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Abstract: Penetration testing is an effective method of making computers secure. When conducting
penetration testing, it is necessary to fully understand the various elements in the cyberspace.
Prediction of future cyberspace state through perception and understanding of cyberspace can assist
defenders in decision-making and action execution. Accurate cyberspace detection information is
the key to ensuring successful penetration testing. However, cyberspace situation awareness still
faces the following challenges. Due to the limited detection capability, the information obtained
from cyberspace detection intelligence is incomplete. There are some errors in the cyberspace
detection intelligence, which may mislead the penetration testing workers. The knowledge graph
can store and manage the cybersecurity data. In order to ensure the integrity and accuracy of
cyberspace information, we design a knowledge graph completion model called CSNT to complete
cybersecurity data. CSNT uses the BiLSTM to capture the interaction information between entities
and relationships. It models the relationship between entities by combining the neural network and
tensor decomposition. The Pearson Mix Net is designed to control the generation of joint vectors. We
also design a novel self-distillation strategy to reduce catastrophic forgetting during model training.
After learning the relationship pattern between entities in the cyberspace detection intelligence, the
model can be used to mine the knowledge not found in the cybersecurity detection intelligence and
correct the erroneous records. Experiments show that our method has certain advantages for the
knowledge graph completion.

Keywords: penetration testing; cyberspace situation awareness; cybersecurity; knowledge graph
completion

1. Introduction

With the continuous popularity of computer networks, people have become extremely
dependent on them in their work and life. However, the cybersecurity situation is not
optimistic. Cybersecurity accidents occur frequently all over the world and have caused
enormous losses to individuals, enterprises and governments. Currently, the means of
hacker attack are increasing, which poses a great challenge for maintaining cybersecu-
rity. Penetration testing can evaluate computer system security by simulating a malicious
hacker’s attack, which enables enterprises and others to patch computer systems in a
timely manner. In the process of penetration testing, more valuable information is needed,
mainly divided into the following types. Firstly, there is target cyberspace state informa-
tion, including IP address, open ports, services, domain name system, vulnerabilities, etc.
The above elements can better describe the current cyberspace state, so that penetration
testing workers can fully understand the current environment. Secondly, vulnerability
utilization tool information can enable penetration testing workers to grasp the informa-
tion of tool modules that can be used directly, such as Exploit and Auxiliary modules
which are currently available. Finally, cybersecurity knowledge information is also very
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important. Because of the fast update of cybersecurity knowledge, penetration testing
workers may not be able to grasp the latest cybersecurity knowledge in time. However, as
people’s experience in dealing with cybersecurity challenges accumulates, many previous
experiences can provide guidance for penetration testing workers, such as CWE (common
weakness enumeration) which stores existing knowledge of software and hardware defects.
CAPEC (common attack pattern enumerations and classifications) stores common hacker
attack patterns.

Cyberspace situation awareness [1] is proposed to perceive and understand the el-
ements in the current network environment. It can support the development of defense
strategies and provide effective information support for penetration testing. In order to
make full use of all kinds of information in cyberspace to resolve cybersecurity risks, the
cybersecurity knowledge graph has received more attention. Since the concept of a knowl-
edge graph was proposed by Google, many researchers have studied it in depth. The
knowledge graph has been widely used in medical [2], financial [3], education [4] and
other fields [5–7]. It has a profound impact. Applying a knowledge graph to the field of
cybersecurity can enable one to effectively manage the data in the cyberspace and discover
knowledge from it. This will better realize situation awareness in the cyberspace and help
people achieve cognitive intelligence in the field of cybersecurity more quickly.

Cyberspace detection intelligence is of great importance to defenders, but the current
network environment is complex and changeable, the amount of cybersecurity data is large
and the value density is low, and people have limited ability to detect the network environ-
ment. The information obtained from cyberspace detection intelligence is incomplete and
may have errors, which makes it difficult to achieve cyberspace situation awareness and
make defense strategies.

To solve these problems, we propose a knowledge graph completion method. This
method can mine implicit relationships from existing cybersecurity data and it can be
better used to complete and correct cybersecurity intelligence information, making the
intelligence information more accurate and complete.

In conclusion, our contributions are mainly as follows:

• We design a knowledge graph completion model called CSNT. It uses recurrent neural
network to enhance interaction. It models entities and relationships in cyberspace
based on neural networks and tensor decomposition. At the same time, it uses the
Pearson correlation coefficient between them to design Pearson Mix Net to obtain
joint vectors.

• We design the Progressive-Replay-SA self-distillation strategy for model training. This
strategy adopts the methods of sample replay and progressive learning to solve the
catastrophic forgetting problem and prevent model degradation. At the same time, the
simulated annealing algorithm is used to adaptively adjust the distillation temperature
to gradually increase the difficulty of the course learning.

• We use the real cybersecurity data to build the cybersecurity knowledge graph to
provide support for the penetration testing. We carry out the completion experiment
based on the cybersecurity knowledge graph. The experiment shows that our model
has a good effect on the cybersecurity knowledge graph completion and can be better
used to assist the penetration testing.

The rest of this article is as follows. Section 2 introduces the related research work on
cybersecurity data and knowledge graph completion. Section 3 describes in detail how
our method is used in the cybersecurity knowledge graph completion. In Section 4, we
describe the cybersecurity knowledge graph that we have built. We have completed the
experiment and compared it with other popular knowledge graph completion methods.
Finally, the conclusions are given in Section 5.
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2. Related Work
2.1. Research on Cybersecurity Data

In order to formulate a reasonable cybersecurity defense strategy, it is necessary to
have a full understanding of the cyberspace environment. Cyberspace detection technology
can effectively understand various elements such as asset information in cyberspace and
help people perceive the current cyberspace situation.

Cyberspace mapping effectively supports cyberspace situational awareness. It uses
digital communication, cybersecurity and other technologies to digitally map the current
network environment and provides corresponding detection intelligence for defenders.
In order to fully understand the cyberspace environment, people have carried out in-
depth exploration and research on the cyberspace detection technology. Unlike traditional
geographic information detection, the detection of cyberspace has both physical and virtual
resources. At the same time, the cyberspace environment has more changes and higher
uncertainty. At present, there are many tools for cyberspace detection, such as Nmap,
Zenmap, ZMap, IPSonar, SolarWinds, etc. In the process of penetration testing, workers
often use the above tools to collect information in cyberspace and prepare for the next
step. The full name of Nmap is Network Mapper. It can detect whether the host in the
network is online and obtain the open port and services of the host. Zoomeye is an efficient
cyberspace search engine, which can detect and identify devices and websites in cyberspace
and effectively help users achieve cyberspace mapping. By obtaining basic information
such as topological connections in cyberspace, penetration testing workers can be helped
to realize a good perception of the current cyberspace situation.

In addition to various elements in the current cyberspace, basic cybersecurity knowl-
edge is also indispensable for penetration testing. Especially with the increasing trend of
intelligence and automation, mastering certain cybersecurity knowledge not only helps
penetration testing workers to formulate good defense strategies, but also is the basis for
intelligent penetration testing. In the process of dealing with the challenges of cybersecurity,
people have accumulated a lot of valuable experience and knowledge. At present, the
well known cybersecurity knowledge databases include CVE (Common Vulnerability and
Exposure), CWE (Common Weakness Enumeration) and CAPEC (Common Attachment
Pattern Enumeration and Classifications), maintained by MITRE. CVE covers a lot of cyber-
security vulnerability information, CWE includes a lot of software and hardware defect
information, CAPEC lists common hacker attack methods, etc. Combining the above cyber-
security knowledge and the current cyberspace situation, people can effectively formulate
corresponding defense strategies. For example, people can know what vulnerabilities affect
current assets. Moreover, people can know how an attack might occur when a system has
a defect.

2.2. Research on Knowledge Graph Completion

A knowledge graph is a semantic network connecting things in the real world. How-
ever, most of the knowledge graphs are incomplete and even some information is wrong.
In order to improve the quality of the knowledge graph, the knowledge graph completion
algorithm can be used to complete and correct the knowledge graph. The knowledge graph
completion algorithm can be divided into algorithms based on distance model, semantic
matching model and neural network model.

Most distance-based models map entities and relationships in the knowledge graph to
low-dimensional vectors and then calculate the relationship between vectors. TransE [8]
is a classical algorithm in the distance model. Through the translation between vectors,
the relationship vector becomes the transfer vector between the head entity vector and
the tail entity vector. Its corresponding scoring function is h + r = t, where h is the head
entity, r is the relationship and t is the tail entity. This method has low computational
complexity and fewer parameters. It can give good consideration to efficiency and results.
In order to deal with more complex relationship types, TransH [9] projects vectors into
the hyperplane to realize the transformation between entities. TransR [10] maps entities
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to different relational semantic spaces through matrices. TransD [11] uses the dynamic
mapping matrix to complete the knowledge graph and further reduces the amount of
calculation. RotatE [12] realizes the transformation from head entity to tail entity through
rotation and also uses self-adversarial training to improve the experimental performance.
Many knowledge graph completion methods also extend the representation of entities and
relationships to other spaces, such as quaternion space [13], oction space [14], hyperbolic
space [15], etc.

The distance model still has great shortcomings in capturing the potential semantic
relationship between entities, so many researchers have designed knowledge graph com-
pletion methods based on the semantic matching model. Semantic matching models mainly
rely on tensor decomposition to capture the internal interaction of triples and realize the
mining of potential semantic relationships. RESCAL [16] uses the scoring function hT Mrt
to evaluate whether the triple is true. The matrix Mr represents the relationship, vector h
represents the head entity and t represents the tail entity. DistMult [17] limits the relational
matrix to diagonal matrix on the basis of RESCAL, which simplifies the calculation and
reduces the operation cost. ComplEx [18] extends DistMult to the complex space and
can model more abundant relationship types. TuckER [19] uses Tucker decomposition
to achieve knowledge graph completion, which can better mine the potential semantic
relationships in the knowledge graph.

Neural network has developed rapidly in recent years and has made great achieve-
ments in image processing and natural language processing. Many researchers use neural
networks to complete the knowledge graph. ConvE [20] uses the convolution neural net-
work to extract the entity and relationship features. It takes the feature matrix obtained
as the input of the convolution layer and generates the evaluation score for each triple
by the inner product of the output and all object entity vectors. InteractE [21] performs
feature replacement, reshape operation and circular convolution on the basis of convolution
operation, which promotes the interactive integration of entities and relationships, but also
consumes a huge amount of computation. ParamE [22] regards head entity embeddings,
relation embeddings and tail entity embeddings as the input, parameters and output of a
neural network, respectively. This makes ParamE much more expressive. This method has
achieved good experimental results.

In addition to innovation in the scoring function, many model training methods have
also been used to improve performance. Knowledge distillation is considered as an effective
way to improve learning efficiency and it has been widely used in the field of deep learning.
Hinton et al. [23] proposed the teacher–student structure and transferred the knowledge
trained by the teacher network to the student network. It improves the effectiveness of
neural network training. In order to reduce the amount of additional network computation,
the self-distillation strategy has received more attention. Kyungyul Kim et al. [24] proposed
a simple and effective method of knowledge distillation, which transfers the knowledge
from the previous round to the current round, effectively improving the generalization
ability. Linfeng Zhang et al. [25] performed knowledge distillation based on the neural
network structure and they used the deep part of the network as a teacher to perform
distillation learning on the shallow part of this network. Yiqing Shen et al. [26] proposed
the DLB self-distillation strategy, this method provides soft targets to realize knowledge
distillation in the next round. It extracts smooth labels from the previous round, which
consumes less computation.
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3. Our Method
3.1. Problem Description

In order to enhance the capability of situation awareness in cyberspace, people need
to detect the current network environment. Due to the limited detection technology of
the existing tools and people’s cognitive ability, the information obtained by the detection
is often incomplete or even wrong. We introduce knowledge graph technology into the
cybersecurity field to construct the cybersecurity knowledge graph based on cybersecurity
data. The basic process of knowledge graph completion is shown in Figure 1.

Figure 1. The basic process of cybersecurity knowledge graph completion.

For a knowledge graph G = (H, R), where H is the set of entities and R is the set of
relations. The acquired intelligence knowledge is stored in the knowledge graph in the
form of triples (h, r, t), where h and t belong to H and r belongs to R. When a triple is
incomplete, such as (?, r, t) or (h, r, ?), we expect it to be completed using knowledge graph
completion algorithms. When there is an error in the knowledge graph, the knowledge
graph completion algorithm detects the conflict in the stored knowledge by learning the
existing relational schema to achieve the purpose of error correction. Therefore, we design
CSNT, a Cyber Security knowledge graph completion model based on Neural network and
Tensor decomposition.

3.2. Problem Modeling
3.2.1. Knowledge Graph Completion Model

For triples in the knowledge graph, we expect an accurate embedded representation
of entities and relationships. The head entity vectors generate the output vectors through
the transformation of relations. Then it generates the evaluation score for each triple by the
inner product of the output vectors and all object entity vectors.

Most existing studies usually represent head entities and relations independently
before relation transformation. However, we find that head entities can better interact
with information in relations for relation transformation. Some previous works, such
as InteractE [21], consumed too many computing resources to capture the interaction
information between entities and relations. However, we found that simple recurrent
neural networks can effectively facilitate the information interaction. LSTM (long short-
term memory) [27] effectively controls the flow of information through the gate structure,
which has certain advantages for modeling context information. BiLSTM (Bi-directional
Long Short-Term Memory) enhances context information interaction in two directions
based on LSTM. Therefore, we first use BiLSTM to carry out interactions between entities
and relationships and capture more interaction information for subsequent modeling. The
basic process of information interaction is shown in Figure 2.
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Figure 2. BiLSTM is used to realize the information interaction between entity and relation.

The relationships in the cybersecurity knowledge graph are complex. In order to
further mine the implicit semantic relationships in the knowledge graph, we use tensor
decomposition and neural network to jointly mine the relationships. The interactive head
entity and relation encoding are combined into a 3D tensor. By first decomposing the 3D
tensor, it is expected that the trained representation of entities and relations can lead to
higher scores for true triples. Inspired by DistMult, we use the form of multiplying head
entities with relational matrices to generate vectors.

In addition to tensor decomposition of the head entity and relationship after interac-
tion, we also input it into the neural network model. With the strong self-learning and
inductive ability of the neural network model, it can better approximate the complex non-
linear relationship. Figure 3 shows the process of generating the vector representation by
the neural network.

Figure 3. The feature vector is obtained via convolutional layers and linear layers.

In order to promote effective feature fusion, inspired by multi-agent reinforcement
learning, QMIX [28] was successfully applied to the multi-agent reinforcement learning
algorithm, which effectively solves the reliability allocation problem between agents. In a
similar way, we introduce the mix net into the process of entity and relationship feature
fusion. We combine and stitch the feature vectors of each module and map the mix net
to obtain the embedded representation of the end-approaching entity. To further explore
the deeper meaning of the relationship, we designed Pearson Mix Net to promote the
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information fusion between the two modules. First, Pearson correlation coefficients of the
above vectors are calculated. The Pearson correlation coefficients are calculated as follows.

corr(P, Q) =
Cov(P, Q)

σPσQ
=

∑n
i=1(Pi − Pmean)(Qi −Qmean)√

∑n
i=1(Pi − Pmean)2

√
∑n

i=1(Qi −Qmean)2
, (1)

where P and Q represent the output vectors of the two modules, Cov(P, Q) is the covariance
between P and Q, σP and σQ are the variances. Pmean and Qmean are two mean vectors.After
the Pearson correlation coefficient is obtained, we input Pearson correlation coefficients
into a parameter generator, which is constantly optimized during training. The parameter
generator is a shallow convolutional neural network. The Pearson correlation coefficient
is used to control the parameter weights of the Pearson Mix Net. The joint vector can
better fuse the characteristics of the two modules, which further promotes the information
interaction between the neural network and the tensor decomposition. The basic structure
of Pearson Mix Net is shown in Figure 4.

Figure 4. Simple illustration of Pearson Mix Net. The Pearson correlation coefficient is used to control
the parameter weights of the Pearson Mix Net.

Finally, the Pearson Mix Net will output the final embedded vector. The inner product
of this vector and all object entity vectors is used to determine whether the triple is true
or not.

3.2.2. Progressive-Replay-SA Self-Distillation

Due to the huge amount of cybersecurity data and the different frequency of each
entity, the catastrophic forgetting problem is more likely to occur. To solve this problem,
we adopt a knowledge distillation strategy in the model training process. Most of the
current knowledge distillation strategies use the teacher–student structure; however, some
knowledge distillation strategies need to consume large amounts of computation. There-
fore, we use the self-distillation strategy, which does not require additional networks to
participate in the training. It can use the model of the previous round as the teacher of the
current round.
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In the training process of the knowledge graph completion model, a large number
of samples need to be accepted, which is prone to undergo the catastrophic forgetting
problem. To avoid the catastrophic forgetting problem, we design a replay self-distillation
strategy. We use the updated model to review the samples of the previous batch again and
transfer the empirical knowledge obtained from the previous round of prediction.

We calculate the loss lt−1 of the new model for the last batch of samples and the loss
lt of the new model for the current batch of samples. At the same time, we calculate the
Kullback–Leibler divergence (KL divergence) lkd of the predicted value last_vt−1 of the
last round and the predicted value now_vt−1 of the new model for the last round of batch
samples. This replay method can alleviate the forgetting problem and effectively realize
the transfer of knowledge. It is calculated as follows.{

losst = lt + lt−1 + β · lkd
lkd = 1

n ∑n
i=1 τ2KL(σ(now_vt−1/τ), σ(last_vt−1/τ)),

(2)

where τ is the distillation temperature, σ(·) is the softmax function. KL divergence is a
good way to describe the difference between two distributions. Consider two probability
distributions M and N and their corresponding probability density functions m(x) and n(x),
respectively. The computation from n(x) to m(x) can be expressed in the following form.

KL(M||N) = ∑ m(x) log
m(x)
n(x)

= ∑ m(x) log m(x)−∑ m(x) log n(x), (3)

where log(·) is the logarithm. If the KL divergence is larger, the difference between the two
is larger. When the KL divergence is smaller, it means that the difference between the two
is smaller. This mathematical form can help us measure the difference between students
and teachers very well. The process of Progressive-Replay-SA self-distillation is shown in
Figure 5.

Figure 5. Theoverall architecture of Progressive−Replay−SA self−distillation.
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At the same time, with the increase in training rounds, the accuracy and robustness
of the model are continuously enhanced and the reliability is also continuously enhanced.
In order to effectively prevent the occurrence of model degradation, we also adopt a
progressive strategy for distillation to ensure the stationarity of the training process. The
basic calculation of the progressive policy is as follows.

loss = (1− t
γ
)× losst +

t
γ
× losst−1, (4)

where t is the current number of iterations, γ is a large constant, losst is the total loss value
of the current round and losst−1 is the total loss value of the previous round.

In the process of knowledge distillation, distillation temperature is an important factor
that affects the distillation effect. In most of the existing distillation strategies, the distillation
temperature is usually set to a fixed value, which seriously limits the performance of
distillation. A lower temperature τ will sharpen the distribution and widen the difference
between the two distributions. It will concentrate the distillation on the largest logits
predicted by the teacher. While a higher temperature τ will flatten the distribution and
close the gap between the two models [29]. In a realistic teaching scenario, students should
learn the course from easy to difficult and temperature τ will affect the difficulty level of
the loss minimization process. We expect the course to be increasingly difficult to learn.
The problem can be viewed as consisting of an inner maximization problem and an outer
minimization problem. The purpose of the internal maximization problem is to gradually
increase the difficulty of the course learning. On the other hand, the goal of the external
minimization problem is to find the model parameters that minimize the internal loss. The
increase in course difficulty is reflected in the process of self-distillation as the loss value of
the current iteration round is greater than the loss value of the previous round. Globally,
the model needs to minimize the overall loss. The simulated annealing algorithm is used
to realize the adaptive adjustment of distillation temperature to achieve the above purpose.

The simulated annealing algorithm is an effective intelligent optimization algorithm
that is widely used in engineering technology and management science. In the process of
adjusting the distillation temperature, the initial distillation temperature and the tempera-
ture growth direction are initialized. If the difficulty of the course in the current round is
greater than that of the last round, the distillation temperature and the temperature growth
direction are kept unchanged. If the difficulty of the course in the current round is less
than the difficulty of the course in the previous round, that is, losst < losst−1, the direction
of temperature growth is changed and the distillation temperature is adjusted in the new
temperature growth direction. At the same time, in order to prevent falling into the local
optimal solution, there is a certain probability that the temperature growth direction and
the distillation temperature are still unchanged and the probability value is determined by
the loss difference of the two rounds.

The basic flow of distillation temperature optimization is shown in Algorithm 1.
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Algorithm 1: Adaptive Distillation Temperature Optimization Algorithm
Input: The initialized temperature τ

The temperature growth directions ω
The big fixed constant T
The small fixed constant η, 0 ≤ η ≤ 1
The loss of previous training step losst−1
The loss of current training steps losst

Output: The temperature τ
1 if losst−1 > losst then

2 σ = 1− e
−|losst−losst−1 |

T

3 θα ← Generate a random number from 0 to 1
4 if θα > σ then
5 if ω == ” + ” then
6 ω = ”− ”
7 τ=τ − η · τ
8 else
9 ω = ” + ”

10 τ=τ + η · τ
11 end
12 else
13 Keep τ and ω unchanged.
14 end
15 else
16 Keep τ and ω unchanged.
17 end
18 return τ

4. Experiment
4.1. Cybersecurity Knowledge Graph

In order to make penetration testing work smoothly, it is necessary to construct an
effective cybersecurity knowledge graph to provide information support. We mainly
construct the cybersecurity knowledge graph from three aspects: cyberspace situation
intelligence, available tools and basic cybersecurity knowledge.

By probing cyberspace, various elements in cyberspace can be obtained effectively.
Information such as IP address, DNS, subdomain name and geographical location in
cyberspace is of great significance for penetration testing work and we take the above
information as part of cyberspace situation intelligence.

In addition, the use of vulnerability exploitation tools usually requires workers to
have some experience. In order to make it more convenient for penetration testing workers
to use vulnerability exploitation tools based on the current cyberspace environment, we
also include some available tool information as part of the knowledge graph. Metasploit is
a well known vulnerability exploitation tool, which contains important modules such as
Exploit, Auxiliary and Post. We also integrate it in the knowledge graph as a penetration
testing tool part.

As we all know, penetration testing is a job that requires workers have a high skill
level, which requires workers to have more penetration testing experience and knowledge.
However, the rapid update of cybersecurity technology has brought great challenges to
penetration testing workers. At present, the trend of intelligence is increasing. In order
to better save human resources, intelligent penetration testing has become the trend of
future development. Therefore, it is particularly important to save a large amount of
valuable penetration testing experience and knowledge to use, which will make up for the
lack of experience of penetration testing workers and provide the possibility of intelligent
penetration testing. We choose to incorporate part of the empirical knowledge in CVE,
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CWE and CAPEC into the cybersecurity knowledge graph as the cybersecurity empirical
knowledge part.

The number of entities in the cybersecurity knowledge graph is 103,993, the number of
relations is 30 and it is divided into training set, validation set and test set. The information
for the training set, validation set and test set is shown in Table 1.

Table 1. The quantity statistics of cybersecurity knowledge graph. #E and #R represent the number
of entities and relations, respectively. #TR, #VA and #TE represent the size of the train set, validation
set and test set, respectively.

#E #R #TR #VA #TE

103,993 30 285,295 15,850 15,866

The cybersecurity knowledge graph we constructed contains ontology types such as
IP address, service and geographical location and the relationship between each ontology
is shown in Table 2.

Table 2. The attribute description and quantity statistics of each relationship in the cybersecurity
knowledge graph.

Relationships Head→Tail

Address DNS→IP, subdomain→IP
IsAddressOf IP→DNS, IP→subdomain

BePlatformOf OS→EXP
AffectPlatform EXP→OS

BeAuxOf AUX→EXP
BeExpOf EXP→CVE
BePostOf Post→EXP
Connect subdomain→subdomain
Control DNS→subdomain

ControlledBy subdomain→DNS
Exist CVE→IP, CVE→subdomain

HasAux EXP→AUX
HasCve IP→CVE, subdomain→CVE
HasExp CVE→EXP
HasPost EXP→Post
LocArea IP→Region

LocContinent IP→Continent
LocatedIn Region→Continent
OpenPort IP→Port
OpenedBy Port→IP
RelatedTo Port→Service, Service→Port
InstanceOf CVE→CWE

ObservedExample CWE→CVE
PeerOf CWE→CWE, CAPEC→CAPEC

AttackTo CAPEC→CWE
TargetOf CWE→CAPEC

CanFollow CWE→CWE, CAPEC→CAPEC
CanPrecede CWE→CWE, CAPEC→CAPEC

Childof CWE→CWE, CAPEC→CAPEC
ParentOf CWE→CWE, CAPEC→CAPEC

4.2. Experimental Evaluation Metrics and Settings

In order to evaluate the performance of the knowledge graph completion model, we
use MRR (Mean Reciprocal Rank) and Hits@K as evaluation metrics. MRR is the mean
reciprocal ranking of correct entities. Hits@K is the proportion of correct entities ranked
in the top K. For Hits@K, we use Hits@1/3/10 to evaluate the performance of the model.
Higher MRR and Hits@1/3/10 indicate better performance.
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Since the cybersecurity information we collect is accurate and complete, we expect
to simulate the phenomenon of lack of cybersecurity data. We remove the head entity or
tail entity of the triples in the test set to form the knowledge graph completion task (<?,
relation, tail> and <head, relation,?>). The head entity or tail entity that we will remove
can be used as a standard answer to test the experimental performance of the cybersecurity
knowledge graph completion model.

4.3. Experimental Results and Analysis

In order to illustrate the performance superiority of our designed knowledge graph
completion model, this model is used to conduct experimental comparison with the existing
advanced models, including TransE, DistMult, TuckER and ConvE. TransE is an excellent
distance-based model with good interpretability. DistMult is a classical semantic matching
model, which has a good effect in mining the latent semantic relations in knowledge
graph. TuckER mines entities and relations based on the theory of tucker decomposition.
ConvE uses convolutional neural networks to encode head entities and relations to achieve
knowledge graph completion.

We conduct knowledge graph completion experiments on each model on the cyberse-
curity knowledge graph we constructed. We record the best results within 100 iteration
rounds for each model. The experimental results are shown in Table 3.

Table 3. The experimental results on cybersecurity knowledge graph. The results in bold are the best.

Model MRR Hits@1 Hits@3 Hits@10

TransE [8] 0.487 0.450 0.509 0.547
DistMult [17] 0.481 0.462 0.490 0.514
TuckER [19] 0.629 0.584 0.653 0.695
ConvE [20] 0.689 0.670 0.704 0.715

CSNT 0.767 0.728 0.825 0.835

The experimental results show that our knowledge graph completion model has good
performance for the completion of cybersecurity data. Compared with the existing models,
CSNT has a certain improvement in MRR and Hits@K, which also proves the effectiveness
of CSNT.

Different embedding dimensions have a great impact on the experimental performance
and generally most methods struggle to maintain good performance in lower dimensions.
We use the knowledge graph completion models in both high-dimensional (dim = 200)
and low-dimensional (dim = 150) embedded spaces in order to analyze the influence of
embedded dimensions on the experimental results. Table 4 records the average predictions
in low-dimensional embedded space.

Table 4. Cybersecurity knowledge graph completion results in low-dimensional space. The results in
bold are the best.

Model MRR Hits@1 Hits@3 Hits@10

TransE [8] 0.477 0.449 0.494 0.525
DistMult [17] 0.472 0.451 0.485 0.505
TuckER [19] 0.554 0.511 0.576 0.621
ConvE [20] 0.668 0.640 0.691 0.711

CSNT 0.751 0.735 0.762 0.778

The experimental results show that our model maintains good experimental perfor-
mance in both high-dimensional and low-dimensional embedded spaces. Because our
model uses a variety of forms to mine the potential semantic relationships, when a sin-
gle way is insufficient, it can be corrected to avoid the interference of noise and further
reduce the fluctuation of information. Finally, we use Pearson Mix Net to combine the
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vectors. Pearson Mix Net has good adaptive ability and the ideal experimental results
are achieved by adaptively adjusting the parameter weights of the neural network in the
training process.

5. Conclusions

This paper designs a knowledge graph completion model, which can effectively cap-
ture the interactive information of entities and relationships. It uses tensor decomposition
and neural network to mine the hidden relationships in knowledge graph. At the same
time, it uses Pearson Mix Net to realize the fusion of abstract features. In order to deal
with the problem of catastrophic forgetting in the process of model training, an incremental
simulated annealing self-distillation strategy is proposed, which effectively suppresses
the model degradation through the incremental strategy. At the same time, the simulated
annealing algorithm is used to adjust the distillation temperature adaptively, so that the
learning process can be from simple to difficult. Experiments show that our method has
certain advantages in realizing cybersecurity knowledge graph completion and can be
better used to assist penetration testing work.

In the future, the model can be used for error correction, completion and unknown
knowledge discovery of cybersecurity intelligence, which can effectively improve the
quality of cybersecurity intelligence. Knowledge graph can effectively realize intelligent
penetration testing by combining with recommender systems, question answering systems
and other modules.
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