A Recommendation Algorithm Combining Local and Global Interest Features
Abstract
:1. Introduction
- We combined the Knowledge Graph Convolutional Network and Generative Adversarial Network organically, and our model can learn both local and global interests effectively to explore users’ interest preferences.
- By utilizing rating information and knowledge graph information, we can further alleviate the data sparsity problem existing in recommendation systems.
- Through extensive experiments on three real-world datasets, the results show that our proposed KGG achieves better click prediction accuracy than current state-of-the-art methods.
2. Related Work
2.1. Recommendation Method Based on Generative Adversarial Network
2.2. Recommendation Method Based on Knowledge Graph
3. Method
3.1. Problem Definition
3.2. Local Feature Learning Module
3.3. Global Feature Learning Module
3.4. Linear Fusion Module
3.5. KGG Model
4. Experiment
- (1)
- How does our KGG model compare to existing knowledge graph-based recommendation models?
- (2)
- What is the impact of the hyperparameters of the linear fusion module on our model?
- (3)
- Is it effective to combine the local interest feature learning module and the global interest feature learning module?
4.1. Datasets
4.2. Baselines
4.3. Experiments Setup
4.4. Results
4.4.1. Comparison with the Baselines (RQ1)
4.4.2. Hyperparameter Analysis (RQ2)
4.4.3. Analysis of Model Validity (RQ3)
4.4.4. Analysis of Linear Fusion Module
4.4.5. Results in Sparse Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Zhang, Z.-P.; Kudo, Y.; Murai, T.; Ren, Y.-G. Enhancing Recommendation Accuracy of Item-Based Collaborative Filtering via Item-Variance Weighting. Appl. Sci. 2019, 9, 1928. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, J.; Zhang, J. A Strategy toward Collaborative Filter Recommended Location Service for Privacy Protection. Sensors 2018, 18, 1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Li, K.; Peng, J.; Qi, J. Self-Supervised Graph Attention Collaborative Filtering for Recommendation. Electronics 2023, 12, 793. [Google Scholar] [CrossRef]
- Dietz, L.; Kotov, A.; Meij, E. Utilizing Knowledge Graphs for Text-Centric Information Retrieval. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 1387–1390. [Google Scholar]
- Huang, J.; Zhao, W.X.; Dou, H.; Wen, J.-R.; Chang, E.Y. Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 505–514. [Google Scholar]
- Huang, Z.; Chen, J.; Shen, L.; Chen, X. Fraship: A Framework to Support End-User Personalization of Smart Home Services with Runtime Knowledge Graph. In Proceedings of the Companion Proceedings of the Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 987–995. [Google Scholar]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Yu, X.; Ren, X.; Sun, Y.; Gu, Q.; Sturt, B.; Khandelwal, U.; Norick, B.; Han, J. Personalized entity recommendation. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, NY, USA, 24–28 February 2014; pp. 283–292. [Google Scholar]
- Zhang, F.; Yuan, N.J.; Lian, D.; Xie, X.; Ma, W.-Y. Collaborative Knowledge Base Embedding for Recommender Systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 353–362. [Google Scholar]
- Wang, H.; Zhang, F.; Xie, X.; Guo, M. Dkn. In Proceedings of the 2018 World Wide Web Conference on World Wide Web—WWW ‘18, Lyon, France, 23–27 April 2018; pp. 1835–1844. [Google Scholar]
- Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. RippleNet. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 417–426. [Google Scholar]
- Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation. In Proceedings of the World Wide Web Conference, Francisco, CA, USA, 13–17 May 2019; pp. 2000–2010. [Google Scholar]
- Wang, H.; Zhang, F.; Zhang, M.; Leskovec, J.; Zhao, M.; Li, W.; Wang, Z. Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 968–977. [Google Scholar]
- Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge Graph Convolutional Networks for Recommender Systems. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 3307–3313. [Google Scholar]
- Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.-S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 950–958. [Google Scholar]
- Wang, Z.; Lin, G.; Tan, H.; Chen, Q.; Liu, X. CKAN: Collaborative knowledge-aware attentive network for recommender systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; pp. 219–228. [Google Scholar]
- Wang, X.; Huang, T.; Wang, D.; Yuan, Y.; Liu, Z.; He, X.; Chua, T.-S. Learning Intents behind Interactions with Knowledge Graph for Recommendation. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 878–887. [Google Scholar]
- Zeng, W.; Qin, J.; Wang, X. CKEN: Collaborative Knowledge-Aware Enhanced Network for Recommender Systems. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2022: 31st International Conference on Artificial Neural Networks, Bristol, UK, 6–9 September 2022; pp. 769–784, Proceedings, Part II. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Guérin, É.; Digne, J.; Galin, É.; Peytavie, A.; Wolf, C.; Benes, B.; Martinez, B. Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Deldjoo, Y.; Noia, T.D.; Merra, F.A. A survey on adversarial recommender systems: From attack/defense strategies to generative adversarial networks. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Zhang, W.; Gong, Y.; Xu, Y.; Wang, B.; Zhang, P.; Zhang, D. Irgan. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 515–524. [Google Scholar]
- Chae, D.-K.; Kang, J.-S.; Kim, S.-W.; Lee, J.-T. Cfgan. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 137–146. [Google Scholar]
- Tong, Y.; Luo, Y.; Zhang, Z.; Sadiq, S.; Cui, P. Collaborative Generative Adversarial Network for Recommendation Systems. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macao, Macao, 8–12 April 2019; pp. 161–168. [Google Scholar]
- Zemouri, R. Semi-Supervised Adversarial Variational Autoencoder. Mach. Learn. Knowl. Extr. 2020, 2, 361–378. [Google Scholar] [CrossRef]
- Lin, Y.; Xie, Z.; Xu, B.; Xu, K.; Lin, H. Info-flow enhanced GANs for recommender. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 1703–1707. [Google Scholar]
- Sun, Y.; Chun, S.-J.; Lee, Y. Learned Semantic Index Structure Using Knowledge Graph Embedding and Density-Based Spatial Clustering Techniques. Appl. Sci. 2022, 12, 6713. [Google Scholar] [CrossRef]
- Li, T.; Wang, W.; Li, X.; Wang, T.; Zhou, X.; Huang, M. Embedding Uncertain Temporal Knowledge Graphs. Mathematics 2023, 11, 775. [Google Scholar] [CrossRef]
- Yu, D.; Yang, Y.; Zhang, R.; Wu, Y. Knowledge Embedding Based Graph Convolutional Network. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 1619–1628. [Google Scholar]
- Yu, J.; Cai, Y.; Sun, M.; Li, P. SpaceE: Knowledge Graph Embedding by Relational Linear Transformation in the Entity Space. In Proceedings of the 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June–1 July 2022; pp. 64–72. [Google Scholar]
- Sha, X.; Sun, Z.; Zhang, J. Hierarchical attentive knowledge graph embedding for personalized recommendation. Electron. Commer. Res. Appl. 2021, 48, 101071. [Google Scholar] [CrossRef]
- Pietrasik, M.; Reformat, M.Z. Probabilistic Coarsening for Knowledge Graph Embeddings. Axioms 2023, 12, 275. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, C.; Chen, Y.; Wang, Y.; Hu, G.; Qiao, Y. TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding. Information 2023, 14, 155. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, Q.; Li, J.; Song, Y.; Lee, D.L. Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 635–644. [Google Scholar]
- Hu, B.; Shi, C.; Zhao, W.X.; Yu, P.S. Leveraging Meta-path based Context for Top-N Recommendation with A Neural Co-Attention Model. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1531–1540. [Google Scholar]
- Luo, L.; Fang, Y.; Cao, X.; Zhang, X.; Zhang, W. Detecting Communities from Heterogeneous Graphs. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5 November 2021; pp. 1170–1180. [Google Scholar]
- Chen, H.; Li, Y.; Sun, X.; Xu, G.; Yin, H. Temporal Meta-path Guided Explainable Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual Event, Israel, 8–12 March 2021; pp. 1056–1064. [Google Scholar]
- Sun, Z.; Yang, J.; Zhang, J.; Bozzon, A.; Huang, L.-K.; Xu, C. Recurrent knowledge graph embedding for effective recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 297–305. [Google Scholar]
- Dong, C.; Ju, X.; Ma, Y. HRS: Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Melbourne, Australia, 14–17 December 2021; pp. 406–413. [Google Scholar]
- Chen, M.; Zhang, W.; Zhu, Y.; Zhou, H.; Yuan, Z.; Xu, C.; Chen, H. Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 927–937. [Google Scholar]
- Li, J.; Xu, Z.; Tang, Y.; Zhao, B.; Tian, H. Deep hybrid knowledge graph embedding for top-n recommendation. In Proceedings of the Web Information Systems and Applications: 17th International Conference, WISA 2020, Guangzhou, China, 23–25 September 2020; pp. 59–70, Proceedings 17. [Google Scholar]
- Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef] [Green Version]
Datasets | Last.FM | Movielens-1M | Book-Crossing |
---|---|---|---|
users | 1872 | 6036 | 17,860 |
items | 3846 | 2347 | 14,910 |
interactions | 42,346 | 753,772 | 139,746 |
entities | 9366 | 7008 | 24,127 |
relations | 60 | 7 | 10 |
KG triples | 15,518 | 20,782 | 19,793 |
Model | Last.FM | Movielens-1M | Book-Crossing | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
PER | 0.633 | 0.596 | 0.710 | 0.664 | 0.623 | 0.588 |
CKE | 0.744 | 0.673 | 0.801 | 0.742 | 0.671 | 0.633 |
DKN | 0.602 | 0.581 | 0.655 | 0.589 | 0.622 | 0.598 |
Wide&Deep | 0.756 | 0.688 | 0.898 | 0.820 | 0.712 | 0.624 |
RippleNet | 0.768 | 0.691 | 0.920 | 0.842 | 0.729 | 0.662 |
KGCN | 0.790 | 0.702 | 0.919 | 0.842 | 0.672 | 0.617 |
KGAT | 0.716 | 0.647 | 0.901 | 0.828 | 0.651 | 0.624 |
KGIN | 0.818 | 0.742 | 0.919 | 0.844 | 0.727 | 0.660 |
Ours | 0.823 | 0.751 | 0.926 | 0.852 | 0.731 | 0.668 |
Model | Additive | Mean | Linear Weighted | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
Last.FM | 0.816 | 0.733 | 0.817 | 0.730 | 0.823 | 0.751 |
Movielens-1M | 0.918 | 0.844 | 0.918 | 0.841 | 0.926 | 0.852 |
Book-Crossing | 0.698 | 0.640 | 0.674 | 0.618 | 0.731 | 0.668 |
Model | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
---|---|---|---|---|---|---|---|---|---|---|
PER | 0.598 | 0.607 | 0.621 | 0.638 | 0.647 | 0.662 | 0.675 | 0.688 | 0.697 | 0.710 |
CKE | 0.674 | 0.692 | 0.705 | 0.716 | 0.739 | 0.754 | 0.768 | 0.775 | 0.797 | 0.801 |
DKN | 0.579 | 0.582 | 0.589 | 0.601 | 0.612 | 0.620 | 0.631 | 0.638 | 0.646 | 0.655 |
Wide&Deep | 0.788 | 0.802 | 0.809 | 0.815 | 0.821 | 0.840 | 0.858 | 0.876 | 0.884 | 0.898 |
RippleNet | 0.843 | 0.851 | 0.859 | 0.862 | 0.870 | 0.878 | 0.890 | 0.901 | 0.912 | 0.920 |
KGCN | 0.808 | 0.865 | 0.876 | 0.885 | 0.886 | 0.890 | 0.910 | 0.913 | 0.917 | 0.919 |
Ours | 0.870 | 0.876 | 0.890 | 0.899 | 0.907 | 0.914 | 0.917 | 0.920 | 0.923 | 0.926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Qin, J.; Ren, Q. A Recommendation Algorithm Combining Local and Global Interest Features. Electronics 2023, 12, 1857. https://doi.org/10.3390/electronics12081857
Song X, Qin J, Ren Q. A Recommendation Algorithm Combining Local and Global Interest Features. Electronics. 2023; 12(8):1857. https://doi.org/10.3390/electronics12081857
Chicago/Turabian StyleSong, Xiaoyuan, Jiwei Qin, and Qiulin Ren. 2023. "A Recommendation Algorithm Combining Local and Global Interest Features" Electronics 12, no. 8: 1857. https://doi.org/10.3390/electronics12081857
APA StyleSong, X., Qin, J., & Ren, Q. (2023). A Recommendation Algorithm Combining Local and Global Interest Features. Electronics, 12(8), 1857. https://doi.org/10.3390/electronics12081857