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Abstract: Image inpainting benefits much from the future Internet, but the memory and computa-
tional cost in encoding image features in deep learning methods poses great challenges to this field.
In this paper, we propose a parallel decoding structure based on GANs for image inpainting, which
comprises a single encoding network and a parallel decoding network. By adding a diet parallel
extended-decoder path for semantic inpainting (Diet-PEPSI) unit to the encoder network, we can
employ a new rate-adaptive dilated convolutional layer to share the weights to dynamically generate
feature maps by the given dilation rate, which can effectively decrease the number of convolutional
layer parameters. For the decoding network composed of rough paths and inpainting paths, we
propose the use of an improved CAM for reconstruction in the decoder that results in a smooth
transition at the border of defective areas. For the discriminator, we substitute the local discriminator
with a region ensemble discriminator, which can attack the restraint of only the recovering square,
like areas for traditional methods with the robust training of a new loss function. The experiments
on CelebA and CelebA-HQ verify the significance of the proposed method regarding both resource
overhead and recovery performance.

Keywords: image inpainting; generative adversarial networks (GANs); contextual attention module;
discriminator; future Internet

1. Introduction

Image inpainting originated in the Renaissance era when damaged images were re-
paired through manual trimming to fill in the missing areas with adequate information.
Today, this technique involves inferring unknown areas of an image with known infor-
mation using methods such as structural, statistical, and semantic analysis. Due to its
versatility and usefulness, image inpainting has become an increasingly popular research
area in the field of computer vision. As the future Internet officially ushers in the second
stage of its development, image inpainting will face a huge challenge. This technique
has already been applied in different fields, such as medicine, the military, and video
processing, among others [1–6]. Traditional methods for image inpainting often have some
defects. However, with the rapid rise of deep learning in computer vision, the image
processing methods based on this technology have significantly improved its effectiveness.
For example, deep-learning-based image inpainting methods use network models such
as convolutional neural networks (CNNs), generative adversarial networks (GANs), and
recurrent neural networks (RNNs), and network modules such as attention mechanisms
and residual networks [7–9]. Image inpainting can be classified into three types: traditional
methods, CNN-based methods, and GAN-based methods.

The traditional image inpainting techniques can be categorized into two types: diffusion-
based [10,11] and patch-based methods [12,13]. The diffusion-based method involves
gradually diffusing the pixel information surrounding the damaged area in the image
and creating new textures to fill the hole. This method is effective in restoring small
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missing areas in the image. However, the reconstruction process is often influenced
by the surrounding information, making it difficult to learn from distant information.
Additionally, this method lacks a high-level semantic understanding of the image and may
not successfully restore meaningful texture structures in the missing area. As the diffusion
distance of pixel information around the hole increases, the larger the hole is, and the less
effective the pixel information becomes in the center.

The patch-based method assumes that the image’s missing area has equivalent content
to the identified area. It seeks the most relevant matching patch in the visible area of the
image before copying that information to fill the missing area at the pixel level. However,
in most cases, the content of the damaged section of the image is quite different and
unstructured from the local damage. Consequently, relevant patches may not be found in
the image. To address this, researchers have proposed image inpainting between images.
This approach mainly involves locating pictures similar in meaning to the target damaged
image in an existing image database. The appropriate patch information is then selected
and transplanted or borrowed [14]. This type of method provides better image inpainting
of damaged images, especially when available image data are abundant within a specific
domain. However, it requires a considerable amount of domain data acquisition and a
best-match search, making it applicable only to a limited range of scenarios.

With the development of the field of CNN models, the impact of neural networks
on inpainting has seen significant improvements [15]. Numerous CNN models have
emerged since then, with the network structure and depth being frequently optimized
and modified. One such model that has proven advantageous is the symmetrical U-Net
structure, introduced in 2015. The left side is used for feature extraction, while the right
side is used for upwards sampling. U-Net requires fewer samples and has a lower error
rate, making it ideal for medical image processing and picture inpainting. Liu et al. [16]
drew inspiration from image inpainting, presenting a load missing data recovery problem
as a load image inpainting problem. To restore incomplete load images, they introduced a
residual network (ResNet) and a convolutional block attention module (CBAM) to improve
U-Net, enabling the efficient recovery of load missing data based on an actual industrial
load dataset. Similarly, in 2021, Zeng et al. [17] sought to address limitations in deep
generative models concerning inpainting output control and output diversity. Their novel
free-form image inpainting framework uses a U-Net-like convolutional neural network to
map an input to a coarse inpainting output. Pixel-wise matching based on nearest neighbors
is applied to map the coarse output to multiple, high-quality outputs in a controllable
manner. Their method offers multiple outputs with higher diversity, providing a promising
alternative for future studies.

The emergence of GANs as a powerful technique for unsupervised learning in com-
plex data distributions has been one of the most promising developments in recent years.
This technique, proposed by Goodfellow et al. in 2014, allows the creation of models
through adversarial processes that use noise to generate identical objects not present in
the database [18]. GANs have proven particularly effective in generating images, and
researchers are now exploring their potential to reproduce damaged areas in photos. How-
ever, the former structure contains two stages and involves a large number of parameters,
which is a heavy burden to overcome. The advent of the one-stage network, especially the
invention of Diet-PEPSI, alleviates the problem greatly. Thus, it is natural for us to employ
this structure in our inpainting network to shrink the size of the model. On the other hand,
there are works focused on improving the image generation results of GANs. In 2016,
Pathak et al. proposed a network known as context encoder that combines the encoder
and a GAN to perform unsupervised feature learning for image inpainting with large
missing areas, resulting in more natural image restoration [19]. However, this approach is
limited to filling square holes in the center of the image. In 2017, inspired by the context
encoder, researchers developed a globally and locally consistent image inpainting method
that addresses some of the context encoder’s limitations, such as the ability to process
only fixed low-resolution images, with the mask area located only in the center of the
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image, and an inability to maintain local consistency with the surrounding area. In 2018,
Yu et al. extended prior methods by incorporating a traditional coarse-to-fine network
and a contextual attention module (CAM) [20]. The CAM enables the network to focus
on filling in any missing portions, while the coarse network is used to concentrate on the
image’s edge information and the fine network is utilized for inpainting. While this method
improves picture inpainting and enhances performance, GAN’s inherent instability and
high computational requirements remain significant challenges that need to be addressed.
In summary, GANs continue to be a very promising technique for unsupervised learning
in complex distributions, and researchers have developed several effective methods for
picture inpainting. However, addressing GAN’s limitations remains a major challenge for
researchers, especially regarding stability and computational requirements.

The surge in internet transmission capacity and the widespread use of mobile cameras
have led to a surge in demand for high-resolution images and videos [21–23]. However,
traditional GAN-based image inpainting methods suffer from unstable training processes,
insufficient diversity of generated samples and difficulty in terms of tuning the model
parameters. Thus, they have great potential for improvement. Attention mechanisms have
proven to be able to improve the performance and efficiency of deep neural networks.
Researchers introduced the CAM to improve image inpainting quality with satisfactory
results. However, it requires huge computational resources due to its two-stage process
for feature encoding. Despite recent improvements to this drawback, it still faces signifi-
cant challenges due to the high computational resources required, including convolution
operations, network parameters, and poor output images. It still needs further research.

This paper aims to reduce the extensive consumption of computational resources
resulting from feature encoding in the traditional coarse-to-fine network while improving
inpainting performance. The primary contributions of this work include:

(1) The presentation of an image inpainting method based on a parallel decoding
network that features a coarse path for preliminary inpainting results and an inpainting
path for higher-quality inpainting results. This Diet-PEPSI structure can effectively decrease
the number of parameters and lighten the network.

(2) The utilization of a truncated distance similarity metric in the CAM can enhance the
performance of semantic feature representation. The overall and local semantic continuity
are both significantly improved, with more natural and smooth results in the defective area.

(3) The replacement of the local discriminator with the region ensemble discriminator
can enable the network to fit with more kinds of defected areas, as against the former
rectangle area.

The rest of this paper is structured as follows. The basic concepts of generating
adversarial networks and attention mechanisms are covered in Section 2. The proposed
inpainting technique is introduced and described in Section 3. Section 4 includes the
experimental setup, results, and discussion. Conclusions and future work directions are
presented in Section 5.

2. Related Work
2.1. GAN

GANs consist of a generative network and a discriminant network. The generative
network samples randomly from the noise distribution as the input, and its output should
try to imitate the real samples in a given training set. The input of the discriminant
network is the output or real sample of the generated network, whose goal is to separate
the output of the generative network from the real sample as accurately as possible, while
the generative network should deceive the discriminant network as much as possible. The
two networks are against each other, constantly optimizing and adjusting the parameters,
with the end goal of preventing the discriminant network from determining whether the
output result of the discriminant network is accurate. The architecture of a GAN is shown
in Figure 1.
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The training process of a GAN can be expressed by the following formula:

max
D

minGAN(D, G)
G

= EX∼Pdata(x)[log D(x)] + EZ∼Pz(z)[log(1− D(x))], (1)

The generator, G, captures the distribution of the sample data, generates a sample
similar to the real training data with noise z following a specific distribution (uniform
distribution, Gaussian distribution, etc.), and pursues the effect that the more similar to the
real sample, the better.

The discriminator, D, is a binary classifier that estimates the probability of a sample
being a real image. If the sample is from the real training data, D will output a value to
determine the effect of the generating images. The higher the value, the more real the image.

Compared with all other models, GANs can produce clearer and more real samples
and are applied to some scenarios, such as super-resolution reconstruction, image editing,
data generation, malicious attack detection, and avoiding the design of complex loss
functions, and two networks will spontaneously fight against each other. However, GANs
also have some aspects that need to be improved. Since GANs originate from the idea of
a zero-sum game in game theory, the gradients of the generator and discriminator cancel
each other, which leads to the difficulty of network convergence. In addition, a GAN itself
has poor stability and is difficult to train. The context attention module can make a GAN
network abandon the current irrelevant information and pay more attention to the target
information, which can effectively reduce the complexity of training and improve the effect
of inpainting.

2.2. Attention Mechanism

Attention mechanisms have evolved from the study of human vision. In cognitive
science, the mechanisms by which people selectively focus on a portion of all information
and ignore the rest are often referred to as attention mechanisms. One of the functions of
attention mechanisms is to determine the part to focus on based on the query and then
allocate more resources to this part. This resource allocation method can help the network
process inputs more efficiently and improve the performance and efficiency of the network,
especially when dealing with large-scale datasets and complex models [24,25]. Most of
the time, deep neural networks need to focus on a certain part of the data, so the attention
mechanism is introduced into deep learning. Contextual attention can help the network
scan the overall image area and lock and pay more attention to the designated key areas. In
essence, contextual attention is similar to human attention mechanisms. Its main purpose
is to select the information that is more relevant to the current task objective from a large
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amount of information, set dynamic weighting parameters, strengthen the context-related
key information, weaken the irrelevant information, and greatly improve the efficiency of
deep learning algorithms.

Context attention can judge where to obtain useful information and determine which
feature information to use to patch the image. It is realized through convolution and
matches the generated patch with the context patch. Softmax is used to balance the patch
effect of deconvolution reconstruction using the context attention mechanism. The useful
key information in the network is strengthened, while the relatively useless information
is weakened so as to improve the learning efficiency in the network, which has been
widely used in image inpainting algorithms. Yan et al. [26] proposed a shift network
driven by shift and loss bootstrap operations, which obtained the relationship between the
context region in the encoder layer and the corresponding missing region in the decoder
layer. Song et al. [27] added a patch-swap module into the network, extracted feature maps
through a VGG network, spread the texture details with the highest frequency from the
boundary to the hole, and replaced the feature blocks corresponding to the missing areas
of each feature map with the most similar feature blocks in the context area. The method
in [23] adds the spatial propagation layer and uses the attention mechanism to increase
the global consistency of the image but fails to repair the correlation between the missing
areas well.

As is known, although GANs are powerful generative models that generate high-
quality samples, their training process is unstable, the diversity of the generated samples is
insufficient, and the difficulty of tuning the model parameters still need further research.
The GAN-based image inpainting method has great potential for improvement. Atten-
tion mechanisms have improved the performance and efficiency of deep neural networks.
Researchers introduced the CAM to improve image inpainting quality with satisfactory
results. However, it requires huge computational resources due to its two-stage process for
feature encoding. In order to develop more efficient and robust attention mechanisms to
cope with this problem, we propose a parallel decoding network that features a coarse path
for a preliminary effect and an inpainting path for a higher-quality effect. A truncation
distance is applied to determine similarity scores in the improved CAM to enhance the
performance of semantic feature representation. RED is used to replace the local discrimi-
nator in guiding the generator to obtain better results. The experiment indicates that the
proposed method exhibits favorable performance in improving inpainted image quality
and significantly reducing the computational time. The inpainted image shows enhanced
semantic continuity and improved facial features, with smoother lines and visible muscle
texture, resulting in higher consistency with the source image.

3. Methodology
3.1. Model Frame
3.1.1. Network Model

Parallel extended-decoder path for semantic inpainting (PEPSI) is a parallel network [28]
that uses a single-stage encoder–decoder structure. It utilizes a single encoding network to
extract features and a single decoding network to generate a high-quality inpainted result.
To aggregate contextual information, the network employs a series of dilated convolutional
layers that contain a large number of network parameters. Although pruning the channels
of these layers is an intuitive way to reduce the hardware cost, it often results in inferior
performance in practical applications. The generative network consists of a shared encoding
network and a parallel decoding network. The encoding network has a Diet-PEPSI unit [29],
which helps to reduce the parameters in the network. To address this issue of PEPSI, our
network utilizes rate-adaptive dilated convolutional layers, which share weights while
producing dynamic feature maps according to the given dilation rates. The rate-adaptive
dilated convolutional layers modify the shared weights by applying different scaling and
shifting operations based on the given dilation rates. Encoding networks use a co-learning
approach with coarse path and inpainting path parallel decoding networks. A CAM is
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added to the inpainting path to improve the global consistency of the final image [30].
Since the two paths are parallel, the number of convolution operations is reduced. The
discriminant network uses the region ensemble discriminator (RED) to process any missing
region. RED can detect a target object appearing anywhere in the image by individually
processing multiple feature regions. It utilizes individual regressors for each pixel, enabling
its function as both a global and local discriminator at the same time. The architecture of the
proposed network model is shown in Figure 2. Improvement is achieved in both the coarse
and inpainting paths through weight-sharing. The L1 reconstruction loss is exclusively
employed in the training of the coarse path, while both the L1 and adversarial losses are
utilized in the training of the inpainting path.
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3.1.2. Encoding Network

An encoding network is used to extract the features from the input images with
missing areas and complete missing features. A Diet-PEPSI unit is added to the encoding
network, which consists of a residual attentional spatial pyramid pooling convolutional
layer (RASPP) of 3 × 3 and a standard convolutional layer of 1 × 1, as shown in Figure 3.
We substituted the multiple expanded convolutional layers with a Diet-PEPSI unit. The
Diet-PEPSI unit features convolutional layers that are adaptable to the pace of change,
and they share weights, while the 1 × 1 standard convolutional layers do not. The whole
feature encoding network consists of a series of 3 × 3 convolutional layers. In the first
convolutional layer, a 5 × 5 convolutional kernel is used to make full use of the potential
information in the input image, as shown in Table 1. In addition, we use the adaptive-rate
expansion convolution layer in the last four convolution layers for scaling and shifting
according to the given expansion rate and changing the shared weight.
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Table 1. Detailed architecture of shared encoding network.

Type Kernel Dilation Stride Outputs

Convolution 5 × 5 1 1 × 1 32
Convolution 3 × 3 1 2 × 2 64
Convolution 3 × 3 1 1 × 1 64
Convolution 3 × 3 1 2 × 2 128
Convolution 3 × 3 1 1 × 1 128
Convolution 3 × 3 1 2 × 2 256

Dilated Convolution 3 × 3 2 1 × 1 256
Dilated Convolution 3 × 3 4 1 × 1 256
Dilated Convolution 3 × 3 8 1 × 1 256
Dilated Convolution 3 × 3 16 1 × 1 256

3.1.3. Decoding Network

The parallel decoding network consists of a coarse path and an inpainting path. The
coarse path produces a roughly complete result from the encoded feature map. On the
other hand, taking the encoded feature as the input, the inpainting path first reconstructs
the feature map using the CAM. Then, the reconstructed feature maps are decoded to
generate higher-quality inpainting results. By sharing the weight parameters of the two
paths, we attempt to normalize the repair path of the decoded network. In addition, two
different paths use the same encoded feature map as their input, so they force a single
encoder to generate valuable features for two different image generation tasks. During
the implementation of the parallel decoding network, all convolutional layers are filled.
In addition, the activation function ELU is adopted for all layers except the last layer, and
the image is normalized to [−1, 1], as shown in Table 2. The output layer comprises a
convolutional layer that limits the value to the range of [−1, 1].

Table 2. Detailed architecture of parallel decoding network.

Type Kernel Dilation Stride Outputs

Convolution × 2 3 × 3 1 1 × 1 128
Upsample (×2↑) - - - -
Convolution × 2 3 × 3 1 1 × 1 64
Upsample (×2↑) - - - -
Convolution × 2 3 × 3 1 1 × 1 32
Upsample (×2↑) - - - -
Convolution × 2 3 × 3 1 1 × 1 16

Convolution (output) 3 × 3 1 1 × 1 3

3.2. Network Improvement
3.2.1. Diet-PEPSI Unit

In traditional networks, a series of dilated convolution layers with different dilation
rates are often added to the encoding network to aggregate context information and extract
features with large receptive fields. This requires a lot of network parameters. Intuitively
we can reduce hardware costs by trimming the channels in these layers, but in practice,
it usually produces poor results. To solve this problem, a new rate-adaptive dilated
convolution layer is applied, which dynamically generates feature maps by using shared
weights according to given dilation rates. Since the rate-adaptive layer shares the weight
in each layer, the number of network parameters is significantly reduced compared with
multiple standard extended convolutional layers.

In general, the weight of the convolution layer is considered to be a four-dimensional
tensor W ∈ Rk×k×Cin×Cout, where k is the kernel size, Cin and Cout are the number of input
and output channels, respectively. The weights in each convolutional layer can be regarded
as Cout filters with Cin channels. In order to generate different feature maps according to the
given dilation rate, we define the scaling factor γd ∈ R1×1×Cin×Cout and the migration scale



Electronics 2023, 12, 1872 8 of 18

βd ∈ R1×1×Cin×Cout to adjust the parameter W, where d represents the dilation rate, γd and
βd is carried out according to the given dilation rate. The rate-adaptive scaling and shifting
operations mentioned above are shown in Figure 4. The scaling and shifting operations
include tensor broadcasting and βd as well as γd take on varying values depending on the
given rate. The adjustment formula of W is as follows:

Wd = γd ×W + βd (2)

where Wd ∈ Rk×k×Cin×Cout represents the weight after rate-adaptive modification.
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Diet-PEPSI has the same receptive field size covered by the standard dilated convo-
lutional layer, which requires 3 × 3 × Cin × Cout × n parameters. The Diet-PEPSI unit
requires (9 + 3n) × Cin × Cout parameters, where n represents the number of Diet-PEPSI
units and expanded convolutional layers. When n is greater than 1, i.e., when multiple
dilated convolution layers are required, it can be calculated that the network parameters
brought by Diet-PEPSI are significantly reduced.

3.2.2. Improved CAM

The CAM divides the input feature map into foreground patches and background
patches and measures the similarity score by applying cosine similarity. Finally, Soft-
max [31] was used to normalize the cosine similarity. The illustration of the CAM is shown
in Figure 5. The conventional CAM reconstructs the foreground patches by measuring the
cosine similarities with the background patches. In contrast, the modified CAM uses the
Euclidean distance to compute similarity scores. However, the normalization of the feature
block vector in Formula (3) will distort the semantic feature representation and lead to
distortion.

s(x,y),(x′ ,y′) =

〈
fx,y
‖ fx,y‖ ,

bx′ ,y′
‖bx′ ,y′‖

〉
s∗(x,y),(x′ ,y′) = so f tmax(λs(x, y), (x′, y′))

(3)

where fx,y are the coordinates of the foreground patching, bx′ ,y′ are the coordinates of the
background patch, and s(x,y),(x′,y′) are the similarity scores. λ is the hyperparameter of the
scaled softmax, s*(x,y),(x′,y′) is the weighted sum of the weighted background blocks.

To address the above problems, we use an improved CAM that uses Euclidean distance
to directly measure distance similarity scores because Euclidean distance takes into account
not only the angle between two feature block vectors but also their magnitude. However,
directly using Euclidean distance is not conducive to Softmax normalization. Truncation



Electronics 2023, 12, 1872 9 of 18

distance similarity is a metric used to measure the quality of a generative model’s output
in image synthesis. It measures the dissimilarity between the distribution of generated
samples and the distribution of real samples by comparing their truncated principal com-
ponent analysis (PCA) representations. The truncation distance is computed by taking the
average distance between the truncated PCA representations of generated and real samples.
A smaller truncation distance indicates the proximity of the generated samples to the real
samples in terms of their distribution, and as a result, truncation distance similarity is used
as a metric for measuring the quality of a generative model’s output. Truncation distance
similarity is as follows:

d̃(x,y),(x′ ,y′)= tan h(− (
d(x,y),(x′ ,y′)−m(d(x,y),(x′ ,y′))

σ(d(x,y),(x′ ,y′))
))

d(x,y),(x′ ,y′) = ‖ fx,y − bx′ ,y′‖
(4)

fx,y are the coordinates of the foreground patching, bx′ ,y′ are the coordinates of the back-

ground patch, d(x,y),(x,y) are the similarity scores, and d̃(x,y),(x′ ,y′) are truncation distances.
By using Euclidean distance instead of cosine similarity in the intercept design, not only
the vector angle is taken into account, but also the magnitude is considered. Images recon-
structed by applying the truncated distance similarity can collect more similar patches than
the cosine similarity.
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3.2.3. RED

Traditional global and local discriminators consider not only the coherence of the
entire image but also the local texture of the missing area. However, the local discriminator
can only deal with the missing area of the size of a square. To solve this problem, the global
and local discriminators can be unified into the regional ensemble discriminator. RED
consists of six convolution kernel with a size of 5× 5 and a stride of two and a final separate
fully connected layer [32], as shown in Table 3. RED divides the last layer of features into
pixel-level blocks, with each pixel using a separate fully connected layer that separately
discriminates each block. The illustration of RED is shown in Figure 6. In the final layer,
each pixel uses a fully connected layer with unique weights to classify any defected regions
that may be present in an image, regardless of their size or location. Since RED tries to
classify each feature block with different receptive fields separately, it judges different areas
of the image separately. In contrast to local discriminators, RED can handle a variety of
missing areas that may appear anywhere in an image of any size. After each convolution
layer, except for the last, there is a Leaky-ReLU as the activation function that normalizes
each layer [33].
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Table 3. Detailed structure of regional integration discriminator model.

Type Kernel Stride Outputs

Convolution 5 × 5 2 × 2 64
Convolution 5 × 5 2 × 2 128
Convolution 5 × 5 2 × 2 256
Convolution 5 × 5 2 × 2 256
Convolution 5 × 5 2 × 2 256
Convolution 5 × 5 2 × 2 512

FC 1 × 1 1 × 1 1
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3.3. Design of Loss Function

In traditional GANs, the generator is prone to gradient disappearance [34]. In order to
solve this problem, inspired by the literature [23], the network model in this study uses
GAN loss functions of the generator and discriminator. To train PEPSI, we jointly optimize
two different paths in the decoding phase: the inpainting path and the coarse path.

For inpainting paths, L1 losses and GAN losses are used. The formula is as follows:

LG = −Ex∼pxi
[D(x)] (5)

LD = Ex∼Py [min(0,−1 + D(x))]− EPxi
[min(0,−1− D(x))] (6)

where Pxi and Py represent the data distribution of the inpainting results and input images.
Since the goal of image restoration is not only to fill the missing part but also to obtain a
natural and smooth result, we use the L1 norm to add a strong constraint as a penalty term
in Formula (7), as shown below:

LG =
λi
N

N

∑
n=1
‖Xi

(n) −Y(n)‖1 − λadvEPxi
[D(x)] (7)

where Xi
(n) and Y(n) are, respectively, generated through the inpainting path of the image

of the nth image pair and the original input image in its corresponding batch size, N is
the batch size of the image logarithm, and λi and λadv are the super parameters to balance
between the two loss items.

For coarse paths, their role is to correctly complete the missing features for CAM,
using L1 losses:

Lc =
1
N

N

∑
n=1
‖Xc

(n) −Y(n)‖1 (8)
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where Xc(n) and Y(n) are the nth image pair of the image generated through the coarse path
and their corresponding small-batch original input images, respectively.

Finally, we define the total loss function of the PEPSI generation network as follows:

Ltotal = LG + λc(1−
k

kmax
)Lc (9)

where λc is the weight parameter and k and kmax represent the iteration and maximum
iteration periods of the learning process, respectively.

4. Experiments
4.1. Experimental Settings

The dataset used in this paper is CelebA Face [35], which contains more than 200,000 photos
of faces with feature annotations on each. A portion of them, 1000 training sets and 100 test
sets were chosen for the experiment. CelebA-HQ Face [36] is a high-resolution version of
the CelebA Face dataset. It includes over 30,000 high-quality facial images, each with a
resolution of 1024 × 1024 and the same 40 attribute annotations as the original CelebA Face
dataset. Compared to CelebA Face, CelebA-HQ Face has higher image quality and more
detailed features and is, therefore, more challenging. It is also more suitable for developing
high-fidelity face generation algorithms and more fine-grained facial attribute analysis
algorithms. To construct our training and test sets, we performed a random sampling of
28,000 images from CelebA Face and CelebA-HQ Face for the training set and 8000 images
for the test set from the dataset. Figure 7 depicts a portion of the picture samples.
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We trained our models’ 100,000 epochs with a batch size of 8, with learning rates of
0.0004 and 0.0001 for the discriminator and generator, respectively. The learning rate is
reduced to 1/10 after 0.9 million iterations. The maximum number of iterations is 10,000.
The mask size is 128 × 128. The image input resolution is 256 × 256. The optimize_ D
learning rate is 0.0004. The optimize_ G learning rate is: 0.0001.

The operating system, Windows 10, a desktop PC with 32GB of internal memory,
a Core i5-9600K CPU, and a GeForce GTX 1660 SUPER GPU are all used in this study.
Tensorflow 1.15.0 was chosen as the framework for the experiment, together with Cuda
10.0, python 3.6.0, and Cudnn 7.6.1.

To showcase the significance of our proposed method, we conducted a comparison of
their qualitative and quantitative operation speeds and the number of network parameters
against the conventional generative methods, which include context encoders (CE) [22], a
generator with contextual attention (GCA) [23], and PEPSI [28].
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4.2. Evaluation Metrics

Since the subjective evaluation information is greatly affected by individuals, it is more ob-
jective and unified to use quantitative metrics to evaluate the image inpainting results [37–39].
The following are mainly used to evaluate the results of image restoration, mean square
error (MSE) [40], peak signal-to-noise ratio (PSNR) [41], and structural similarity index
(SSIM) [42].

The formula for PSNR is as follows:

MSE = 1
H×W

H
∑

i=1

W
∑

j=1
[X(i, j)−Y(i, j)]2

PSNR = 10× log10(
MAX2

1
MSE ) = 20× log10(

MAX1√
MSE

)

(10)

where H and W, respectively, represent the width and height of the image, (i,j) represents
each pixel of the image, X(i,j) represents the pixel information value after inpainting the
missing area of the image, Y(i,j) represents the pixel information value of the missing area,
and MAX1 represents the maximum value of the color of the image point. The larger the
PSNR is, the less the distortion of the repaired image and the richer the diversity of the
pixel information.

The calculation formula of SSIM is as follows:

l(x, y) = 2µxµy+C1
µ2

x+µ2
y+C1

c(x, y) = 2σxσy+C2

σ2
x+σ2

y+C2

s(x, y) = σxy+C3
σxσy+C3

SSIM(x, y) = l(x, y)·c(x, y)·s(x, y)

(11)

where µx represents the mean of sample X, µy represents the mean of sample Y, σx repre-
sents the variance of sample X, σy represents the variance of sample Y, σxy represents the
covariance of sample X and sample Y, and C1, C2, and C3 are all constants. The range of
SSIM is [0, 1]. The larger the SSIM is, the more similar the structure of the two images is. In
other words, the higher the quality of the inpainting image, the smaller the distortion.

4.3. Experimental Results and Analysis
4.3.1. Diet-PEPSI Unit Validation

To compare the impacts before and after adding the Diet-PEPSI unit, we utilized the
same generator and discriminator, the same loss function as the optimization goal, all of
the parameters were set to the same value, and the environment was also the same. The
image inpainting performance comparison with/without the Diet-PEPSI unit is shown
in Figure 8.
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where μx represents the mean of sample X, μy represents the mean of sample Y, σx 
represents the variance of sample X, σy represents the variance of sample Y, σxy represents 
the covariance of sample X and sample Y, and C1, C2, and C3 are all constants. The range 
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As can be seen from the comparison effect, there is little difference in the effect
of the model using Diet-PEPSI instead of dilated convolution. Because the Diet-PEPSI
consists of an adaptive dilated convolutional layer and a standard convolutional layer, the
adaptive dilated convolutional layer shares weights between each layer, greatly reducing
the parameters in the network. This also means that using Diet-PEPSI can reduce memory
usage without compromising the inpainting effect, reducing the hardware configuration
requirements of the model.

4.3.2. Improved CAM Validation

To compare the impacts before and after the improvement of the CAM module, we
utilized the same generator and discriminator, the same loss function as the optimization
goal, all parameters were set to the same value, and the environment was also the same.
The image inpainting performance comparison of CAM improvement or not is shown in
Figure 9.

Electronics 2023, 12, 1872 14 of 19 
 

 

 
Figure 9. Image inpainting comparison of using CAM improvement or not. (a) Input image of the 
network; (b) Result of CAM; (c) Result of improved CAM; (d) Ground Truth. 

It can be seen from the comparison effect that after improving the CAM, the inpaint-
ing effect is more similar to the real image. Because the improved CAM takes the size of 
the feature block into account in addition to the vector angle of the feature block, the im-
age’s overall semantic continuity and local semantic continuity have both significantly 
improved, and the smoother facial lines and muscle texture are clearly visible. Addition-
ally, it indicates that the improved CAM is better suited to handle the relationship be-
tween the background and the defect area. 

4.3.3. RED Validation 
To compare the impacts of using the local discriminator and using the RED, we uti-

lized the same generator and discriminator, the same loss function as the optimization 
goal, all of the parameters were set to the same value, and the environment was also the 
same. The inpainting results of using a local discriminator or RED are shown in Figure 10.  

It can be seen from the comparison effect that the inpainting image is more consistent 
with the real image after RED replaces the local discriminator. The use of a local discrim-
inator has some flaws in the details of image inpainting, relying too much on the missing 
areas of the image and ignoring the overall continuity of the image. On the other hand, 
RED judges each feature block in different receptive fields to improve image quality. 

 
Figure 10. Inpainting results of using local discriminator or RED. (a) Input image of the network; 
(b) Result of using local discriminator; (c) Result of using RED; (d) Ground truth. 

4.3.4. Qualitative Assessments 
In the experiment, we, respectively, investigated the use of a square mask and a free 

mask for the input image. Figure 11 depicts the inpainting results of different methods 
with the square mask for the input image. Figure 12 depicts the inpainting results of dif-
ferent methods with the free mask for the input image.  

Figure 9. Image inpainting comparison of using CAM improvement or not. (a) Input image of the
network; (b) Result of CAM; (c) Result of improved CAM; (d) Ground Truth.

It can be seen from the comparison effect that after improving the CAM, the inpainting
effect is more similar to the real image. Because the improved CAM takes the size of
the feature block into account in addition to the vector angle of the feature block, the
image’s overall semantic continuity and local semantic continuity have both significantly
improved, and the smoother facial lines and muscle texture are clearly visible. Additionally,
it indicates that the improved CAM is better suited to handle the relationship between the
background and the defect area.

4.3.3. RED Validation

To compare the impacts of using the local discriminator and using the RED, we utilized
the same generator and discriminator, the same loss function as the optimization goal, all
of the parameters were set to the same value, and the environment was also the same. The
inpainting results of using a local discriminator or RED are shown in Figure 10.
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It can be seen from the comparison effect that the inpainting image is more consistent
with the real image after RED replaces the local discriminator. The use of a local discrimi-
nator has some flaws in the details of image inpainting, relying too much on the missing
areas of the image and ignoring the overall continuity of the image. On the other hand,
RED judges each feature block in different receptive fields to improve image quality.

4.3.4. Qualitative Assessments

In the experiment, we, respectively, investigated the use of a square mask and a free
mask for the input image. Figure 11 depicts the inpainting results of different methods with
the square mask for the input image. Figure 12 depicts the inpainting results of different
methods with the free mask for the input image.
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It is easy to see that these compared methods all can effectively inpaint the image with
a square mask in Figure 11. No residual of the square mask appeared on the inpainted face
images. However, blur and distortion appear on the inpainted face images of GCA, such
as the blurred eyes and the distorted nose and lips of the woman in the middle row and
the dead color of the left face of the woman in the bottom row. The CE method cannot
well inpaint the image with a free mask, as seen in Figure 12. The residual of the free mask
appears on the inpainted face image of CE, such as the forehead of the two men and the eyes
and hair of the woman. The visual quality of PEPSI and the proposed method are similar to
the source images and are all good. The detail features such as the edge, structure, textures,
and colors of the inpainted face images obtained by the proposed method are better than
that of PEPSI. The proposed method’s single-stage network structure can overcome the
limitations of the two-stage coarse-to-fine network by utilizing a joint learning scheme.
It can drive the encoding network to properly produce missing features for the CAM by
using the coarse path. The RED used in the proposed method is inspired by the region
ensemble network, which is capable of classifying objects in any region of the image. This
improves the performance of the generator on free-form masks and effectively drives the
generator to produce visually pleasing inpainting results. The proposed method can obtain
better visual quality inpainted images than the other three compared methods.
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4.3.5. Quantitative Assessments

Two quality metrics mentioned above are performed on the inpainted images obtained
by different comparison methods. The network parameter quantity (PQ) and running time
(Time) are used to measure the efficiency of the comparison methods. The measured results
of PSNR, SSIM, Time, and PQ are listed in Tables 4 and 5. Table 4 shows the measured
results of the comparison methods for the square masked images. Table 5 shows the
measured results of the comparison methods for the free-form masked images. It can be
seen that, in Table 4, our model obtains the highest score in PSNR and SSIM. Compared
with the CE model, our model’s PSNR increases by 3.5 dB, SSIM increases by 0.006%,
time is shortened by 10.6 ms, and the number of network parameters is reduced by 3.3 M.
Compared with the GCA, PSNR, SSIM, time and parameter number of PEPSI increase by
0.6 dB, 0.005%, 1.0 ms and 0.4 M, respectively, with little overall change. Compared with
PESPI, the PSNR of our model is increased by 0.4 dB, SSIM by 0.002%, time is shortened
by 0.6 ms, and the PQ is reduced by 1.4 M. Except for the obvious reduction in network
parameters, the other evaluation indexes have no significant changes. It can be seen in
Table 5 that our model obtains the highest score in PSNR and SSIM. Compared with the
CE, the PSNR of our model increases by 7.9 dB. The SSIM is increased by 0.029%, the
time is shortened by 10.6 ms, and the number of network parameters is reduced by 3.3 M.
Compared with GCA, the PSNR of PEPSI is increased by 4.4 dB, SSIM by 0.026%, time by
1.7 ms, parameter number by 0.4 M, and PSNR is greatly improved, and other indicators
have little change. Compared with the PEPSI, the PSNR of our model is increased by 0.2 dB,
SSIM by 0.003%, time is shortened by 0.8 ms, and the number of network parameters
is reduced by 1.4 M. Except for the obvious reduction in network parameters, the other
evaluation indexes have no significant change. In order to ease comparison, bar charts
of the metric values in Tables 4 and 5 are shown in Figure 13. It is easy to see that the
performance of the proposed method is superior to that of the other compared methods.



Electronics 2023, 12, 1872 16 of 18

Table 4. Performance of the different inpainting methods for square masked images.

Net Model PSNR/dB SSIM/% Time/ms PQ/M

CE 23.7 0.895 21.4 5.8
GCA 26.2 0.894 9.2 3.5
PEPSI 26.8 0.899 10.2 3.9
Ours 27.2 0.901 10.8 2.5

Table 5. Performance of different inpainting methods for free-form masked images.

Net Model PSNR/dB SSIM/% Time/ms PQ/M

CE 22.8 0.899 22.5 5.8
GCA 24.1 0.912 9.4 3.5
PEPSI 28.5 0.925 11.1 3.9
Ours 28.7 0.928 11.9 2.5
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By utilizing a rate-adaptive convolutional layer, the proposed method can replace
the standard dilated convolutional layer with fewer network parameters. Despite using
significantly fewer network parameters, the proposed method achieves competitive perfor-
mance with PEPSI and outperforms other conventional methods. This demonstrates that
the proposed method can generate high-quality images with low hardware costs. As can be
seen from the parameters, adding the Diet-PEPSI unit can significantly reduce parameters
and reduce hardware requirements. In general, the model proposed in this paper is less
time-consuming, requires fewer network parameters, and improves the image inpainting
effect. However, we notice that the advantage of our method in SSIM is not obvious. Our
method aims to calculate the correlation between missing areas and non-missing areas with
the attention mechanism to inpainted images. There is no advantage in feature extraction.
Moreover, the coarse-to-fine network and attention module do not learn the texture infor-
mation of the bottom layer. It may lead to a poor local detail inpainting effect. The lack of
supervised attention scores may lead to unreliable learning relationships. Thus, we need to
introduce supervised attention to obtain reliable learning relationships in the future.

5. Conclusions

A GAN-based method is a useful approach in terms of image inpainting. However,
there are too many parameters to train in the network; in addition, there is still room
for improvement in terms of the repair result. This paper changes the usual two-stage
network structure into a one-stage network, including a separate encoding network and
a parallel decoding network. The decoding network is composed of a coarse path and
an inpainting path. Through the parallel operation of the two paths in the decoding
network, the iteration from a coarse to fine image is achieved. We reduced the size of the
model parameters by introducing the Diet-PEPSI module to the encoder. We improved
the transition performance at the border of the defective areas by using the truncation
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distance similarity metric in CAM. We applied a region ensemble discriminator to inpaint
more defective region shapes. Through comparative experiments, the algorithm in this
paper can effectively reduce computational costs while achieving a satisfactory repair
effect. The proposed method can be widely employed in various applications such as
image generation, style transfer, and image editing. However, the algorithm still has some
shortcomings. It can achieve good repair results on the datasets used in the experiments,
but the image repair effect on non-training datasets is not ideal. Our future work will focus
on improving the generalization of this method and further promoting it to the application
of datasets in other fields.
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