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Abstract: This paper deals with the consensus output tracking problem for multi-agent systems with
unknown high-frequency gain signs, in which the subsystems are connected over directed graphs.
The subsystems may have different dynamics, as long as the relative degrees are the same. A new
type of Nussbaum gain is first presented to tackle adaptive consensus control of network-connected
systems without the knowledge of the high-frequency gains. Adaptive laws and internal models
are then proposed to handle the uncertainties and unknown parameters. An integral Lyapunov
function based on sufficient conditions is finally introduced to tackle the asymmetry of the Laplacian
matrix of directed graphs, into which we incorporate the new Nussbaum gain and the adaptive
internal model to design the controller. It is apparent that the control scheme and the adaptive
laws are fully distributed, which means that only the relative information of the neighbourhood
subsystems’ outputs is used, and the simulation results validate the effectiveness of the control design,
whereby they guarantee the asymptotic convergence of errors to zero as well as the boundedness
of the state variables.

Keywords: nonlinear multi-agent systems; consensus output tracking; distributed adaptive control;
directed graphs; unknown control directions

1. Introduction

With the development of computing, communication and sensing, having multiple
control agents working together to accomplish collective group behaviours can significantly
improve their operational effectiveness. Due to its potential applications in various fields
such as satellite formation flying, robotics and electric power systems, consensus output
regulation of multi-agents has received great attention from the systems and control com-
munity. Consensus output regulation of multi-agents is to have a group of agents connected
together in a networkto asymptotically follow a prescribed trajectory and/or maintain
asymptotic rejection of disturbances [1,2]. In the formulation of cooperative control, there
are two types of methods: centralised and distributed methods. Due to the limited percep-
tion capabilities of agents and sensors, implementing a centralised controller is considered
too expensive in practice. The distributed method, which depends on information of agents
and their neighbours, brings more benefits [3,4].

As a result, the output tracking or regulation problem of multi-agent systems has
attracted great attention in recent years. In terms of these multi-agent systems, they
are always uncertain, and the uncertainties can be general nonlinear functions and can
be input-related and/or input-unrelated. Adaptive control algorithms are developed
to deal with unknown parameters in the systems. One of the important tools is the
backstepping method. The general adaptive algorithms for input-related uncertainties and
backstepping are developed with virtual coefficients equal to one, or under the assumption
that the coefficients containknown signs. These signs, called control directions or high-
frequency gains, indicate motion directions of system under any control, and knowledge
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of these signs makes robust control design much easier [5]. However, when not all state
variables are measurable, and when large uncertainties exist in systems, it is difficult
to detect the high-frequency gain directly. Thus, it makes sense to devise an adaptive
control method to eliminate the requirements on the sign of the high frequency gain and to
implement for the output tracking or regulation problem [6–10]. In terms of a network of
connected systems with multiple subsystems, the existing control design for an individual
system with unknown high-frequency gain would not be able to establish the boundedness
of all the variables in the adaptive consensus output tracking/regulation problem since each
subsystem could move in different directions. Additionally, the communication between
agents can be undirected and directed; the asymmetric connection in a directed graph
remains an obstacle to extending adaptive schemes beyond undirected graphs to fully
distributed adaptive consensus control. Thus, the adaptive consensus control problem
of unknown nonlinear systems on directed graphs with unknown control directions drew
our attention [11,12].

In ref. [13], consensus global output regulation was discussed for several classes
of nonlinear multi-agent systems. The controller presented in the above study was not fully
distributed. A fully distributed consensus adaptive output regulation for a class of nonlin-
ear uncertain multi-agent systems with unknown leader was addressed in [14], where the
authors combined an adaptive internal model and a robust control to handle the unknown
parameters in the leader systems. Designing fully distributed controllers for heterogeneous
multi-agent systems with general directed graphs to achieve consensus output regulation is
much more complicated and is still open, though a case with nominal and one with uncer-
tain linear subsystems were first studied in ref. [15,16].In recent years, the consensus output
regulation of a class of network-connected dynamic systems, in which all the system param-
eters were completely unknown, including the high frequency gain signs, were considered
intensively [17,18]. The consensus global output regulation problem of second-order non-
linear multi-agent systems subject to the unknown control directions was then presented
in ref. [19]. Inthe novel distributed controllers based on the Nussbaum-type dynamic
gain, the adaptive control techniques can not only handle the unknown control directions
but also the uncertain parameters that belong to any unknown and non-compact set, and
the arbitrary unknown control directions do not need to be identical. For the consensus
output regulation of a class of general nonlinear systems with unknown high-frequency
gains, a new Nussbaum gain with a potentially faster rate was proposed in ref. [20], such
that the boundedness of system parameters can be established by the paradoxical ar-
gument even if the Nussbaum gain parameter for only one of the subsystems becomes
unbounded. This removes the assumption of known lower and upper bounds of the con-
trol coefficients in ref. [21]. However, the above works were based on undirected graphs;
the consensus output regulation for nonlinear systems with unknown high-frequency gains
under directed graphs is still challenging. Additionally, some other control approaches
recently came to our attention because they proved to be successful in various applications:
use of multi-parametric quadratic programming in fuzzy control systems [22]; nonlinear op-
timal control of oxygen and carbon dioxide levels in blood [23]; test platform and graphical
user interface design for vertical take-off and landing of drones [24].

In this paper, the consensus output tracking problem of a class of network-connected
uncertain nonlinear agents by output feedback is considered. Each agent is a minimum-
phase SISO system with a relative degree of 1, unknown parameters and unknown control
directions, and the connecting graph between the subsystems is directed. Inspired by using
the Nussbaum gain [7] to tackle the unknown high-frequency gain sign and adaptive
laws to solve the parameters uncertainties, a new control scheme is specified as follows.
Due to the asymmetry of the Laplacian matrices, a distributed adaptive controller based
on a newly designed Lyapunov function together with a novel Nussbaum gain and an adap-
tive internal model are proposed to achieve consensus output tracking in the sense that
the subsystem outputs asymptotically follow a reference signal. The presented adaptive
control only uses relative output measurements and the local information of the connec-
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tion to each subsystem, and hence the proposed control scheme is fully distributed. The
contributions of this paper are at least two-fold. First, contrary to previous works, the pa-
rameters of each agent in this paper are completely unknown and the connection between
the subsystems is direct, which makes the design of Nussbaum gain, the internal model and
the Lyapunov function much more challenging because of the asymmetry of the Laplacian
matrices. Second, the adaptive protocols proposed in this paper depend only on the relative
output information, which is much more difficult compared to the adaptive protocols that
rely on the relative states of neighbouring subsystems.

This paper is organized as follows. Section 2 describes the mathematics model
of the distributed adaptive consensus output tracking problem of a set of unknown non-
linear subsystems with unknown control directions under directed graphs. The state
transformation is introduced in Section 3. Section 4 presents a new adaptive internal model,
the design of consensus controllers and the stability analysis based on the novel Lyapunov
function. In addition, simulation examples are demonstrated in Section 5.

2. Problem Statement

Consider a group of N unknown nonlinear subsystems over a directed interaction
topology, of which the dynamics of the i-th, i = 1, . . . , N subsystem are described by

ẋi = Axi + bui + θ(yi, d),

yi = Cxi,
(1)

with θ, b, CT ∈ Rn and

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

, b =

b1
...

bn

, CT =


1
0
...
0

,

where xi ∈ Rn is the state vector, with n being a known positive constant integer represent-
ing the order of the subsystems. ui, yi ∈ R are the input and output of the ith subsystem,
and b ∈ Rn and d ∈ Rq are vectors of unknown parameters, with b being a Hurwitz vector
with b1 6= 0, which denotes that the relative degree of the system is 1. θ : R×Rq → Rn

contains unknown nonlinear functions; each element is a polynomial of its variables and
satisfies θ(0, d) = 0. In terms of the reference signal, it can be expressed as

ẋ0 = Ax0 + bu0 + θ(y0, d),

y0 = Cx0,
(2)

with a constant control input u0. We define the output tracking errors as

ei = yi − y0, i = 1, . . . , N. (3)

A directed graph G = (V , E) is introduced to demonstrate the communication topol-
ogy among the subsystems, where V = {1, . . . , N} is the vertex set and E denotes the edge
set. A vertex represents an agent, and each edge represents a connection. As for the graph
G, its adjacent matrix S has elements sij = 1 if there is a path from subsystem j to sub-
system i, and sij = 0 otherwise. The Laplacian matrix L is defined as lii = ∑N

j=1 sij and
lij = −sij when i 6= j. A directed graph is strongly connected if there is a directed path
from every vertex to every other vertex. Not all the subsystems have access to y0, and
they rely on the network connections to achieve the consensus output tracking. We use
a diagonal matrix ∆ = diag(δ1, . . . , δN) to denote the access to y0 in the way that if δi = 1,
the ith subsystem has access to the value of y0 for the control design, and δi = 0 otherwise.
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The distributed adaptive consensus output tracking problem considered in this paper
is to use the relative information yi − yj, i 6= j of neighbouring subsystems to design
a distributed adaptive controller to ensure that the output tracking errors ei for i = 1, . . . , N
converge to zero under any initial condition of the system in the state space, i.e., the con-
vergence of the subsystem outputs yi to the common function y0, that is

lim
t→∞

ei(t) = 0, i = 1, . . . , N. (4)

We make the following assumptions about the interactions among the subsystems and
the exosystem.

Assumption 1. The invariant zeros of {A, b, C} are stable, for i = 1, . . . , N, and all the subsystems
have the same sign but completely unknown high-frequency gains.

Assumption 2. The directed graph G among the N subsystems is strongly connected and at least
one subsystem has access to y0.

Assumption 3. For the nonlinear function φ, the following condition holds:

‖θ(yi, d)− θ(y0, d)‖2 ≤ γθ(e2
i + e2q

i ), (5)

where γθ is a positive real number and q is a known positive integer.

Remark 1. Note that the subsystem (1) is in the standard nonlinear output feedback form.
The geometric conditions that any general nonlinear systems can be transformed to such a structure
have been verified in [25].

Remark 2. Assumption 3 is clearly satisfied for linear systems with unknown parameters.
The nonlinear functions involved in θi are polynomials with θ(0, d) = 0, and the unknown
parameters are constant. In such a case, Assumption 3 is then satisfied.

3. Preliminaries

Before proposing the adaptive control, some preliminary results are introduced. We
consider a state transform to extract the internal dynamics of (1) with x̄i ∈ Rn−1 given by

x̄i = xi,2:n −
b2:n

b1
yi, (6)

where (·)2:n refers to the vector or matrix formed by the 2nd row to the nth row. With
the coordinates (x̄i, yi), (1) is rewritten as

˙̄xi = Bx̄i + ϕ(yi, φ),

ẏi = gT x̄i + ϕy(yi, φ) + b1ui,
(7)

where the unknown parameter vector φ = [dT , bT ]T , g = [1, 0, . . . , 0] ∈ Rn−1, and B is
the left companion matrix of b given by

B =


−b2/b1 1 . . . 0
−b3/b1 0 . . . 0

...
...

...
...

−bn−1/b1 0 . . . 1
−bn/b1 0 . . . 0

, (8)
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and
ϕ(yi, φ) = B

b2:n

b1
yi + θ2:n(yi, d)− b2:n

b1
θ1(yi, d),

ϕy(yi, φ) =
b2

b1
yi + θ1(yi, d).

Note that B is the Hurwitz vector from Assumption 1, and that it is easy to check that
ϕ(0, θ) = 0 and ϕy(0, θ) = 0.

Before moving on to present the main control scheme of this paper, we first intro-
duce a property of Laplacian matrix. For notational convenience, we let Q = L + ∆.
Under Assumption 2, it is not difficult to verify that Q is a nonsingular M-matrix [26],
which satisfies the following property.

Lemma 1. There exists a positive diagonal matrix Ḡ with Ḡ = diag{ḡ1, · · · , ḡN} [27] , such that

ḠQ + QTḠ ≥ γc I, (9)

for some positive real number γc.

Let us denote the consensus output tracking error as

ζi =
N

∑
j=1

sij(yi − yj) + δi(yi − y0), i = 1, · · · , N. (10)

It can be obtained that

ζi =
N

∑
j=1

sij(ei − ej) + δiei

=
N

∑
j=1

qijej,

(11)

where qij denotes the (i, j)-th entry of the matrix Q. The above equation Equation (11) can
be represented in the vector form, ζ = Qe, where ζ, e ∈ RN are the vectors with ζi and ei
as elements, respectively. Clearly, ζi is available to the control design for the ith subsystem.

A useful result relating ζ and e is shown in the following lemma for the stability
analysis.

Lemma 2. With ζ = Qe, the following inequality holds for any positive integer m,

N

∑
i=1

e2m
i ≤ Um−1σ2m(Q)

N

∑
i=1

ζ2m
i , (12)

where σ(Q) denotes the square root of the eigenvalue of QHQ.
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Proof.
N

∑
i=1

ζ2m
i = U

[ 1
U

N

∑
i=1

(ζ2
i )

m

] 1
m
m

≥ U

([
1
U

N

∑
i=1

(ζ2
i )

])m

= U1−m(‖ζ‖2)m = U1−m(‖Qe‖2)m

≥ U1−mσ−2m(Q)‖e‖2m

≥ U1−mσ−2m(Q)

(
N

∑
i=1

e2
i

)m

≥ U1−mσ−2m(Q)
N

∑
i=1

e2m
i ,

from which (12) is obtained.

For the leader, the internal dynamics have the same formulation as (7), the only change
is from index i to 0. Then, letting x̃i = x̄i − x̄0, the subsystem dynamics in (1) can be
rewritten as

˙̃xi = Bx̃i + ϕ̃i,

ėi = gT x̃i + ϕ̃i,y + b1(ui − u0),
(13)

where ϕ̃i = ϕ(yi, φ)− ϕ(y0, φ), ϕ̃i,y = ϕy(yi, φ)− ϕy(y0, φ).

4. Distributed Consensus Control Algorithm Design

In this section, a distributed adaptive output feedback control law will be designed,
which stabilizes the augmented system (13) globally under the assumption that the control
direction b1 is completely unknown.

4.1. A Novel Nussbaum-Type Function

When high-frequency gains are completely unknown, Nussbaum gain functions N(κ)
are applied in the adaptive control, which have the properties that

lim
κ→±∞

sup
1
κ

∫ κ

0
N(s)ds = +∞,

lim
κ→±∞

inf
1
κ

∫ κ

0
N(s)ds = −∞,

(14)

where κ → ±∞ denotes κ → +∞ and κ → −∞, and the control input takes the form
u = N(κ)ū. Then, the control design is continued with ū, such that a condition in the fol-
lowing form is obtained for a single-input system,

V(t) ≤ V(0) +
∫ κ

0
(bρN(s)− 1)ds + r(t), (15)

where V is a positive definite function, κ(t) is a continuous function with κ(0) = 0, r(t) is
a bounded function and bρ is the unknown high-frequency gain. The boundedness of κ and
subsequently the boundedness of V can be established by seeking a contradiction using (15)
if the Nussbaum function satisfies (14). Commonly used Nussbaum-type functions include
κ2 cos(κ), κ2 sin(κ) and ek2

cos(κ) [28]. For consensus control, there are N unknown control
directions, and we aim at a condition

V(t) ≤ V(0) +
N

∑
i=1

∫ κi

0
(bi,ρN(si)− 1)dsi + r(t), (16)
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similar to (15), but with multiple continuous functions κi. However, it is not clear how to use
existing Nussbaum-type functions to tackle the consensus problem of multi-agent systems
whose control directions are unknown. The reason is that multiple Nussbaum-type function
terms would coexist in the same conditional inequality and κis are independent. Thus, we
expect a function which grows faster, such that one of the κis is dominant for the positive
definite condition for consensus control in (16).

Through an enormous number of experiments and calculations, the following kind
of Nussbaum gain for consensus output tracking problem is considered:

N(κ) = e
κ2
2 (κ2 + 2) sin κ. (17)

The following lemma shows that this kind of Nussbaum gain can be used to prove that
one of the κis can be dominant for the positive definite condition of the Lyapunov function.

Lemma 3. With the Nussbaum gain shown in (17), the boundedness of κi and V can be established
from (16).

Proof. Let W(κ) =
∫ κ

0 N(s)ds, then it can be obtained that

W(κ) = e
κ2
2 (κ sin(κ)− cos(κ)) + 1. (18)

From trigonometric properties, it can be shown that W(κ) takes local minima
at κ = 2nπ and local maxima at κ = (2n + 1)π. Hence, for 2nπ < κ ≤ 2(n + 1)π, we
have

−e
(2(n+1)π)2

2 + 1 ≤W(κ) ≤ e
((2n+1)π)2

2 + 1.

In order to seek a contradiction, suppose that at least one of the κis becomes
unbounded. Then, at the time interval [0, t f ), there exists an increasing sequence
{tn}, n = 0, 1, . . . , defined by

tn =

{
min1≤i≤N{t : |κi(t)| = (2n + 1)π}, if sgn(bi,ρ) = −1,
min1≤i≤N{t : |κi(t)| = 2(n + 1)π}, if sgn(bi,ρ) = 1.

(19)

Clearly, limn→∞ tn = t f . Since the sign of bi,ρ is the same, the analysis can be divided into
two parts, i.e., sgn(bi,ρ) = 1 and sgn(bi,ρ) = −1.

For the case sgn(bi,ρ) = 1, substituting (19) into (16) together with (18), the value of V
at time t = tn satisfies

V(tn) = V(0) +
N

∑
i=1

bi,ρW(κi(tn))−
N

∑
i=1

κi(tn) + r(tn),

≤ V(0) + b(−e
(2(n+1)π)2

2 + 1) + (N − 1)b̄(e
((2n+1)π)2

2 + 1) + r(tn),

(20)

where b = minN
i=1{bi,ρ} and b̄ = maxN

i=1{bi,ρ}. With

− be
(2(n+1)π)2

2 + (N − 1)b̄e
((2n+1)π)2

2

= −be
((2n+1)π)2

2

(
e
(4n+3)π2

2 − (N − 1)b̄
b

)
,

(21)

we have

V(tn) ≤ −be
((2n+1)π)2

2

(
e
(4n+3)π2

2 − (N − 1)b̄
b

)
+ r̄(tn), (22)

where r̄(tn) is bounded. As e
(4n+3)π2

2 will dominate any bounded function with sufficient
large n, we can conclude from (22) that V(tn) < 0 for sufficiently large n. This is a
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contradiction, as V(t) is a positive definite function. Hence, none of the κis becomes
unbounded, and therefore boundedness of the κis and V is established.

For the case sgn(bi,ρ) = −1, the proof can be carried out in the same way as for the case
sgn(bi,ρ) = 1, and is omitted here.

4.2. Control Law Design

Denote N(κi) = eκ2
i /2(κ2

i + 2) sin(κi), i = 1, . . . , N, which is a type of Nussbaum
function proposed in last subsection.

We consider the closed-loop system composed of (13) and the following control laws

ui = βN(κi)ūi + ξi,

κ̇i = γc(hi + ρi)(ζi + ζ2m−1
i )ūi, κi(0) = 0,

(23)

for i = 1, . . . , N, where β is a positive real design parameter, γc is illustrated in (9), and

ūi = −(hi + ρi)(ζi + ζ2m−1
i ), (24)

with ρi = ζ2
i . hi and ξi are generated by

ḣi = γh(ζ
2
i + ζ2m

i ), hi(0) = h0,

ξ̇i = −ξi + ui,
(25)

with γh, h0 being any known positive constants. Note that hi can be viewed as an adaptive
gain. Then, there exists a Lyapunov function candidate V(t), such that, along the trajectory
of the closed-loop system,

V̇ ≤
N

∑
i=1

(βb1N(κi)− 1)κ̇i + c(t), (26)

where c(t) is a bounded function.

Theorem 1. Suppose Assumptions 1–3 hold. The network-connected nonlinear systems with
subsystem dynamics (1), and the control input (23) together with the adaptive laws (24) and (25)
solve the distributed adaptive consensus output tracking control problem with unknown control
directions under directed graphs, in the sense that the trakcing error e asymptotically converges
to zero with the boundedness of all states.

Proof. Let the auxiliary internal model be

η̃i = u0 − ξi + b−1
1 ei, (27)

then from (13) and (25) it can be shown that

˙̃ηi = −η̃i + b−1
1 ei + b−1

1 gT z̃i + b−1
1 ϕ̃i,y. (28)

The closed-loop subsystem dynamics of ei can be obtained as

ėi = gT x̃i + ϕ̃i,y − (hi + ρi)(ζi + ζ2m−1
i )

+ (βb1N(κi)− 1)ūi − b1η̃i + ei.
(29)
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Furthermore, we design the Lyapunov function candidate as

Vζ =
N

∑
i=1

2ḡi

(
hi

(
ζ2

i
2

+
ζ2m

i
2m

)
+

(
ζ4

i
4

+
ζ2m+2

i
2m + 2

))

+
1

2γh

N

∑
i=1

(hi − h∗)2,

(30)

where ḡi is defined as in Lemma 1 and h∗ is a constant to be determined later. Using (13)
and (23), we have

V̇ζ =
N

∑
i=1

2ḡi(hi + ρi)(ζi + ζ2m−1
i )

N

∑
i=1

qij ėj

+
N

∑
i=1

ḡi

(
ζ2

i +
ζ2m

i
m

)
ḣi +

1
γh

N

∑
i=1

(hi − h∗)ḣi

=
N

∑
i=1

2ḡi(hi + ρi)(ζi + ζ2m−1
i )

N

∑
j=1

qij
(

βb1N(κj)− 1
)
ūj

+ 2ζT(H+ ρ)(IN + ρm−1)ḠQ
(
(IN ⊗ gT)x̃ + Ψ̃y

)
− ζT(H+ ρ)(IN + ρm−1)(ḠQ + QTḠ)(IN + ρm−1)(H+ ρ)ζ

+ γh

(
ρ +

ρm

m

)
Ḡ(ρ + ρm) + ζTH(IN + ρm−1)ζ − h∗

N

∑
i=1

(ζ2
i + ζ

2p
i )

+ 2ζT(H+ ρ)(IN + ρm−1)Ḡ(−b1Qη̃ + Qe),

(31)

where e = [eT
1 , . . . , eT

N ]
T , ζ = [ζT

1 , . . . , ζT
N ]

T , x̃ = [x̃T
1 , . . . , x̃T

N ]
T , η̃ = [η̃T

1 , . . . , η̃T
N ]

T ,
Ψ̃y = [ϕ̃T

1,y, . . . , ϕ̃T
N,y]

T ,H = diag(h1, . . . , hN) and ρ = diag(ρ1, . . . , ρN).
Note that ζ = Qe, and that from (9), (23) and Young’s inequality, we have

V̇ζ ≤
N

∑
i=1

(βb1N(κi)− 1)κ̇i −
8

12
γc‖(H+ ρ)(IN + ρm−1)ζ‖2

+
12
γc

(
‖ḠQ‖2‖x̃‖2 + ‖ḠQ‖2‖Ψ̃y‖2 + ‖b1ḠQ‖2‖η̃‖2

+ ‖Ḡ‖2‖ζ‖2
)
+ γh

(
ρ +

ρm

m

)
Ḡ(ρ + ρm)

+ ζTH(IN + ρm−1)ζ − h∗
N

∑
i=1

(ζ2
i + ζ2m

i ).

(32)

Similar to [29], we can obtain that

γh

(
ρ +

ρm

m

)
Ḡ(ρ + ρm) ≤ γc

12
‖(H+ ρ)(IN + ρm−1)ζ‖2 + ν(γc)ρ, (33)

where ν : R+ → R+ is a function that depends on unknown parameters. We used

ζTH(IN + ρm−1)ζ ≤ γc

12
‖(H+ ρ)(IN + ρm−1)ζ‖2 +

3
γc
‖ζ‖2, (34)

and from Assumption 3, it can be shown that there exists a positive real constant νy,
such that

12
γc
‖Ψ̃y‖2 ≤ γy

N

∑
i=1

(e2
i + e2m

i ) ≤ νy

N

∑
i=1

(ζ2
i + ζ2m

i ). (35)
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From (32)–(35), we have

V̇ζ ≤
N

∑
i=1

(βb1N(κi)− 1)κ̇i −
γc

2
‖(H+ ρ)(IN + ρm−1)ζ‖2

+
12
γc

(
‖ḠQ‖2‖x̃‖2 + ‖b1ḠQ‖2‖η̃‖2

)
−
(

h∗ − 3
γc

−‖ḠQ‖2νy −
12
γc
‖Ḡ‖2 − ν(γc)

) N

∑
i=1

(ζ2
i + ζ2m

i ).

(36)

To analyse the dynamics of x̃i, let

Vx =
N

∑
i=1

x̃T
i Px x̃i. (37)

Since B is a Hurwitz vector, there exists a positive definite matrix Px, such that

PxB + BT Px = −3I.

From (13), it can be obtained that

V̇x = −3
N

∑
i=1
‖x̃i‖2 + 2

N

∑
i=1

x̃T
i Px ϕ̃i

6 −2‖x̃‖2 + ‖Px‖2µϕ

N

∑
i=1

(ζ2
i + ζ2m

i ),

(38)

where µψ is a positive real constant.
Then, we consider the stability of η̃i. Let

Vη =
N

∑
i=1

η̃2
i , (39)

then from (28), it can be obtained that

V̇η = −2
N

∑
i=1

η̃2
i + 2

N

∑
i=1

η̃i(b−1
1 ei + b−1

1 gT x̃i + b−1
1 ϕ̃i,y)

6 −
N

∑
i=1

η̃2
i + 3

N

∑
i=1

(
1
b2

1
e2

i +
‖g‖2

b2
1
‖x̃i‖2 +

1
b2

1
µϕy

N

∑
i=1

(ζ2
i + ζ2m

i )

)

6 −‖η̃‖2 + 3
‖g‖2

b2
1
‖x̃‖2 + 3

(
1
b2

1
‖Q−1‖2 +

1
b2

1
µϕy

)
N

∑
i=1

(ζ2
i + ζ2m

i ),

(40)

where µϕy is a positive real constant.
Finally, let

V = Vζ + 2δ1Vη + δ2Vx, (41)

where δ1 and δ2 are positive constants, satisfying

δ1 =
12
γc
‖b1ḠQ‖2,

δ2 = 6
δ1‖g‖2

b2
1

+
12
γc
‖ḠQ‖2
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and setting

h∗ = δ3 + ‖ḠQ‖2νy +
12
γc
‖Ḡ‖2 + ν(γc) +

3
γc

+ δ2‖Px‖2µϕ + 6δ1

(
1
b2

1
‖Q−1‖2 +

1
b2

1
µϕy

)
,

where δ3 is a positive constant. Then, we can obtain that

V̇ ≤
N

∑
i=1

(βb1N(κi)− 1)κ̇i − δ3

N

∑
i=1

(ζ2
i + ζ2m

i )

− δ2‖x̃‖2 − δ1‖η̃‖2.

(42)

The proof is completed based on above analysis.

We will now show that, using the Lyapunov-like function V(t) and the inequality (26),
the stability of closed-loop multi-agent systems can be established. For convenience,
a lemma is given below.

Lemma 4. Let V(t) and κi(t), i = 1, . . . , N, be smooth functions defined on [0, t f ) with V(t) ≥ 0

and κi(0) = 0. Additionally, let N(κi) = eκ2
i /2(κ2

i + 2) sin(ki). If the following inequality

V(t) ≤ V(0) +
N

∑
i=1

∫ t

0
βb1N(κi(τ))κ̇i(τ)dτ

−
N

∑
i=1

∫ t

0
κ̇i(τ)dτ + r(t),

(43)

where r represents some suitable constant holds for any t ∈ [0, t f ), then V(t), κi(t) for i = 1, . . . , N
and ∑N

i=1
∫ t

0 βb1 N(κi(τ))κ̇i(τ)dτ are bounded on [0, t f ).

Using Lemma 4 and Theorem 1, we can conclude that, for any given initial con-
dition, all κi(t), 1 ≤ i ≤ N, in the closed-loop system are bounded on [0, t f ). More-

over, V(t), ∑N
i=1
∫ t

0 βb1N(κi(τ)) κ̇i(τ)dτ are bounded on [0, t f ). Since V(t) is a proper
positive definite function in ζi, x̃i and η̃i, i = 1, . . . , N, ζi, x̃i and η̃i, i = 1, . . . , N, are
bounded on [0, t f ). Therefore, finite-time escape cannot occur and t f = ∞, that is ζi, x̃i and
η̃i, i = 1, . . . , N, are bounded for all t ≥ 0. As a result, from (29), ėi, i = 1, . . . , N are bounded
for all t ≥ 0. Using Barbalat’s lemma, we can show that limt→∞ ei(t) = 0 for i = 1, . . . , N.

5. Simulation Example

In this section, an example is provided to verify the effectiveness of the proposed
adaptive consensus output tracking control design. The considered system is a connection
of four subsystems; each of them is described by a second-order state-space model as

ẋi,1 = xi,2 + d(yi − 0.3y3) + b1ui,

ẋi,2 = −yi
d
+ b2ui,

(44)

with yi = xi,1, where d, b1 and b2 are unknown positive real parameters. Note that, when
ui = 0, the system is a van der Pol oscillator and its trajectories are bounded. Hence, it can
be shown that Assumption 3 is satisfied with q = 3. For the reference signal, the formation
is the same as (44) but with u0 = 2. Then, we assume the interaction graph among
the subsystems is
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G =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

,

and only subsystems 1 and 3 have access to y0. Thereby the result Q is given by

Q =


2 0 −1 0
−1 1 0 0
0 0 2 −1
0 −1 0 1

.

According to Lemma 4, the distributed adaptive controller is designed according to the
format in(23)–(25) for i = 1, . . . , 4.

A simulation study with the parameters b1 = b2 = 1, γc = 1, β = 1 and γh = 5 was
carried out. The parameter d is set as

d =

{
0.2 for 0 ≤ t ≤ 30,
2 for t ≥ 30,

so that two different limit cycles are used as the trajectories of the reference signal.
The simulation results of the subsystems’ outputs and states are shown in Figures 1–4

and show the adaptive gains κi and the tracking errors. It can be seen that both the output
and the states, which are shown in Figures 1 and 2, respectively, converge to the reference
signal trajectory with the values [2, −1]T . Figure 3 shows that the adaptive gains are
bounded; the tracking errors are shown in Figure 4. The control inputs are shown in Figure 5
and a specific control input is shown in Figure 6. It is also noted that the trajectories are
different after 30 s in the simulation, due to the change in the value of d.

-

-
-

−

−

−

Figure 1. The subsystem outputs yi, i = 0, . . . , 4.
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-
-

−

−

Figure 2. The subsystem states xi,2, i = 0, . . . , 4.

Figure 3. The adaptive gains κi, i = 1, . . . , 4.

-

-
-
−

−

−

-

---
-

ζ

ζ

ζ
ζ

ζ

Figure 4. The tracking errors ζi, i = 1, . . . , 4.
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-
-
-
-

-−
−

−

−

−

Figure 5. The control inputs ui, i = 1, . . . , 4.

-
-−

−

Figure 6. The control inputs ui, i = 1, . . . , 4 when t between 0 and 2 s.

6. Conclusions

In this paper, we propose a new distributed adaptive control design to solve the con-
sensus output tracking problem for strongly connected nonlinear multi-agent systems with
unknown control directions. The asymmetry of the Laplacian matrices becomes the ob-
stacle in the control design. To address this issue, a novel integral Lyapunov function
is proposed along with adaptive internal models and Nussbaum gains. The presented
new internal models are used to generate the contribution of the desired input compen-
sation to the state variable, which are then used in the control design. These internal
models, along with adaptive laws and Nussbaum gains, account for unknown connectiv-
ity and unknown parameters in the subsystems’ dynamics. The proposed schemes only
depend on the relative output information of the subsystems in the directed graph, and
a distinct feature is that they can be designed by each agent in a fully distributed way.
Finally, the adaptive laws and control design ensure the asymptotic convergence of output
tracking errors of the subsystems to zero. Simulations were employed to demonstrate
the validity of the theoretical results.
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7. Future Work

In this paper, consensus output tracking for a class of nonlinear systems under di-
rected graphs was studied. The reference signal with constant input is much more con-
servative. How to design a distributed adaptive consensus controller if the reference is
a periodic signal with unknown parameters is more challenging as, because of the asym-
metry of Laplacian matrices, the construction of the Lyapunov function becomes more
difficult. The σ-modification method might work. Besides, the adaptive event-triggered
control based on the frequency of data transmission proposed in [30–32] might be a way
to achieve the disturbance rejection theoretically. Further analysis to tackle these problems
is a topic of future research.

In the real world, some phenomena might be well described by discontinuous dynam-
ics; for example, in the physical field, the characteristics of an ideal diode possessing a very
high slope in the conducive region can be precisely modelled by a discontinuous system.
It is necessary for us to investigate multi-agent systems with discontinuous nonlinear
dynamics. Recently, the consensus of fractional multi-agent systems with discontinuous
inherent nonlinear dynamics was discussed in [33,34], with a new convex function and
the inherent nonlinear dynamics satisfying the local nonlinear Hölder growth property
in a neighbourhood of continuous points.

Time delays widely exist in practical multi-agent systems due to the time taken
for transmission of signals, transport of material, etc. The presence of time delays, if not
considered in the controller design, may seriously degrade the performance of the con-
trolled systems, may even cause the loss of stability. One basic idea for tackling an input
delay is to predict the evolution of a state variable for the delay period and then use the pre-
dicted state for control. The state prediction is based on the explicit solution of the state
equation, which consist of the zero input and the zero state solutions. However, the zero
state solution involves the integral of the past control input and causes difficulty in control
implementation.

An alternative method based on the prediction is to ignore the troublesome zero state
solution, and use the zero input solution as the prediction, which is referred to as the
truncated prediction [35]. By transforming the Laplacian matrix into the real Jordan form,
sufficient conditions are needed such that the proposed control algorithms can achieve
the consensus. Therefore, by using the truncated prediction feedback for consensus output
regulation of nonlinear multi-agent systems with input delay draws our attention.

Author Contributions: J.C.; methodology, software, validation, formal analysis, investigation,
writing—original draft preparation. Z.D.; writing—review and editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.; Duan, Z. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach; CRC Press: Boca Raton, FL, USA, 2017.
2. Wang, Y.; Liu, Y.; Li, X.; Liang, Y. Distributed consensus tracking control based on state and disturbance observations for mixed-

order multi-agent mechanical systems. J. Frankl. Inst. 2023, 360, 943–963. [CrossRef]
3. Li, Z.; Ren, W.; Liu, X.; Fu, M. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using

distributed adaptive protocols. IEEE Trans. Autom. Control 2012, 58, 1786–1791. [CrossRef]
4. Li, Z.; Ren, W.; Liu, X.; Xie, L. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica

2013, 49, 1986–1995. [CrossRef]
5. Kaloust, J.; Qu, Z. Continuous robust control design for nonlinear uncertain systems without a priori knowledge of control

direction. IEEE Trans. Autom. Control 1995, 40, 276–282. [CrossRef]
6. Liu, L.; Huang, J. Global robust output regulation of lower triangular systems with unknown control direction. Automatica 2008,

44, 1278–1284. [CrossRef]

http://doi.org/10.1016/j.jfranklin.2022.12.007
http://dx.doi.org/10.1109/TAC.2012.2235715
http://dx.doi.org/10.1016/j.automatica.2013.03.015
http://dx.doi.org/10.1109/9.341792
http://dx.doi.org/10.1016/j.automatica.2007.09.014


Electronics 2023, 12, 1830 16 of 17

7. Guo, M.; Xu, D.; Liu, L. A result on output regulation of lower triangular systems with unknown high-frequency gain sign. Int. J.
Robust Nonlinear Control 2017, 27, 4903–4918. [CrossRef]

8. Peng, J.; Li, C.; Ye, X. Cooperative control of high-order nonlinear systems with unknown control directions. Syst. Control Lett.
2018, 113, 101–108. [CrossRef]

9. Zhang, F.; Chen, Y.Y.; Zhang, Y. Finite-time event-triggered containment control of multiple Euler–Lagrange systems with
unknown control coefficients. J. Frankl. Inst. 2023, 360, 777–791. [CrossRef]

10. Liu, Z.; Huang, H.; Park, J.H.; Huang, J.; Wang, X.; Lv, M. Adaptive Fuzzy Control for Unknown Nonlinear Multi-Agent Systems
with Switching Directed Communication Topologies. IEEE Trans. Fuzzy Syst. 2023. [CrossRef]

11. Wang, Q.; Sun, C. Adaptive consensus of multiagent systems with unknown high-frequency gain signs under directed graphs.
IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 2181–2186. [CrossRef]

12. Wang, Q.; Psillakis, H.E.; Sun, C. Cooperative control of multiple agents with unknown high-frequency gain signs under
unbalanced and switching topologies. IEEE Trans. Autom. Control 2018, 64, 2495–2501. [CrossRef]

13. Isidori, A.; Marconi, L.; Casadei, G. Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear
regulation theory. IEEE Trans. Autom. Control 2014, 59, 2680–2691. [CrossRef]

14. Su, Y.; Huang, J. Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown
leader. Syst. Control Lett. 2013, 62, 461–467. [CrossRef]

15. Li, Z.; Chen, M.Z.; Ding, Z. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over
directed graphs. Automatica 2016, 68, 179–183. [CrossRef]

16. Ding, Z. Distributed adaptive consensus output regulation of network-connected heterogeneous unknown linear systems
on directed graphs. IEEE Trans. Autom. Control 2016, 62, 4683–4690. [CrossRef]

17. Li, G.; Ren, C.E.; Ding, Z.; Shi, Z. Adaptive NN leader-following consensus control of second-order nonlinear multi-agent systems
with unknown control gains. In Proceedings of the 2018 International Conference on Security, Pattern Analysis, and Cybernetics
(SPAC), Jinan, China, 14–17 December 2018; pp. 103–108.

18. Wang, G.; Wang, C.; Ding, Z.; Ji, Y. Distributed consensus of nonlinear multi-agent systems with mismatched uncertainties and
unknown high-frequency gains. IEEE Trans. Circuits Syst. Express Briefs 2020, 68, 938–942. [CrossRef]

19. Su, Y. Cooperative global output regulation of second-order nonlinear multi-agent systems with unknown control direction.
IEEE Trans. Autom. Control 2015, 60, 3275–3280. [CrossRef]

20. Ding, Z. Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica
2015, 51, 348–355. [CrossRef]

21. Chen, W.; Li, X.; Ren, W.; Wen, C. Adaptive consensus of multi-agent systems with unknown identical control directions based
on a novel Nussbaum-type function. IEEE Trans. Autom. Control 2013, 59, 1887–1892. [CrossRef]

22. Preitl, Z.; Precup, R.E.; Tar, J.K.; Takács, M. Use of multi-parametric quadratic programming in fuzzy control systems.
Acta Polytech. Hung. 2006, 3, 29–43.

23. Rigatos, G.; Siano, P.; Selisteanu, D.; Precup, R. Nonlinear optimal control of oxygen and carbon dioxide levels in blood. Intell.
Ind. Syst. 2017, 3, 61–75. [CrossRef]

24. Ucgun, H.; Okten, I.; Yuzgec, U.; Kesler, M. Test platform and graphical user interface design for vertical take-off and landing
drones. Sci. Technol. 2022, 25, 350–367.

25. Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive and Robust; Prentice Hall International (UK) Ltd.: Hertfordshire,
UK, 1996.

26. Qu, Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 3.

27. Li, Z.; Wen, G.; Duan, Z.; Ren, W. Designing fully distributed consensus protocols for linear multi-agent systems with directed
graphs. IEEE Trans. Autom. Control 2014, 60, 1152–1157. [CrossRef]

28. Fan, D.; Zhang, X.; Liu, S.; Chen, X. Distributed control for output-constrained nonlinear multi-agent systems with completely
unknown non-identical control directions. J. Frankl. Inst. 2021, 358, 8270–8287. [CrossRef]

29. Ding, Z.; Li, Z. Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs. Automatica
2016, 72, 46–52. [CrossRef]

30. Li, Z.; Wu, Z.; Li, Z.; Ding, Z. Distributed optimal coordination for heterogeneous linear multiagent systems with event-triggered
mechanisms. IEEE Trans. Autom. Control 2020, 65, 1763–1770. [CrossRef]

31. Cao, S.; Guo, L.; Ding, Z. Event-triggered anti-disturbance attitude control for rigid spacecrafts with multiple disturbances. Int. J.
Robust Nonlinear Control 2021, 31, 344–357. [CrossRef]

32. Li, X.; Wu, H.; Cao, J. Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic
event-triggered control strategy. Math. Comput. Simul. 2023, 203, 647–668. [CrossRef]

33. Zhang, Y.; Wu, H.; Cao, J. Group consensus in finite time for fractional multiagent systems with discontinuous inherent dynamics
subject to Hölder growth. IEEE Trans. Cybern. 2020, 52, 4161–4172. [CrossRef]

http://dx.doi.org/10.1002/rnc.3835
http://dx.doi.org/10.1016/j.sysconle.2018.01.014
http://dx.doi.org/10.1016/j.jfranklin.2022.11.043
http://dx.doi.org/10.1109/TFUZZ.2023.3235388
http://dx.doi.org/10.1109/TSMC.2018.2810089
http://dx.doi.org/10.1109/TAC.2018.2867161
http://dx.doi.org/10.1109/TAC.2014.2326213
http://dx.doi.org/10.1016/j.sysconle.2013.02.013
http://dx.doi.org/10.1016/j.automatica.2016.01.076
http://dx.doi.org/10.1109/TAC.2016.2628643
http://dx.doi.org/10.1109/TCSII.2020.3016977
http://dx.doi.org/10.1109/TAC.2015.2426273
http://dx.doi.org/10.1016/j.automatica.2014.10.079
http://dx.doi.org/10.1109/TAC.2013.2293452
http://dx.doi.org/10.1007/s40903-016-0060-y
http://dx.doi.org/10.1109/TAC.2014.2350391
http://dx.doi.org/10.1016/j.jfranklin.2021.08.021
http://dx.doi.org/10.1016/j.automatica.2016.05.014
http://dx.doi.org/10.1109/TAC.2019.2937500
http://dx.doi.org/10.1002/rnc.5276
http://dx.doi.org/10.1016/j.matcom.2022.07.010
http://dx.doi.org/10.1109/TCYB.2020.3023704


Electronics 2023, 12, 1830 17 of 17

34. Zhang, Z.; Wu, H. Cluster synchronization in finite/fixed time for semi-Markovian switching TS fuzzy complex dynamical
networks with discontinuous dynamic nodes. Aims Math. 2022, 7, 11942–11971. [CrossRef]

35. Chu, H.; Yue, D.; Dou, C.; Chu, L. Consensus of multiagent systems with time-varying input delay and relative state saturation
constraints. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6938–6944. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3934/math.2022666
http://dx.doi.org/10.1109/TSMC.2019.2961395

	Introduction
	Problem Statement
	Preliminaries
	Distributed Consensus Control Algorithm Design
	A Novel Nussbaum-Type Function
	Control Law Design

	Simulation Example
	Conclusions
	Future Work
	References

