performing
frequency estimation. The reasons for this phenomenon are explored, and a zero-
setting method and averaging methods are proposed to improve the effectiveness of
this algorithm. Satisfactory performance is still obtained for the estimation of multiple
FH signal frequencies without the involvement of other algorithms such as OMP.
Fast estimation of the frequency of multiple FH signals without a priori information
is achieved.

The remainder of this paper is organized as follows. In Section 2, an enhanced two-hop
model is introduced. Section 3 provides details of the proposed CSML algorithm. Section 4
presents the simulations and results of the CSML algorithm. Finally, in Section 5, we present
our conclusions.

Notation:
AT—The transposition of A;
AH—The conjugate transposition of A;
A−1—The inverse of A;
0Q—The Q× 1-dimensional zero vector;
IQ—The Q× 1-dimensional unit vector;
‖A‖—Euclidean norm of A;
〈A〉—The inner product of A;
â—The estimated value of â.

2. The Enhanced Two-Hop Model

In order to realize the parameter estimation of multiple FH signals with frequency-
switching time, a multiple FH signal model is developed in this paper. To distinguish
it from the two-hop model proposed in [33], it is named the enhanced two-hop model
(ETHM). A schematic diagram of the ETHM is shown in Figure 1. In Figure 1, L is the total
number of samples, and the rest of the notations are annotated under (1). The ETHM is
composed of two FH signal models and two received signal models.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 22 
 

 

The received signal corresponding to the thn  FH signal can be expressed as: 

,2 /
, , ,( ) , , 1,2( )
( ) ,others

n m sj f l f
n m n n m n m

n
n

a e v l l l l mx l
v l

π ′+ ≤ < == 


 (2)

where ,n ma  is the amplitude corresponding to the thm  hop of the thn  FH signal, and 
nv  is the additive Gaussian white noise. 

The multiple FH signals ( ( )s l ), which are a mixture of N  FH signals, can be indi-
cated as: 

,

1

2 /
, ,

1

( ) ( )

, , 1,2.n m s

N

n
n
N

j f l f
n m n m

n

s l s l

e l l l mπ

=

=

=

′= ≤ < =




 (3)

The received signal corresponding to ( )s l  can be represented as: 

1
( ) ( ).

N

n
n

x l x l
=

=  (4)

This paper only considers the case in which the spectrum of each hopping signal does 
not overlap. 

 
Figure 1. The enhanced two-hop model. 

3. CSML Algorithm 
3.1. Likelihood Function 

Under the condition in which the frequencies are known, the computational com-
plexity of the ML-based algorithm is reduced by not traversing all frequencies and time 
points simultaneously. Furthermore, since the shape of the curve of the likelihood func-
tion is fixed, the correct hopping time can be obtained without traversing all time points. 
Therefore, the ML-based algorithm has the potential to estimate the hopping time quickly 
under the condition in which the frequency is known. The frequencies of multiple FH 
signals can also be provided by specialized frequency estimation algorithms (the fre-
quency estimation algorithm used in this paper is based on the compressed spectrum 
sensing and kurtosis thresholding algorithm proposed in Section 3.2). 
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The nth FH signal can be denoted as:

sn(l) =

{
ej2π fn,m l/ fs , ln,m ≤ l < ln,m+1 − ∆n,m, m = 1, 2
0 , others

, (1)

where m is the number of hops, fn,m is the frequency of the mth hop, ln,m is the starting
time of the mth hop, ∆n,m is the frequency-switching time between the mth hop and the
(m + 1)th hop, ln,m+1 − ∆n,m is the stopping time of the mth hop (denoted as l′n,m) and fs
is the sampling frequency.

The received signal corresponding to the nth FH signal can be expressed as:

xn(l) =

{
an,mej2π fn,m l/ fs + vn(l) , ln,m ≤ l < l′n,m, m = 1, 2
vn(l) , others

(2)

where an,m is the amplitude corresponding to the mth hop of the nth FH signal, and vn is
the additive Gaussian white noise.

The multiple FH signals (s(l)), which are a mixture of N FH signals, can be indicated as:

s(l) =
N
∑

n=1
sn(l)

=
N
∑

n=1
ej2π fn,m l/ fs , ln,m ≤ l < l′n,m, m = 1, 2.

(3)

The received signal corresponding to s(l) can be represented as:

x(l) =
N

∑
n=1

xn(l). (4)

This paper only considers the case in which the spectrum of each hopping signal does
not overlap.

3. CSML Algorithm
3.1. Likelihood Function

Under the condition in which the frequencies are known, the computational complex-
ity of the ML-based algorithm is reduced by not traversing all frequencies and time points
simultaneously. Furthermore, since the shape of the curve of the likelihood function is fixed,
the correct hopping time can be obtained without traversing all time points. Therefore,
the ML-based algorithm has the potential to estimate the hopping time quickly under the
condition in which the frequency is known. The frequencies of multiple FH signals can
also be provided by specialized frequency estimation algorithms (the frequency estimation
algorithm used in this paper is based on the compressed spectrum sensing and kurtosis
thresholding algorithm proposed in Section 3.2).

According to Equations (1) and (2), the received signal corresponding to the nth FH
signal can be re-expressed as:

xn = sn + vn, (5)

where:
xn = [xn(1), . . . , xn(L)]T,
sn =

[
an,1ej2π fn,1/ fs , . . . , an,1ej2π fn,1(l′n,1)/ fs , 0, . . . , 0,

an,2ej2π fn,2ln,2/ fs , . . . , an,2ej2π fn,2L/ fs
]T

,

vn = [vn(1), . . . , vn(L)]T.

(6)
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According to Equations (5) and (6), xn can be divided into two parts as follows:

xn,1 = an,1sn,1 + vn,1,
xn,2 = an,2sn,2 + vn,2,

(7)

where:
xn,1 = [xn(1), . . . , xn(l′n,1)]

T,
xn,2 = [xn(ln,2), . . . , xn(L)]T,

sn,1 = [ej2π fn,1/ fs , . . . , ej2π fn,1(l′n,1)/ fs ]
T

,

sn,2 = [ej2π fn,2(ln,2)/ fs , . . . , ej2π fn,2(L)/ fs ]
T

,
vn,1 = [vn(1), . . . , vn(l′n,1)]

T,
vn,2 = [vn(ln,2), . . . , vn(L)]T.

(8)

According to Equations (7) and (8), the following likelihood function can be derived:

L(an,1, fn,1, l′n,1) =
1

(
√

2πσ)
l′n,1

e−
1

2σ2 ‖xn,1−an,1sn,1‖2
,

L(an,2, fn,2, ln,2) =
1

(
√

2πσ)
L−ln,2+1 e−

1
2σ2 ‖xn,2−an,2sn,2‖2

.
(9)

Thus, the parameters l′n,1 and ln,2 can be obtained by minimizing (10) and (11).

ϕn,1(an,1, fn,1, l′n,1) = ‖xn,1 − an,1sn,1‖2. (10)

ϕn,2(an,2, fn,2, ln,2) = ‖xn,2 − an,2sn,2‖2. (11)

After derivation, the parameters l′n,1 and ln,2 can be obtained by maximizing (A8), as
shown in (12). The derivation procedure is shown in Appendix A.

l̂′n,1 = argmax
l′n,1

[ϕn,1(l
′
n,1)],

l̂n,2 = argmax
ln,2

[ϕn,2(ln,2)].
(12)

3.2. The Hopping-Time Fast Estimation Algorithm

As illustrated in (12), when estimating the hopping time of multiple FH signals, all the
time points are traversed. This makes the CPU time consumed in the process of estimating
the hopping time too long. To solve this problem, a fast estimation algorithm for hopping
time is proposed in this subsection.

Assume that there is an FH signal with a length of 6400 (L = 6400) and a hopping
time of 2600 (l1,1 = 0, l′1,1 = 2600). The variation of ϕ with l for this FH signal is shown in
Figure 2a. The maximum ϕ occurs when l is equal to l′1,1. When l is less than l′1,1, the ϕ
increases monotonically. When l is greater than l′1,1, ϕ decreases monotonically. Due to
the good monotonicity of ϕ before and after the hopping time l′1,1, it is possible to select
l uniformly at intervals of c in [1, 6400]; then, the ϕ corresponding to l is calculated. This
narrows the existence of l′1,1 to c points.

Figure 2b shows the variation of ϕ with l when c1 = 1000 and c2 = 1. The ϕ of these
six sampling points is calculated (marked by black circles in Figure 2b, c1 = 1000), and the
two largest ϕ values correspond to l = 2000 and l = 3000, respectively. This shows that
the hopping time l′1,1 is in the range of [2000, 3000]. The hopping time l′1,1 can be obtained
by traversing l in the range of [2000, 3000] (marked by the blue line in Figure 2b, c2 = 1).
With this algorithm, only 1005 calculations of ϕ are required to obtain an estimate of the
hopping time l′1,1, which is only one-sixth of the previous workload. The optimal value of
parameter c will be discussed in Section 4.

The specific steps of the hopping-time fast estimation algorithm are described below:
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Step 1: Select sampling points at intervals of c and calculate ϕ using (A8);
Step 2: Compare the ϕ calculated in step 1, and select the sampling points with the

two largest ϕ values;
Step 3: Calculate the ϕ of the sampling points between the two points selected in

step 2.
Step 4: Compare the ϕ calculated in step 3, and select the sampling point with the

largest ϕ value as the hopping time.
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with l when c1 = 1000 and c2 = 1.

3.3. The Frequency Estimation Algorithm

As in [32], the sparsity of the FH signal in the frequency domain is used to obtain the
FH signal spectrum in the compressed domain. The relationship between the compressed
sampled signal (y) and the received signal (x) can be expressed as:

y = Φx = ΦΨb = Θb, (13)

where y ∈ RY is the compressed sampled signal of the received signal (x ∈ RL),
Φ ∈ RY×G0 is the Gaussian random matrix, Ψ ∈ RG0×G0 is the Fourier orthogonal matrix,
Θ is the compressed sensing matrix, and b is the factor matrix of the received signal (x)
corresponding to Ψ. The compression ratio is λ = G0/Y, and G0 is equal to L. The gth
column of Ψ can be expressed by the following equation:

Ψg = [1, ejπg/G0 , ejπ2g/G0 , ejπ3g/G0 , . . . , ejπ(G0−1)g/G0 ]. (14)

Its corresponding frequency can be expressed as:

Fg = fs(g− 1)/G0. (15)

According to (13), the inner product of y and Θ can be expressed in the form of (16).
p is the magnitude of the projection of the received signal (x) on the Fourier orthogonal
matrix; therefore, the spectrum of x can be obtained. Figure 3a illustrates the spectrum of
the received signal at a signal-to-noise ratio (SNR) of 30 dB; Figure 3b shows the spectrum
of the noise signal.

p = |〈y, Θ〉|, (16)

where p = [p1, p2, . . . , pG0 ]
T.
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Figure 3. Spectrum of the signal. (a) The obtained spectrum refers to the case of the received signal
when SNR = 30 dB. (b) The spectrum of the noise signal.

As shown in Figure 3a, the frequencies corresponding to the three peaks are 12 MHz,
18 MHz and 54 MHz, which are the frequencies of the multiple FH signals and can be
obtained by comparing the magnitude of p in the spectrum. Due to the presence of
noise, the spectrum contains a large number of non-zero values. It is risky to discriminate
whether the frequency is the frequency of multiple FH signals by setting a threshold on the
value of p.

The kurtosis value (ε), defined by (17) [35], is sensitive to the presence of peaks in
the data; the spectrum in Figure 3a contains three peaks, and the kurtosis value (ε) of this
spectrum is equal to 19.7, while the spectrum in Figure 3b does not contain peaks, and the
kurtosis value (ε) of this spectrum is 1.6.

ε =
∑G0

i=1(pi − p)4/G0(
∑G0

i=1 (pi − p)2/G0

)2 , (17)

where p = ∑G0
i=1 pi/G0.

Taking Figure 3 as an example, the frequency corresponding to the largest p value is
taken as the frequency of the multiple FH signals and recorded, and the largest p value
is set to zero (zero-setting method) or to the average of p on both sides of it (averaging
method). After three operations, the spectrum of the received signal changes from that
shown in Figure 3a to that shown in Figure 3b, and the kurtosis value (ε)changes from 19.1
to 1.6. Therefore, a suitable kurtosis value can be selected as the stopping condition of the
frequency estimation algorithm, known as the kurtosis threshold (µ).

During the operation, it was found that the p (marked by the yellow triangle in
Figure 4a,b) on both sides of the maximum p was also large, as shown in Figure 4a,b. This is
the reason for the low accuracy of the frequency estimation algorithm based on compressed
spectrum sensing. Therefore, the p on both sides of the maximum p should be processed
using the zero-setting method or the averaging method.

Assuming that the p at 12 MHz is p601 (the 601st value in the vector P), the zero-setting
method can be expressed as [p601−α, . . . , p601+α]

T = 02α+1, where α is the neighborhood
radius. Figure 5a shows the partial enlargement of the spectrogram at 12 MHz after using
the zero-setting method when the neighborhood radius (α) is equal to 6. The averaging
method can be expressed as [p601−α, . . . , p601+α]

T = I2α+1× (p600−α + p602+α)/2. Figure 5b
illustrates the partial enlargement of the spectrogram at 12 MHz after using the averaging
method when the neighborhood radius (α) is equal to 6. The optimal values of the kurtosis
threshold (µ) and the neighborhood radius (α) will be further investigated in Section 4.
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3.4. Steps of the CSML Algorithm

Estimating the frequency and hopping time of multiple FH signals is the main task of
the CSML algorithm proposed in this paper. The CSML algorithm estimates the frequency
first, then the hopping time. A flow chart of the CSML algorithm is shown in Figure 6.

The specific steps are described as follows:
Step 1: Split the received signal (x ∈ RL) into segments of size G0, where K is the total

number of signal segments:

x = [x1, x2, . . . , xK] ∈ RG0×K. (18)

Step 2: Obtain the compressed spectrum of the each segment using Equations (13),
(15) and (16);

Step 3: Record the frequency corresponding to the maximum p. Set the maximum p
to zero using the zero-setting method or the averaging method. Repeat this step until the
kurtosis value (ε) of this compressed spectrum is smaller than the kurtosis threshold µ;
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Step 4: Repeat step 3 for the compressed spectrum of the remaining signal segments
until the frequencies of all signal segments are obtained. Compare the frequencies between
adjacent segments to find the frequency of the multiple FH signals and the segment in
which the frequency hopping occurred;

Step 5: Estimate the hopping time using the hopping-time fast estimation algorithm.
Repeat this step until all hopping times are obtained.
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The purposes of splitting the received signal are as follows:

• Avoid processing large amounts of data at the same time and reduce the requirement
for hardware devices;

• By comparing the frequencies of each segment, the segments in which the frequency
hopping occurs, as well as FH frequencies, are identified, in addition to preparing for
the estimation of hopping time.

It is worth noting that it is not the entire received signal that is fed into the hopping-
time fast estimation algorithm but the selected signal segments where frequency hopping
occurs after frequency estimation. The length of these segments is G0. Therefore, the
computational complexity of the fast estimation algorithm of the frequency-hopping signal
parameters does not increase with the length of the received signal. To avoid errors, the
size of the segments (G0) should be smaller than the minimum FH signal duration.

3.5. Complexity Analysis

Continuing with the relevant symbols from the previous section, the number of
FH signals is N, the sampling length of the signal is L, the received signal is divided
into segments of length G0, K is the total number of signal segments; the length of the
compressed sampled signal is Y and the compression ratio of compressed sampling is λ.
A slight difference is that K′ is the total number of signal segments in which frequency
hopping occurs.

The computational complexity of the compressed spectrum sensing part can be ex-
pressed as:

ξ1 = KY =
KG0

λ
=

L
λ

. (19)

The computational complexity of the kurtosis value calculation once is G0 can be
expressed as:

ξ2 = KNG0 = LN. (20)
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The computational complexity of the hopping-time fast estimation algorithm can be
expressed as:

ξ3 = K′N(
G0

c
+ c− 1). (21)

The computational complexity of the CSML algorithm proposed in this paper is:

ξCSML = ξ1 + ξ2 + ξ3 =
L
λ
+ LN + K′N(

G0

c
+ c− 1). (22)

The computational complexity of the ASW algorithm for one iteration can be expressed
as [32]:

ξ4 =
NG2

0
4λ

(23)

The computational complexity of the ASW algorithm in the process of estimating the
hopping time is as follows:

ξ ′4 =
K′NG2

0
4λ

(24)

The computational complexity of the CSOMP-ASW algorithm [32] is:

ξCSOMP−ASW =
L
λ
+

LNG0

λ
+

K′NG2
0

4λ
. (25)

Usually, λ is much smaller than G0. Therefore, the computational complexity of the
CSML algorithm proposed in this paper is smaller than that of CSOMP-ASW.

4. Simulations and Results

In this section, 100 Monte Carlo tests are performed on the proposed CSML algorithm
to investigate the optimal values of the parameters µ, α and c. Our simulations were
performed on a desktop computer with an Intel(R) Core(TM) i5-9400F CPU @2.90 GHz
processor. The operating system was Microsoft Windows 10, with 16 GB of RAM. The
comparison with the four algorithms mentioned in Section 1 is also performed. The
sampling length L of the signal used in the simulations is 51200, and the sampling frequency
( fs) of the signal is 128 MHz.

The parameters of the multiple FH signals without frequency-switching time are
shown in Table 1, and a schematic diagram of the multiple FH signals is shown in Figure 7.
The multiple FH signals are used for the simulation tests in Sections 4.1–4.4. FH signal
No. 1 (n = 1) starts at 12 MHz, and the frequency becomes 24 MHz when l = 9001; the
starting frequency of FH signal No. 2 (n = 2) is 54 MHz, and the frequency changes to
60 MHz when l = 20901; signal No. 3 (n = 3) is a fixed-frequency signal with a frequency
of 18 MHz.

Table 1. The parameters of the multiple FH signals.

n fn,1 (MHz) fn,2 (MHz) l’
n,1 ∆n,1 ln,2

n = 1 12 24 9000 1 9001
n = 2 54 60 20,900 1 20,901
n = 3 18 51,200

Other necessary parameters are shown in Table 2. The number of FH signals (N) is
two; the sampling length of the signal (L) is 51,200; the sampling frequency ( fs) is 128 MHz;
the received signal is divided into segments of length G0 = 3200, and the compression ratio
of compressed sampling (λ) is 8.
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Table 2. Other necessary parameters.

N L fs (MHz) G0 λ

2 51,200 128 3200 8

The SNR is given by:

SNR = 10 log10(
‖s‖2

2
Nσ2 ), (26)

where s is the multiple FH signals, and σ2 is the variance of Gaussian white noise.
The common performance indicators of FH signal parameter estimation algorithms

include mean square error (MSE), CPU time, accuracy, etc. In this paper, the frequency esti-
mation accuracy and CPU time are used to evaluate the frequency estimation performance
of the proposed algorithm; the mean square error (MSE) of the hopping time and CPU time
are used to evaluate the hopping-time estimation performance of the proposed algorithm.

The frequency estimation accuracy is defined as:

R f =
1

NNe

Ne

∑
i=1

Nci, (27)

where Ne is the total number of trials, and Nci is the number of frequencies that were
correctly estimated in the ith trial.

The mean square error (MSE) of the hopping-time estimation is defined as:

et =
1

2NNE
(∑NE

i=1 ∑N
n=1 (

l̂n,i − ln,2

ln,2
)2 + ∑NE

i=1 ∑N
n=1 (

l̂′n,i − l′n,1

l′n,1
)2), (28)

where l̂n,i and l̂′n,i are the estimated values of ln,2 and l′n,1 in the ith trial, respectively.

4.1. The Effect of Parameters µ and α on Frequency Estimation

The parameter α was set to 5, and the value of parameter µ was selected within the
range of [1.5, 2.4] with an interval of 0.1. A total of 100 Monte Carlo tests were conducted
under different SNR conditions. The results of the simulations are shown in Figure 8.
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Figure 8. The effect of µ and SNR on the frequency estimation accuracy.

Figure 8 illustrates that when µ is less than 1.9, the frequency estimation accuracy is
proportional to µ. When µ is between 1.9 and 2.1 and the SNR is greater than 0 dB, the
frequency estimation accuracy can reach 100%; when µ is greater than 2.1 and the SNR is
0 dB, the frequency estimation accuracy starts to decrease. The results show that either µ
being set either too high or too low reduced the frequency estimation accuracy. Therefore,
the kurtosis threshold (µ) was set to 2.0.

The parameter µ was set to 2.0, and the SNR was set to 0 dB. The parameter α was
selected sequentially in the range of [0, 4] at intervals of 1. The p was processed by the
zero-setting method and the averaging method, and 100 Monte Carlo tests were conducted.
The results are shown in Figure 9.
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Figure 9. The effect of α on the frequency estimation accuracy.

In Figure 9, the frequency estimation accuracy with α = 0 is close to 0, which is
consistent with the phenomenon mentioned in Section 3.3. When α = 3, the frequency
estimation accuracy is 100% for both the averaging method and the zero-setting method.
Therefore, in the subsequent simulations, the parameter α was set to 3, and the zero-setting
method was chosen to process p.
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4.2. The Effect of Parameter c on Hopping-Time Estimation

The parameters of the multiple FH signals are the same as in Section 4.1. The SNR is
set to 30 dB, and the parameter c is selected at intervals in the range of [40, 3200]. A total of
100 Monte Carlo tests are conducted. The results are shown in Figure 10.
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In Figure 10, the results for c = 1 correspond to the performance when the hopping-
time fast estimation algorithm is not used, with an MSE equal to 8.5× 10−8 and a CPU time
equal to 0.475 s. When c is greater than 400, the MSE and CPU time of the hopping-time fast
estimation algorithm increase with c, and the performance of the fast estimation algorithm
gradually degrades. When c is too large, too few sampling points are selected in step 1
of the hopping-time fast estimation algorithm, the hopping time is not between the two
sampling points selected in step 2 and the wrong hopping time is obtained. This is the
main reason for the increase in MSE when c is too large. When c increases, the computation
of step 3 in the hopping-time fast estimation algorithm increases, which leads to an increase
in CPU time. When the parameter c is less than 400, the MSE is less than 8.7× 10−8, which
is the same performance as when the hopping-time fast estimation algorithm is not used.
As shown in Figure 10b, the use of the hopping-time fast estimation algorithm leads to a
significant decrease in the CPU time consumed during the hopping-time estimation, and
the CPU time is the shortest at 0.293 s when parameter c equals 160. Therefore, in the
subsequent simulations, parameter c is set to 160.

The sampling frequency selected in this paper is 128 MHz, and the signal fragment
length is 3200, which is small enough for most signals to not miss the hopping time. The
parameter c obtained at this segment length has a wide applicability.

4.3. Frequency Estimation

A total of 100 Monte Carlo tests were conducted separately under different SNR
conditions to compare the ability of the CSML algorithm with that of four other algorithms
to estimate frequencies. The results are shown in Figures 11 and 12. The minimum SNR for
each algorithm to achieve 100% frequency estimation accuracy and the average CPU time
consumed by each algorithm are shown in Table 3.
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Table 3. The minimum SNR for each algorithm to achieve 100% frequency estimation accuracy and
the average CPU time consumed by each algorithm.

Algorithm OSLR CSML CSOMP-ASW SWWVD-IF STFT&
SPWVD

SNR (dB) −5 0 20 15 10
Average CPU time (s) 0.7277 0.2984 0.6796 5.1760 5.5869

The best results are bolded.

In Figure 11, the horizontal axis is the SNR, and the estimation of multiple FH signal
parameters is severely affected by noise at 0 dB. The SWWVD-IF algorithm is unable
to estimate the frequency of multiple FH signals at an SNR of 0 dB, and the frequency
estimation accuracy of this algorithm is only 34% with an SNR of 10 dB. The frequency
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estimation accuracy of the CSOMP-ASW algorithm is 4% at an SNR of 0 dB, and the
frequency estimation accuracy of this algorithm reaches 85% at an SNR of 10 dB. The
STFT&SPWVD algorithm has a frequency estimation accuracy of 27% at an SNR of 0 dB
and 91% at an SNR of 10 dB. The OSLR algorithm performs best, but it requires a priori
information about the signal. The frequency estimation accuracy of the CSML algorithm
proposed in this paper is 100% at an SNR of 0 dB. The CSML algorithm outperforms the
CSOMP-ASW, SWWVD-IF and STFT&SPWVD algorithms under low-SNR conditions.

As shown in Figure 12, the CPU time consumed by the five algorithms in estimating
the frequency varies less with the SNR. As shown in Table 3, the average CPU times of
the OSLR, CSOMP-ASW, SWWVD-IF and STFT&SPWVD algorithms are 0.7277 s, 0.6796 s,
5.176 s and 5.5869 s, respectively. The average CPU time of the CSML algorithm is 0.2984 s.
The CSML algorithm consumes the shortest CPU time, which is less than one-half that of
the OSLR and CSOMP-ASW algorithms. Therefore, the CSML algorithm proposed in this
paper can perform fast and accurate estimation of the frequencies of multiple FH signals
without a priori information.

4.4. Hopping-Time Estimation

A total of 100 Monte Carlo tests were conducted separately under different SNR
conditions to compare the ability of the CSML algorithm with that of four other algorithms
to estimate the hopping time. The results are shown in Figures 13 and 14.
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Figure 13 and Table 4 show the MSEs of the hopping-time estimation of the five
algorithms at different SNRs. As the SNR increases, the MSEs of the hopping time estimated
by the five algorithms decreases, finally converging to different values. When the SNR
is greater than 10 dB, the MSEs of the CSOMP-ASW and STFT&SPWVD algorithms are
basically unchanged at about 2.13×10−5 and 7.15× 10−4, respectively. When the SNR is
greater than 15 dB, the MSE of the OSLR algorithm is less than 1.62×10−6, and that of the
CSML algorithm is less than 1.086×10−7. When the SNR is greater than 20 dB, the MSE
of the SWWVD-IF algorithm is less than 5.259×10−7. Under the same SNR condition, the
MSE of the CSML algorithm is smaller than that of the other four algorithms.
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Table 4. The MSE of the hopping-time estimation of the five algorithms under different SNR conditions.

Algorithm SNR = 0 dB SNR = 5 dB SNR = 10 dB SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

OSLR 0.973 0.115 0.050 1.62 × 10−6 1.218 × 10−6 9.246 × 10−7 7.212 × 10−7

CSML 2.502 × 10−6 5.223 × 10−7 2.879 × 10−7 1.086 × 10−7 9.545 × 10−8 9.298 × 10−8 8.372 × 10−8

CSOMP-ASW 0.459 1.557 × 10−4 2.130 × 10−5 2.318 × 10−5 2.115 × 10−5 2.147 × 10−5 2.148 × 10−5

SWWVD-IF 0.996 0.980 0.765 0.119 5.259 × 10−7 4.245 × 10−7 4.082 × 10−7

STFT&SPWVD 0.986 0.0166 8.988 × 10−4 7.151 × 10−4 7.115 × 10−4 7.114 × 10−4 7.144 × 10−4

The best results are bolded.

Figure 14 and Table 5 reflect the CPU time consumed by the five algorithms. The
estimation of hopping time by all five algorithms is based on the estimation of frequency.
Therefore, the CPU time in this section includes the CPU time consumed during frequency
estimation. The CPU time consumed by the OSLR algorithm fluctuates widely, with a
minimum of 106.1 s and a maximum of 122.4 s. The CPU time consumed by the remaining
four algorithms fluctuates very little. The average CPU times of the OSLR, CSOMP-ASW,
SWWVD-IF and STFT&SPWVD algorithms are 116.87 s, 0.7646 s, 9.5659 s and 7.1659 s,
respectively. The average CPU time of the CSML algorithm is 0.3088 s. Compared with the
other four algorithms, the CSML algorithm can estimate the hopping time of multiple FH
signals faster and more accurately.

Table 5. The average CPU time consumed by the five algorithms in the process of estimating the
hopping time.

Algorithm OSLR CSML CSOMP-ASW SWWVD-IF STFT&
SPWVD

Average CPU time (s) 116.87 0.3088 0.7646 9.5659 7.1659

The best results are bolded.

4.5. Parameter Estimation Performance of the CSML Algorithm for Multiple FH Signals with
Frequency-Switching Time

The parameters of the multiple FH signals used for the simulations in this section are
shown in Table 6, and a schematic diagram of this signal is shown in Figure 15. The starting
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frequency of FH signal No. 1 (n = 1) is 12 MHz; it enters the frequency-switching time at
l = 35, 001, with a frequency-switching time of 1004, and the frequency becomes 24 MHz
at l = 36, 005. The starting frequency of FH signal No. 2 (n = 2) is 54 MHz; it enters the
frequency-switching time at l = 26, 001, with a frequency-switching time of 4000, and the
frequency changes to 60 MHz at l = 30, 001. The third signal is a fixed-frequency signal
with a frequency of 18 MHz. Other necessary parameters are shown in Table 2.

Table 6. Parameters of multiple FH signals with frequency-switching time.

n fn,1 (MHz) fn,2 (MHz) l’
n,1 ∆n,1 ln,2

n = 1 12 24 35,001 1004 36,005
n = 2 54 60 26,001 4000 30,001
n = 3 18 51,200
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The OSLR, SWWVD-IF and STFT&SPWVD algorithms cannot estimate the parameters
of the FH signals with frequency-switching time. In this section, only the CSML algorithm
and the CSOMP-ASW algorithm are simulated. The results were shown in Figures 16 and 17.
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Figure 16a shows the correct rates of the CSML algorithm and the CSOMP-ASW
algorithm for frequency estimation of multiple FH signals with frequency-switching time.
When the SNR is greater than 0 dB, the frequency estimation accuracy of the CSML algo-
rithm is 100%; when the SNR is greater than 10 dB, the frequency estimation accuracy of
the CSOMP-ASW algorithm is greater than 98%; when the SNR is greater than 20 dB, the
frequency estimation accuracy of the CSOMP-ASW algorithm is equal to 100%. As shown
in Figure 16b, the average CPU time consumed by the CSOMP-ASW algorithm is 0.7159 s,
while that of the CSML algorithm is 0.2956 s.

Figure 17a shows the MSE of the estimated hopping time for the CSML algorithm
and the CSOMP-ASW algorithm when estimating hopping time for multiple FH signals
with frequency-switching time. When the SNR is greater than 5 dB, the MSE of the CSML
algorithm is less than 3.514×10−8, and the MSE of the CSOMP-ASW algorithm is less than
5.811×10−5. As shown in Figure 17b, the average CPU time consumed by the CSOMP-
ASW algorithm is 0.768 s, while that of the CSML algorithm is 0.3032 s. Therefore, the
CSML algorithm can perform fast and accurate estimation of the parameters of multiple
FH signals with frequency-switching time.

5. Conclusions

In this paper, a CSML algorithm based on compressed spectrum sensing and maxi-
mum likelihood theory is proposed for parameter estimation of multiple FH signals with
frequency-switching time when the number of signals is unknown. For the problem of
low accuracy when compressed spectrum sensing is used for frequency estimation alone,
the kurtosis threshold and zero-setting methods are applied to improve the accuracy of
frequency estimation. As for the problem of high computational demand and error in
hopping-time estimation, a hopping-time fast estimation algorithm based on maximum
likelihood theory is proposed. Simulation results show that the CSML algorithm proposed
in this paper achieves higher accuracy and significantly reduced computation time com-
pared with existing algorithms. The estimation of the hopping time in the compressed
domain further reduces the computational effort. In future work, we hope to explore the
implementation of hopping-time estimation algorithms in the compressed domain. In this
this paper, we only considered a case in which the spectra of multiple FH signals do not
overlap. When the spectra overlap, the estimation of the frequency and hopping time of
the signals is more difficult. Therefore, in future work, we will use more advanced mathe-
matical tools and algorithms to solve the problem of overlapping spectra, such as image
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processing and machine-learning-based methods, to improve the accuracy and efficiency
of frequency and hopping-time estimation.
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Appendix A

Because (10) and (11) have similar forms, we only consider (10) and minimize it.
To minimize (10), we set ∂ϕn,1/∂an,1 = 0. Therefore, the estimated value of an,1 can be

expressed as:

ân,1 =
1

l′n,1
sH

n,1xn,1. (A1)

Substituting (A1) into (10), ϕn,1(an,1, fn,1, l′n,1) becomes:

ϕn,1( fn,1, l′ ,1) = ϕn,1(ân,1, fn,1, l′n,1)

= ‖xn,1 − 1
l′n,1

sH
n,1xn,1sn,1‖

2

= ‖xn,1‖2 − ‖s
H
n,1xn,1‖

2

l′n,1
.

(A2)

Because ‖xn,1‖2 and ‖sH
n,1xn,1‖

2/l′n,1 of (A2) are positive, minimizing (A2) is equivalent
to maximizing (A3).

ϕn,1( fn,1, l′n,1) =
‖sH

n,1xn,1‖
2

l′n,1
. (A3)

Suppose that f̂n,1 is known; substituting it into (A3), the objective function becomes:

ϕn,1(l
′
n,1) =

‖ŝH
n,1xn,1‖

2

l′n,1
, (A4)

where:
ŝn,1 =

[
ej2π f̂n,1/ fs , . . . , ej2π f̂n,1l′n,1/ fs

]T
. (A5)

Therefore, minimizing (10) is equivalent to maximizing (A4).
When f̂n,2 is known, minimizing (11) is equivalent to maximizing (A6).

ϕn,2(ln,2) =
‖ŝH

n,2xn,2‖
2

L− ln,2 + 1
, (A6)

where:
ŝn,2 =

[
ej2π f̂n,2ln,2/ fs , . . . , ej2π f̂n,2L/ fs

]T
. (A7)
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Because this paper only considers a condition in which the spectrum of each signal
does not overlap, (A4) and (A6) can be rewritten as follows:

ϕn,1(l
′
n,1) =

‖ŝH
n,1X1‖

2

l′n,1
,

ϕn,2(ln,2) =
‖ŝH

n,2X2‖
2

L−ln,2+1 ,
(A8)

where:
X1 = [x(1), . . . , x(l′n,1)],
X2 = [x(ln,2), . . . , x(L)].

(A9)
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