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Abstract: Multi-agent differential games usually include tracking policies and escaping policies.
To obtain the proper policies in unknown environments, agents can learn through reinforcement
learning. This typically requires a large amount of interaction with the environment, which is
time-consuming and inefficient. However, if one can obtain an estimated model based on some
prior knowledge, the control policy can be obtained based on suboptimal knowledge. Although
there exists an error between the estimated model and the environment, the suboptimal guided
policy will avoid unnecessary exploration; thus, the learning process can be significantly accelerated.
Facing the problem of tracking policy optimization for multiple pursuers, this study proposed a new
form of fuzzy actor–critic learning algorithm based on suboptimal knowledge (SK-FACL). In the
SK-FACL, the information about the environment that can be obtained is abstracted as an estimated
model, and the suboptimal guided policy is calculated based on the Apollonius circle. The guided
policy is combined with the fuzzy actor–critic learning algorithm, improving the learning efficiency.
Considering the ground game of two pursuers and one evader, the experimental results verified the
advantages of the SK-FACL in reducing tracking error, adapting model error and adapting to sudden
changes made by the evader compared with pure knowledge control and the pure fuzzy actor–critic
learning algorithm.

Keywords: suboptimal knowledge; fuzzy system; actor–critic; Apollonius circle

1. Introduction

In the real world, it is a widespread phenomenon that predators have to hunt larger
or faster prey. This hunting phenomenon can be naturally generalized to the field of
robotics and control, where multiple slower robots (pursuers) try to capture one faster
target (evader) who, conversely, attempts to escape. Theoretically, this is known as multi-
player pursuit–evasion games with one superior evader [1]. Here, the superior evader
signifies that the evader has comparatively more advantageous control resources than the
pursuers [2]. The multi-player pursuit–evasion game is a common model in differential
games that has been studied by many researchers during recent decades [3]. Facing the
pursuit–evasion problem with multiple guided missiles, an optimal-damage-effectiveness
cooperative–control strategy was proposed [4]. Considering a fixed duration differential
game problem with Grönwall-type constraints, the players’ attainability domain and
optimal strategies were constructed [5]. Aiming at the problem of high dimensionality
and high dynamics in the cluster confrontation game, an evolution strategies optimization
method was proposed [6]. To deal with the major threat to public safety, as well as critical
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infrastructure security caused by unmanned aircraft vehicles, a multi-agent jamming system
was presented [7].

In order to solve the problem of multi-agent pursuit and evasion, it is necessary to
study the modeling and control method of a multi-agent system (MAS) [8,9]. At present, a
multi-agent system generally refers to a system composed of a group of agents with certain
autonomous abilities [10]. Each agent in the system has the abilities of perception, cognition,
decision-making, execution, self-organization, learning and reasoning [11]. In MAS, one
of the most popular research objects is multi-agent distributed formation control [12].
Formation means that by designing a communication topology network and distributed
controller, the state of networked agents can follow the desired formation configuration
and maintain or adjust the configuration over time to meet the needs of multi-agent
practical tasks. Aiming at the problem of a formation control problem without collisions,
a control strategy that consists of a bounded attractive component was proposed [13].
Based on algebraic graph theory and rigid graph theory, the interconnections between
vehicles in formation and the inter-vehicle distance constraints of the desired formation
can be described [14]. For the problem of the controllability of leader–follower multi-agent
systems, the upper bound on the controllability index was discussed [15]. For the robust
control problem of aerial-refueling UAV close formation systems, a distributed formation
control method based on adaptive disturbance observers with the barrier function was
attempted [16]. To provide a fixed-time tracking consensus, a consensus protocol based on
the integral sliding mode surface was presented [17].

With the rise of artificial intelligence technology, reinforcement learning (RL) has
shown unprecedented potential in the field of agent decision-making [18]. Reinforcement
learning is a kind of feedback-based learning, that is, there is an agent that can perceive the
environment, act according to the environment’s state and receive feedback information
from the environment to adjust its action policy. Nowadays, RL is widely used in the
fields of industrial automation [19], competitive games, autonomous detection and so
on [20,21]. At present, reinforcement learning algorithms mainly include TD learning,
Q-learning, SARSA and actor–critic [22]. However, in the field of practical applications, RL
is facing the challenges of low efficiency and hard convergence due to the large system
state and decision-making state spaces [23]. In order to improve the practical application
effect of reinforcement learning, there are factorial reinforcement learning (FRL) [24],
hierarchical reinforcement learning (HRL) [25], inverse reinforcement learning (IRL) [26],
deep reinforcement learning (DRL), etc. [27].

Benefitting from the rapid development of RL, it was gradually applied to solve
multi-agent system problems. At first, game theory was introduced into MAS and the
concept of learning was proposed, which was called the minimax-Q algorithm [28]. Based
on this algorithm, many derivative types were studied, such as Nash Q-learning [29],
which was mainly used to solve zero-sum differential games. However, if the knowl-
edge structure of the problem is not clear enough or the number of agents is large, the
problem is difficult. Therefore, since 2010, researchers have turned their attention to deep
reinforcement learning technology, which contains the networked policy and state [30,31].
By expanding the algorithm of deep deterministic policy gradient (DDPG) to MAS, the
multi-agent DDPG (MADDGP) was proposed [32]. This is a framework that adopted
centralized training and decentralized execution. Then, a counterfactual benchmark was
added to the actor–critic framework to solve the credit allocation problem in MAS [33].
Furthermore, to apply the attention mechanism of the shared parameters, the agent was
enabled to learn more effectively in complex multi-agent environments [34]. Benefitting
from the technique of deep reinforcement learning, policy optimizations can be conducted
using a data-driven method [35]. To realize the cooperative UAV formation, a multi-agent
reinforcement learning algorithm with heuristic functions was proposed. Through employ-
ing the policy of centralized training with decentralized execution, an improved MADDPG
was proposed to evaluate the value function more accurately in a UAV cluster [36]. To
allow for real applications of the multi-agent RL technique, a timing recovery loop for
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PSK and QAM modulations based on swarm reinforcement learning were proposed for
high-speed telecommunications systems [37,38].

Based on the review of the abovementioned literature, it was found that the solution
of multi-agent policy optimization can be divided into knowledge-driven and data-driven
methods. Both methods have their advantages and disadvantages. For the knowledge-
driven method, the advantages lie in good stability and low computational complexity,
while the disadvantages lie in the strong dependence on the model information. Mean-
while, for the data-driven method, the advantage lies in relaxing the dependence on the
model information, while the disadvantage lies in the large amount of computation. There-
fore, the focus of this study was to combine the advantages and avoid the disadvantages
of these two methods. Facing the problem of tracking policy optimization for multiple
pursuers, this study proposed a new form of fuzzy actor–critic learning algorithm based
on suboptimal knowledge (SK-FACL). Specifically speaking, based on the utilization of
suboptimal knowledge, the data-driven learning process could be sped up. Therefore, from
the knowledge-driven perspective, the proposed SK-FACL introduces a policy iteration
process, which makes the policy more adaptive to an inaccurate modeling environment.
From the data-driven perspective, SK-FACL introduces a suboptimal guided policy, im-
proving the learning efficiency of the original FACL. To sum up, the key contributions of
this study are as follows:

(1) A new form of accelerating fuzzy actor–critic learning algorithm framework was
proposed, where the represented prior knowledge can be continuously optimized together
with the whole policy, and the combination of the knowledge controller and the fuzzy
actor–critic learning algorithm helps the learning process start quickly and enables the
agent to learn faster.

(2) The combination of the knowledge controller and the fuzzy actor–critic learning
algorithm makes the whole policy more robust and enables the agent to effectively modify
the tracking policy under pure knowledge control and approach the ideal tracking policy.

(3) The proposed policy framework was constructed based on a fuzzy inference system,
which increases the interpretability of the whole policy and enables researchers to analyze
the logic of how agents operate more easily and clearly.

The structure of the rest of this paper is as follows: Section 2 presents the multi-
agent tracking scenario and the fuzzy actor–critic learning algorithm; Section 3 shows
the overall design of the proposed SK-FACL; Section 4 discusses the employment of the
Apollonius circle and more details about the policy iteration; Section 5 simulates the
proposed algorithm and several competitive other methods; and finally, Section 6 presents
the conclusions.

2. Preliminaries

This study mainly focused on the ground differential game; therefore, the involved
game scenarios are introduced in Section 2.1. In addition, to clearly express the proposed
SK-FACL, which is based on FACL, the introduction of FACL is discussed in Section 2.2.

2.1. Description of the Ground Tracking Problem

For the sake of simplicity, each of the pursuers and evader is supposed to have a
constant speed, where the evader will be faster than the pursuers. In this study, we
supposed there existed two pursuers, which were labeled P0 and P1, and one high-speed
evader labeled E0. The initial conditions of P0, P1 and E0 are illustrated in Figure 1. It was
defined that the symbol vp represents the constant speed of each pursuer, and the symbol
ve represents that of the evader, satisfying the condition ve > vp. It is shown in Figure 1
that the initial positions of the pursuers were represented by

{
xPi , yPi

}
(i = 0, 1) and that

of the evader was {xE0, yE0}. For this game, there were two assumptions that needed
to be satisfied:
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(1) Each pursuer was supposed to have the ability to know the immediate position of
the evader at every time step t.

(2) The constant speed of the evader could be measured by each pursuer.
Based on these conditions, the capture of the evader occurs if the distance between

the pursuer Pi and the evader E0 is less than or equal to the capture distance dc,
i.e.,

∥∥(xPi , yPi

)
− (xe, ye)

∥∥ ≤ dc. From the capture condition, it is seen that if one of the
pursuers can meet the capture distance criterion, the evader will have failed to escape.

The pursuers and the evader are expected to have self-learning abilities; therefore,
they can be seen as agents. Each agent here followed a model expressed as follows:

P0(k + 1) = P0(k) + vP0(k)
P1(k + 1) = P1(k) + vP1(k)
E0(k + 1) = E0(k) + vE0(k)

(1)

where k represents the kth point of time and k + 1 represents the next point of time after k.
In addition, each pursuer and the evader have a constant speed vPi(i = 0, 1) and vE with
the heading angles θPi(i = 0, 1) and θE0, respectively.

2.2. The Fuzzy Actor–Critic Learning Algorithm

Actor–critic learning algorithm (AC algorithm) is the most popular basic algorithm in
RL, as it is able to deal with decision problems in continuous systems. Generally, a type of
actor–critic learning system contains three parts: the actor part and two critic parts. The
function of the actor part is to choose the optimal action for each state, generating the final
policy. The critic parts are used to estimate the value functions of the agent in the current
and the next step. The reason why AC can have its unique advantage is that the policy
and value functions are composed of networks. For an arbitrary actor–critic reinforcement
learning system, in order to complete the policy optimization under continuous-state space
and continuous-action space, it is necessary to input the state st into the actor network
and critic network to obtain the action at and value function Vt. Generally, such networks
can be formed using neural networks. However, the fuzzy actor–critic reinforcement
learning algorithm involved in this study was based on fuzzy inference systems instead of
neural networks. Using fuzzy inference systems does not affect the mapping connection
of states to actions and value functions, but it enhances the interpretability of network
parameters, making the mapping structure easier to trace and understand. Compared with
an ANN, a fuzzy inference system (FIS) is more feasible to be explained, and the necessary
human knowledge can be considered to build the inference rules. In other words, how
agents operate in the learning process under FIS can be more easily and clearly analyzed.
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Therefore, by introducing the FIS into the AC algorithm, the fuzzy actor–critic learning
algorithm (FACL) can be obtained.

For the FACL, the basic architecture is illustrated in Figure 1. From the figure, it is seen
that the environment can provide the state information st and st+1 at the t and t + 1 time
steps to the agent, meanwhile giving out the reward rt. The actor provides the operation
instruction at of the agent via the st, and then a white Gaussian noise ε is added as an
exploration mechanism. Finally, the input to the agent at

′ is obtained. The two critic parts
can estimate the value functions V̂(st) and V̂(st+1) at st and st+1, respectively. Based on
the time difference error ∆t, the networks of the actor and critic can be updated.

In the FACL, the actor is represented by an adaptive fuzzy logic controller (FLC),
which is composed of FIS. From Figure 2, it can be seen the inference parts of actor and
critic are the same; this is because that the FIS employed in the actor shares the same
basic structure as that in the critic. With the triangular membership functions, eight
rules are activated for three inputs at one time. Further, the output of actor at and the
output of critic V̂(st) are calculated according to the consequent sets

{
ω1, ω2, . . . , ω8} and{

ϑ1, ϑ2, . . . , ϑ8}, respectively.
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For a reinforcement learning process, the main goal of the agent is to maximize the
long-run discounted return Rt, which is given as

Rt = ∑T
k=0 γkrt+k (2)
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where γ represents the discount factor and satisfies 0 ≤ γ ≤ 1, t is the current time step
and rt+k is the immediate reward at the time step t + k. To evaluate the performance of
the running policy, the value function is needed. The value function at the current state is
defined as the expected sum of the discounted rewards, as shown in Equation (3):

V(st) = E
{
∑∞

k=0 γkrt+k

}
= rt + γV(st+1) (3)

For a temporal difference (TD)-based method, the agent uses an estimated value
function V̂(st) instead of the real V(st). Based on V̂(st) and V̂(st+1), the TD error δt can
be obtained:

δt = rt + γV̂(st+1)− V̂(st) (4)

Since the actor is represented by an adaptive FLC, the output is expressed as

a(t) = ∑M
l=1 ϕlωl(t) (5)

where ωl(t) represents the consequent parameter in the FLC, M is the number of fuzzy
rules and the ϕl is the firing strength of the rule l. The firing strength for the rule l is

ϕl =
∏n

i=1 µFl
i (xi)

∑M
l=1 ∏n

i=1 µFl
i (xi)

(6)

where n is the number of inputs and µFl
i is the membership degree of input xi in fuzzy

rule Fl
i . When selecting membership functions, one can choose continuously varying

membership functions, such as Gaussian curves, or choose triangular curves. Here, the
triangular membership functions were mainly considered to lower the computational cost.
For example, for a fuzzy inference system with two inputs and three membership functions
for each input, nine fuzzy rules need to be activated to obtain the output. Furthermore, the
more membership functions each input is equipped with, the number of rules that need to
be activated will increase exponentially. For a triangular membership function, no matter
how many fuzzy rules are equipped with an input, only two functions will be activated at
one time. Therefore, this will greatly save computational consumption. Moreover, for any
given input, the sum of the firing strengths is always equal to 1, which avoids ambiguity.
Taking the distance input as an example, Figure 3 shows the sets of membership functions,
namely, “negative far”, “close” and “positive far”.
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For triangular membership functions, the firing strength expressed in Equation (6) can
be rewritten as below:

ϕl = ∏n
i=1 µFl

i (xi) (7)
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In order to promote exploration of the action space, a random white noise ε chosen
from a Gaussian distribution by N(0, σ2) was added to the output of the FLC of at to
generate the real control signal at

′. The relationship is shown below:

at
′ = at + N(0, σ2) (8)

Based on the TD error δt, the consequent parameter ωl(t) can be adapted to

ωl(t + 1) = ωl(t) + βLδt(a′t − at)
∂a

∂ωl (9)

where βL ∈ (0, 1) is the learning rate for the FLC and the term ∂a
∂ωl equals the firing strength ϕl.

In the FACL, the agent can select its action according to the FLC, and then it comes
to the interaction with the environment. Before and after the interaction, the two critic
parts are expected to evaluate the value function at st and st+1. The evaluation is used to
determine whether the new policy is going to be better or worse than expected. For the
state st, the output of the critic V̂(st) is an approximation to V(st) given by

V̂(st) = ∑M
l=1 ϕlϑl(t) (10)

where ϑl(t) is the consequent parameter of the critic and ϕl is the same firing strength as in
the FLC. Similar to the update rule in Equation (9), the parameter ϑt

l can be adapted to

ϑl(t + 1) = ϑl(t) + αLδt
∂V̂(st)

∂ϑl (11)

where αL ∈ (0, 1) is the learning rate for the critic and the partial derivative term ∂V̂(st)
∂ϑl is

calculated as ϕl . In order to prevent instability in the actor, we set βL < αL, making sure
that the actor will converge slower than the critic.

To sum up, the updating laws for the consequent parameters ωl and ϑl are imple-
mented as below: {

ωl(t + 1) = ωl(t) + βLδtεϕl

ϑl(t + 1) = ϑl(t) + αLδt ϕl (12)

The basic composition of the FACL is expressed above. Based on the architecture of the
FACL, this study added the knowledge control part, which combined the suboptimal policy,
speeding up the learning process of the FACL while correcting the suboptimal policy.

3. Overall Design of the Proposed SK-FACL

For the ground tracking problem described in Section 2.1, although the FACL can be
employed to deal with it, there still exist several disadvantages:

(1) The efficiency of pure data-driven learning is low, and the prior knowledge that
can be obtained from the environment will be wasted.

(2) It is difficult to quickly adjust the tracking policy only using an iteration process
when the target suddenly turns.

Therefore, in view of the above shortcomings, this study introduced the Apollonius
circle to give the guided policy from the perspective of geometric planning on the basis of
the original FACL [39]. By integrating the guided policy into the network of reinforcement
learning, the prior information is utilized, and the policy that copes with the escaping
target, which may suddenly turn, can be adjusted quickly. The overall algorithm design is
shown in Figure 4.
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It can be seen from the figure that there were two pursuers involved in this study,
namely, P0 and P1, which could interact with the environment. By inputting state and action
into the environment, the next state and reward can be obtained, which is a typical interac-
tive process in RL. By extracting the available prior knowledge from the environment, the
pursuer can plan a guided tracking policy for the target based on the Apollonius circle. The
planned policies θP0 and θP1 are introduced into the FACL and integrated with the original
reinforcement learning policies a′P0 and a′P1 to form θSK−P0 and θSK−P1, respectively, so
that they continue to participate in the interaction process with the environment. Although
the pursuers P0 and P1 are trained to track the target E0 independently, they have a backup
relationship with each other. When one of them successfully pursues, it can be regarded as
a successful mission.

It can be seen that the SK-FACL designed in this study, in addition to inheriting the
good interpretability brought about by fuzzy logic in the FACL, also has unique advantages
in the following aspects: (1) it introduces the guided policy based on the Apollonius circle
into the FACL, making the policy iteration start quickly and accelerating the learning
process; (2) the policy based on the iteration of the FACL can correct the update mistakes
caused by those guided policies with errors; and (3) the pursuers can quickly adapt the
policy to the situation of the target turning suddenly because the guided policy generated
by Apollonius circle is updated in real time.

4. Accelerating Fuzzy Actor–Critic Learning Algorithm via Suboptimal Knowledge

Based on the FACL introduced above, many decision problems can be handled. How-
ever, such a type of pure model-free learning method will make the learning efficiency low.
Therefore, it is a reasonable idea that we combine the suboptimal policy obtained from the
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knowledge control and the original FACL. In this way, the proposed accelerating fuzzy
actor–critic learning algorithm via suboptimal knowledge (SK-FACL) helps the agent start
quickly and speed up the learning process; furthermore, due to the advantages of fuzzy
inference rules, the obtained policy will have its physical meaning.

4.1. Guided Policy Based on the Apollonius Circle

For the involved scenario in Section 2.2, the basic idea to obtain the suboptimal
knowledge is to use the characteristics of the Apollonius circle. This subsection presents a
discussion of the necessary conditions that should be satisfied when the pursuers P0 and
P1 have the ability to capture the high-speed evader E0.

Figure 5 shows the initial positions of Pi(i = 0, 1) and E0, denoted as (xPi, yPi) and
(xE0, yE0), respectively. Moreover, Oi denotes the center of the Apollonius circle of the
pursuer Pi, ri represents the radius of the Apollonius circle and U represents the set of all
points on the Apollonius circle that satisfies Equation (13):

ζ =
PiU
E0U

=
Vp

Ve
(13)

where ζ ∈ (0, 1) is a constant scale factor, Vp represents the constant speed of Pi and VE
represents the constant speed of E0. The expressions of the center Oi and the radius ri are
given by

Oi = (
xpi − ζ2xe

1− ζ2 ,
ypi − ζ2ye

1− ζ2 ) (14)

ri =
ζ
√
(xpi − xe)

2 + (ypi − ye)
2

1− ζ2 (15)
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From Equation (15), it is seen that the radius ri is monotonic with the scale factor ζ,
and when the value of ζ decreases, the value of ri goes down. Since the radius ri is used to
specify the pursuer’s region of responsibility, the smaller value of ri, the smaller the region.
Accordingly, the evader will have a wide path to escape from the pursuer.

On the basis of the trigonometric function, we have

Ve

sin(ϕ)
=

Vp

sin(α)
→ sin(α) =

Vp

Ve
sin(ϕ) = ζsin(ϕ) (16)
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since the evader is set to move faster than the pursuer, which means that ζ < 1. Define the
angle between the line-of-sight and the evader’s heading direction as α; the max value αmax
can be calculated using

αmax = arcsin
(

Vp

Ve

)
= arcsin(ζ) (17)

As shown in Figure 5, when the angle α is not greater than αmax, it is obvious that the
pursuer Pi can always find an angle ϕ that ensures the capture of the high-speed evader E0.
In other words, if the movement direction of E0 is within the angle ∠AEB, the pursuer will
capture the evader; otherwise, the evader can escape. The lines EA and EB in Figure 5 are
tangent to the Apollonius circle, and the two points A and B are called the virtual targets.
Therefore, the pursuer Pi can adapt to the evader’s movement within an angle of η, as
shown below:

η = 2αmax = 2arcsin(ζ) (18)

The angle of
⇀
PE is defined as β; thus, the evader E0 cannot escape within the region

H = (β + αmax − π, β− αmax + π) (19)

where the regionH should satisfy −π < H ≤ π.
Therefore, if the evader E0 moves within the regionH, the pursuer Pi will always find

an optimal moving direction to capture it. It is seen from Figure 5 that if E0 moves along
⇀

E0U, where α < αmax holds, Pi will be able to move along
⇀

PiU. In this condition, E0 will be
captured by Pi at U.

Therefore, based on the Apollonius circle, it was concluded that if the moving angle of

E0 is β− α + π (α < αmax), the responded moving angle of Pi will be β + ϕ along with
⇀

PiU.
According to the law of sines, we have

sinϕ

sinα
=

E0U
PiU

=
1
ζ

(20)

Then, the optimal moving policy for Pi can be obtained as below:

θPi = β + ϕ = sin−1(
sin α

ζ
) + β(α < αmax) (21)

When the condition satisfies αmax < α < π, the pursuer Pi cannot capture the evader
E0. However, if Pi still moves with the directional angle β + ϕ, it will get as close as possible
to E0, which can be seen in Figure 6.
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From Figure 6, it is seen that if E0 moves to E′0 in a time interval ∆t, the optimal
movement for Pi will be heading to E′0. Therefore, based on the geometric relation, it can be
expressed that

θPi = β + ϕ = sin−1(
sin α

ζ
) + β(α < αmax) (22)

Therefore, if αmax < α < π, the optimal moving policy for Pi can be obtained:

θPi = β + ϕ = cot−1
[
|E0Pi|

Ve∆tsinα
− cotα

]
+ β (23)

To sum up, in a ground tracking problem, the optimal moving policy for the pursuer
Pi should be as follows:

θPi = β + ϕ =

{
β + sin−1( sinα

ζ )i f α ≤ αmax

β + cot−1
[
|E0Pi |

Ve∆tsinα − cotα
]
i f αmax < α < π

(24)

This optimal moving policy θPi was obtained from the Apollonius circle, which uses
the concept of knowledge control. If the Apollonius circle is not accurate enough, the policy
will have a decreased confidence level. However, it still has the potential to be employed in
model-free reinforcement learning to accelerate the process.

4.2. Accelerating Fuzzy Actor–Critic Learning via Suboptimal Knowledge

From Section 4.1, it is seen that if the velocities Vp and Ve and the positions of the
pursuer and evader can be accurately known, the ideal optimal capturing policy can
be obtained based on the Apollonius circle. However, in the real world, this kind of
information cannot be measured accurately; therefore, we can only obtain the suboptimal
policy based on rough data. Such a suboptimal policy can be seen as a type of knowledge
control, helping the agent (especially the pursuing team) to quickly start the learning
process and learn faster.

The differential game involved in this study was about two pursuers and one evader,
which is illustrated in Section 2.1. Based on the Apollonius circles, the game can be shown
in Figure 7. From the figure, it is seen that the pursuing team has P0 and P1, and the evader
is denoted as E0. If P0 and P1 can obtain the rough information V̂p and V̂e, the suboptimal
policy θP1 and θP0 will be obtained based on Equation (24).
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Since the suboptimal policies θP1 and θP0 cannot guarantee the pursuers’ successful
capture of the evader, the FACL was introduced here to form a new learning algorithm
called the accelerating fuzzy actor–critic learning algorithm via suboptimal knowledge
(SK-FACL). The overall logic architecture of the proposed SK-FACL is shown in Figure 8.
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As can be seen from Figure 8, the logic of the proposed algorithm is mainly divided into
two parts: the knowledge controller part and the policy iteration part. In the architecture,
the role of knowledge controller is played by the Apollonius circle method. Through the
rough information of the estimated speed V̂p and V̂e, the suboptimal tracking angles θP1 and
θP0 can be calculated as the initial policies for the pursuing team. The part of policy iteration
is mainly built using the fuzzy actor–critic learning framework. Different from the FACL,
the output of the actor a′Pi(i = 0, 1) is superimposed with the output of the knowledge
control θPi(i = 0, 1) to form θSK−Pi(i = 0, 1). In this way, the knowledge-driven part and
the data-driven part are effectively combined. The knowledge controller is responsible for
guiding the direction of initial policy generation and the policy iteration part can finely
adjust the capturing policy based on the interaction with the environment.

In this game, the state st = [s1, s2, s3] is designed as a vector, which contains three
types of information. The symbol s1 represents the relative distance between Pi and E0, s2
represents the heading angle difference between Pi and E0, and s3 represents the derivative
of the angle difference. The design of the reward rt is expressed as follows:

rt = υ1((dk−1(st−1)− dk−1(st))− (dk(st−1)− dk(st)))+

υ2(dk−1(m)− dk(m)) + υ3
(υ4−dk(m)) (25)

where υ1, υ2, υ3 and υ4 are coefficients. Meanwhile, dk−1(st−1) represents the relative
distance at st−1 in the (k− 1)th training instance and dk−1(st) represents that at st in the
(k− 1)th training instance. The symbol dk(m) is defined as the minimum distance between
Pi and E0 in the kth training instance and dk−1(m) is defined as the minimum distance
between Pi and E0 in the (k − 1)th training instance. It is seen that the reward rt can be
divided into three parts. The first part gives the agent Pi a local bonus to help Pi to get closer
to the evader as quickly as possible. The second part gives the agent Pi a global bonus
so that Pi can get as close to the evader as possible at a certain time during each training
session. Furthermore, in the final part, if dk(m) < υ4, Pi will obtain an exponentially
increasing global bonus, which can help Pi to obtain a global minimum distance that is as
small as possible during each training session.
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Set the inputs s1, s2 and s3 to have three triangular membership functions with uniform
distributions in s1 ∈ [−10, 10], s2 ∈ [−1, 1] and s3 ∈ [−1, 1] (for an out-of-range state, the
membership function value nearest to that state can be set to one). The flow of the proposed
accelerating fuzzy actor–critic learning algorithm via suboptimal knowledge is given in
Algorithm 1.

Algorithm 1 Accelerating fuzzy actor–critic learning algorithm via suboptimal knowledge

1: Initialize the state s0 and discount factor γ for each pursuer and the evader
2: Initialize the membership functions for s1, s2 and s3
3: Initialize the consequent set of the actor and critic

{
ω1, ω2, . . . , ω12} and

{
ϑ1, ϑ2, . . . , ϑ12}

4: Initialize the learning rates αL and βL
5: Estimate the velocities V̂p and V̂e
6: For each iteration i do
7: Calculate the proper θP1 and θP0 for P0 and P1 according to the Apollonius circle
8: For each step do
9: Calculate the output of the critic Vt in the current state st
10: Obtain the actions a′P0 and a′P1 generated from the actor
11: Combine the θPi and a′Pi to form θSK−Pi for each pursuer
12: Perform the action θSK−Pi for each pursuer, and get the next state st+1, and the reward rt
13: Calculate the time difference ∆t
14: Update the consequent parameters ϑl for the critic
15: Update the consequent parameters ωl for the actor
16: End for
17: End for

5. Numerical Results

To verify the effectiveness and show the superiority of the proposed SK-FACL, three
kinds of cases were simulated here. The simulated results indicated that pure knowl-
edge control and the pure FACL have shortcomings when the agents face an incompletely
known environment. However, if the two methods are combined to form the SK-FACL, the
tracking performance of pursuers can be improved greatly. Since the game is an abstrac-
tion of the real pursuit–evasion problem, the involved position and velocity information
is dimensionless.

5.1. Case 1: Pure Knowledge Control

In order to verify that the Apollonius circle can guide the initial policy in the game, this
case drove the pursuers under pure knowledge control. The positions of the two pursuers
were (xP0,yP0) = [2500,−1500] and (xP1,yP1) = [3200, 2500], and that of the evader was
(xE0,ye0) = [−500,−500]. Moreover, the initial heading angles of P0, P1 and E0 were
θP0 = 0rad, θP1 = 3rad and θE0 = 0.25rad, respectively. The pursuers and the evader held
constant velocities, where vP0 = vP1 = 45/s and vE0 = 50/s , and it was supposed there
existed no velocity estimation error. The simulated time was set to 200 s, and the results
with different time steps are shown in Figure 9.

Figure 9 shows the traces of the three agents without the velocity estimation error
at different time stages. Comparing Figure 9a,b, it is seen that P0 and P1 started to track
E0 from different locations according to the policies calculated using Apollonius circles.
Moreover, Figure 9c shows that P0 continues to track E0 along a straight line after moving
in the same direction as E0. With the increase in time, Figure 9d shows that P0 and P1 met
and kept chasing E0 together, which is an ideal tracking policy. In Figure 9d, the minimum
distances between P0 and E0 and between P1 and E0 were 12.4 and 23.0, respectively. It
is seen that if there was no estimated error of velocity, the pursuing team could track the
evader perfectly based on Apollonius circles, which meant that the knowledge control
worked well in this ideal environment.
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However, if the environment is not ideal, the Apollonius circles will not be accurately
obtained. When the estimated velocity holds an error of 30% compared with the real
velocity, the tracking results are drawn in Figure 10.

1 
 

 

Figure 9. The traces of P0, P1 and E0 based on the Apollonius circle without velocity error.

Figure 10 shows the traces in the presence of the velocity estimation error ∆v = 30%vP.
By comparing Figure 10a with Figure 10d, it can be seen that the policy calculated according
to the Apollonius circles still retained a strong tracking ability in the presence of the
estimated error. This indicates that the Apollonius circle method has the potential to be
employed as the knowledge control part and plays a good guiding role for the policy in
the incompletely known environment. However, different from the results in Figure 9,
the traces of P0 and P1 appeared to have arcs and jitters in Figure 10 due to the velocity
estimation error. The error caused inaccuracy in the Apollonius circles. In Figure 10d, the
minimum distances between the P0 and E0 and between P1 and E0 were 155.6 and 112.7,
respectively. Thus, the tracking traces were not ideal and not as good as the results shown
in Figure 9d. Based on the above analysis, it is seen that if we combined the policy iteration
method (which mainly refers to reinforcement learning), the tracking performance could
be modified on the premise of retaining the guiding role of knowledge control.
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1 
 

 

Figure 10. The traces of P0, P1 and E0 based on Apollonius circles with an estimated speed error
∆v = 30%vP.

5.2. Case 2: Accelerating Fuzzy Actor–Critic Learning via Suboptimal Knowledge

The basic idea of the proposed SK-FACL is to employ the method of Apollonius circles
as the knowledge control part and to combine this with the policy iteration method of
the FACL to give full play to the guiding role of knowledge control and the correction
role of data-driven method at the same time. In this way, the tracking abilities of the
pursuers can be improved in the involved differential game. In order to highlight the
advantages of the SK-FACL, this subsection compares the tracking performances under
pure knowledge control and the SK-FACL. The settings of the position, speed and angle of
P0, P1 and E0 were the same as in Section 5.1. The hyperparameters were set to αL = 0.001,
βL = 0.001, γ = 0.93, σ = 0.02, υ1 = 10, υ2 = 1, υ3 = 1.05 and υ4 = 80.

From Figure 9, we know that the ideal tracking traces of P0 and P1 will be more like
straight lines to chase E0 more effectively. Therefore, although Figure 11 shows that E0
could also be tracked by P0 and P1 based on inaccurate Apollonius circles, the traces were
more like arcs, which are not ideal. After being combined with the FACL, Figure 12 shows
that the traces were modified to be more like ideal ones based on the SK-FACL. It is seen
that the agents P0 and P1 were using knowledge control as the guided policies and then
correcting them based on reinforcement learning.
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1 
 

 

Figure 11. The traces of P0, P1 and E0 under knowledge control with ∆v = 30%vP.

1 
 

 

Figure 12. The traces of P0, P1 and E0 under the proposed SK-FACL with ∆v = 30%vP.

To further indicate the difference between the proposed SK-FACL and fuzzy actor–
critic learning algorithm (FACL), another experiment was conducted to show the tracking
traces under the SK-FACL and FACL.

It is certainly theoretically feasible to eliminate the role of knowledge control and
only optimize the policy using the purely data-driven FACL, and such a result is shown in
Figure 13. Corresponding to the tracking performances in different time steps shown in
Figure 13, Figure 14 shows the performances in the same steps under the SK-FACL. Since
Figure 9 shows the ideal traces, the closer the tracking effect was to that shown in Figure 9,
the better the tracking effect was. Figure 13 indicates that although P0 and P1 had the
ability to track under FACL, the learned policy without the guidance of knowledge control
was much weaker. Furthermore, after adding this guidance, Figure 14 shows the tracking
performances under the SK-FACL were very close to the ideal ones shown in Figure 9,
which indicates that the proposed SK-FACL could effectively correct the tracking traces
and approach a nearly ideal capturing condition, even if facing the velocity estimation
error ∆v. Furthermore, it was noticed that although the trajectories shown in Figure 13
were similar to an interception, they were not optimal. This was because, for the 200 s
tracking problem, not only the final tracking effect was considered but also the process
tracking effect was considered. The situation where the pursuer was able to be near the
evader at all time steps was seen as optimal because it maximized the pursuer’s operational
space. Therefore, although the trajectories of pursuers shown in Figures 9 and 14 were
approximately perpendicular to that of the evader, they performed better because the
pursuers were also as close to the evader as possible during the tracking process. Figure 15
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shows the minimum distances between P0, P1 and E0, along with the training times under
the SK-FACL and FACL. The red lines and blue lines represent the minimum distances
between P0 and E0 and between P1 and E0, respectively. It is seen that the SK-FACL could
achieve the ideal performances after 50,000 training times, and the minimum average
distance for P0 was approximately 23.0, and for P1, it was approximately 34.5. However, for
the same number of training times, the FACL achieved the minimum average distance for
P0 was about 285.1, and for P1, it was about 123.3. The results indicate that the performance
under the SK-FACL was much better than under the FACL.

1 
 

 

Figure 13. The traces of P0, P1 and E0 under the FACL with ∆v = 30%vP.

1 
 

 

Figure 14. The traces of P0, P1 and E0 under the proposed SK-FACL with ∆v = 30%vP.
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5.3. Case 3: Tracking a Smart Evader

The results in case 2 show the superiority of the SK-FACL when the evader E0 moves
along a straight line. However, in reality, the evaders often have the ability to run when they
see the pursuers getting close. Therefore, if the evader can suddenly turn in the game, it
may affect the tracking results. In order to verify the adaptability of the proposed SK-FACL
in this condition, E0 can change its heading direction twice in this subsection, and we call
this a “smart” evader. With the other settings the same as in Section 5.2, the simulated
results were as follows.

Figure 16a shows the traces after the first run of E0. It can be seen that when E0 changed
its heading angle, P0 responded immediately and adjusted its trace in time according to the
new trace of E0. At the same time, P1 also adjusted the trace due to this reason. However,
P1 was relatively far from E0 when E0 changed, and thus, the change in P1 was not obvious
enough. Moreover, Figure 16b shows the traces after the second run of E0. Similar to the
results in Figure 16a, P0 and P1 quickly respond to adapt to the new trajectory of E0 and
track it. From Figure 16, it is seen that the proposed SK-FACL had good generalization
ability since it helped the agents adapt to the changes of evader, which was mainly due to
the combination of the guidance of knowledge control and the policy iteration of the FACL.
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In addition, in order to show the tracking accuracy of the proposed method, we
compared the minimum tracking distances between the pursuer (P1) and the evader E0
under different ∆v values, as shown in Figure 17. The blue line shows the minimum
distance based on pure knowledge control driven by Apollonius circles. In particular,
∆v = 0% shows the theoretical possibility of the pursuer P1 to capture the evader E0 with
pure knowledge. Furthermore, the red point shows the mean minimum distance under the
SK-FACL when ∆v = 30%.

As can be seen from Figure 17, with the increase in ∆v, the minimum tracking distance
of pure knowledge control increased, which meant that the tracking accuracy decreased
rapidly. The reason for this was mainly because of the inaccurate Apollonius circles. From
the figure, it is seen that if ∆v = 0%, the minimum distance under knowledge control
averaged at 34.0 and floated within [34.0~74.4]. When ∆v = 30%, the minimum distance
under knowledge control was averaged at 220.6 and floated within [220.6~256.0], and
under the SK-FACL, it was averaged at 31.8 and floated within [1.1~63.7], which is shown
by the red point in the figure. Therefore, it is seen that the performance with ∆v = 30%
under the SK-FACL was nearly equivalent to that with ∆v = 0% under knowledge control.
This says that the SK-FACL could effectively improve the tracking performance on the
basis of pure knowledge control and finally caused the pursuers to approach using an ideal
tracking condition.
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Figure 17. The minimum distance between the pursuer P1 and evader with different ∆v values.

6. Conclusions

In this study, we proposed a novel reinforcement algorithm called the accelerating
fuzzy actor–critic learning algorithm based on suboptimal knowledge (SK-FACL) to deal
with the ground tracking problem. The proposed algorithm is mainly composed of two
parts. The first part is a knowledge controller, which is obtained based on the Apollonius
circle method. The second part is a policy iteration process driven by fuzzy actor–critic
learning. In this novel SK-FACL, the knowledge controller helps the pursuers to start the
learning process quickly and provides guided policies that enable the agents to learn faster.
Moreover, the policy iteration part can modify the policy obtained from the inaccurate
Apollonius circle, improving the tracking performance of the pursuers. The proposed algo-
rithm provides a way to combine real model knowledge and data knowledge. Therefore,
the proposed algorithm enables the agent to make full use of the model knowledge known
by humans and improve the control strategy through data information. Hence, the intelli-
gent method can be applied to a situation where the environmental model is particularly
complex and difficult to model and the agent can only try a few attempts to achieve the
optimal control strategy. The numerically simulated results show the advantages of the
SK-FACL compared with pure knowledge control and pure policy iteration when there
was velocity estimated error. Furthermore, SK-FACL also has the ability to deal with the
condition where the evader suddenly turns during the tracking.

In the future, our team will continue to work on policy decisions in differential
games through reinforcement learning, aiming at making the decision process more robust
and reliable.
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Nomenclature

Pi Pursuers
E0 Evader{

xPi , yPi

}
Initial positions of the pursuers

{xE0, yE0} Initial position of the evader
dc Capture distance
vPi Speed of pursuers
vE Speed of evader
θE0 Heading angle of the evader
t Current time step
γ Discount factor
rt Immediate reward
δt TD error
ωl(t) Consequent parameter in the FLC
µFl

i Membership degree of input xi in the fuzzy rule Fl
i

ε White noise
ϑl(t) Consequent parameter of the critic
αL Learning rate for the critic
βL Learning rate for the FLC
θP0 Guided policy for P0
θP1 Guided policy for P1
a′P0 Reinforcement learning policy for P0
a′P1 Reinforcement learning policy for P1
ζ Constant scale factor
ri Radius of the Apollonius circle
Oi Center of the Apollonius circle
α Angle between the line of sight and the evader’s heading direction
ϕ Angle that ensures the capture of the high-speed evader
V̂p Estimated speed for pursuer
V̂e Estimated speed for evader
st State vector
s1 Relative distance between Pi and E0
s2 Heading angle difference between Pi and E0
s3 Derivative of the angle difference
dk−1(st−1) Relative distance at st−1 in the (k− 1)th training
dk−1(st) Relative distance at st in the (k− 1)th training
dk(m) Minimum distance between Pi and E0 in the kth training
dk−1(m) Minimum distance between Pi and E0 in the (k − 1)th training
rt Immediate reward
{υ1, υ2, υ3, υ4} Coefficients in reward design
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