Security and Internet of Things: Benefits, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Concepts
2.1. IoT
2.2. Security Requirements in IoT
2.3. Network Security
2.4. Security of Data
3. Research Method
4. Results
5. Discussion
5.1. Authentication
5.2. Wireless Networks
5.3. Use Cases
5.4. Challenges and Prospects
- The development of sufficient intelligent systems engineering through the application of some intelligent algorithms and machine learning is necessary for real-time data analysis and effective hardware design.
- Blockchain is severely limited when there are many servers. Some highly efficient methods can replace nodes, and using numerous resources can emerge as a popular way to address the problem.
- Using machine learning and refining methods such as artificial intelligence (AI) and deep learning to improve fog levels.
- The only goal of fog sharing is to protect fog-cloud processing. It may be a hopeful answer if realized.
- End-to-end encryption methods and sufficient shielding procedures are still required for gateways between various locations.
- To comprehend adversary assaults, edge devices need to be extremely safe and intelligent.
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amin, F.; Abbasi, R.; Rehman, A.; Choi, G.S. An Advanced Algorithm for Higher Network Navigation in Social Internet of Things Using Small-World Networks. Sensors 2019, 19, 2007. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.K.; Patel, S.M.; Scholar, P. Internet of things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131. [Google Scholar]
- Hammoudi, S.; Aliouat, Z.; Harous, S. Challenges and research directions for Internet of Things. Telecommun. Syst. 2018, 67, 367–385. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Taherdoost, H. Blockchain-Based Internet of Medical Things. Appl. Sci. 2023, 13, 1287. [Google Scholar] [CrossRef]
- Chaudhary, S.; Johari, R.; Bhatia, R.; Gupta, K.; Bhatnagar, A. CRAIoT: Concept, review and application (s) of IoT. In Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 18–19 April 2019; pp. 1–4. [Google Scholar]
- Thakor, V.A.; Razzaque, M.A.; Khandaker, M.R.A. Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Review, Comparison and Research Opportunities. IEEE Access 2021, 9, 28177–28193. [Google Scholar] [CrossRef]
- Mrabet, H.; Belguith, S.; Alhomoud, A.; Jemai, A. A Survey of IoT Security Based on a Layered Architecture of Sensing and Data Analysis. Sensors 2020, 20, 3625. [Google Scholar] [CrossRef]
- Hamad, S.A.; Sheng, Q.Z.; Zhang, W.E.; Nepal, S. Realizing an Internet of Secure Things: A Survey on Issues and Enabling Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1372–1391. [Google Scholar] [CrossRef]
- Harbi, Y.; Aliouat, Z.; Harous, S.; Bentaleb, A.; Refoufi, A. A Review of Security in Internet of Things. Wirel. Pers. Commun. 2019, 108, 325–344. [Google Scholar] [CrossRef]
- Adat, V.; Gupta, B.B. Security in Internet of Things: Issues, challenges, taxonomy, and architecture. Telecommun. Syst. 2018, 67, 423–441. [Google Scholar] [CrossRef]
- Noor, M.B.M.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar] [CrossRef]
- Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733. [Google Scholar] [CrossRef]
- Narayanan, U.; Paul, V.; Joseph, S. Decentralized blockchain based authentication for secure data sharing in Cloud-IoT: DeBlock-Sec. J. Ambient Intell. Humaniz. Comput. 2021, 13, 769–787. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Kannan, G. Cloud-Based Remote RFID Authentication for Security of Smart Internet of Things Applications. J. Inf. Knowl. Manag. 2021, 20, 2140004. [Google Scholar] [CrossRef]
- Kumar, P.; Chouhan, L. A privacy and session key based authentication scheme for medical IoT networks. Comput. Commun. 2021, 166, 154–164. [Google Scholar] [CrossRef]
- Anuradha, M.; Jayasankar, T.; Prakash, N.; Sikkandar, M.Y.; Hemalakshmi, G.; Bharatiraja, C.; Britto, A.S.F. IoT enabled cancer prediction system to enhance the authentication and security using cloud computing. Microprocess. Microsyst. 2021, 80, 103301. [Google Scholar] [CrossRef]
- Irshad, A.; Usman, M.; Chaudhry, S.A.; Bashir, A.K.; Jolfaei, A.; Srivastava, G. Fuzzy-in-the-Loop-Driven Low-Cost and Secure Biometric User Access to Server. IEEE Trans. Reliab. 2020, 70, 1014–1025. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Farash, M.S.; Kumar, N.; Alsharif, M.H. PFLUA-DIoT: A pairing free lightweight and unlinkable user access control scheme for distributed IoT environments. IEEE Syst. J. 2020, 16, 309–316. [Google Scholar] [CrossRef]
- Mishra, N.; Pandya, S. Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. IEEE Access 2021, 9, 59353–59377. [Google Scholar] [CrossRef]
- Hameed, A.; Alomary, A. Security issues in IoT: A survey. In Proceedings of the 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain, 22–23 September 2019; pp. 1–5. [Google Scholar]
- Lu, Y.; Da Xu, L. Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE Internet Things J. 2019, 6, 2103–2115. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Jurcut, A.; Niculcea, T.; Ranaweera, P.; Le-Khac, N.-A. Security Considerations for Internet of Things: A Survey. SN Comput. Sci. 2020, 1, 1–19. [Google Scholar] [CrossRef]
- Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H. Internet of things security: A top-down survey. Comput. Netw. 2018, 141, 199–221. [Google Scholar] [CrossRef]
- Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A survey of edge computing-based designs for IoT security. Digit. Commun. Netw. 2020, 6, 195–202. [Google Scholar] [CrossRef]
- Yousefnezhad, N.; Malhi, A.; Främling, K. Security in product lifecycle of IoT devices: A survey. J. Netw. Comput. Appl. 2020, 171, 102779. [Google Scholar] [CrossRef]
- Yugha, R.; Chithra, S. A survey on technologies and security protocols: Reference for future generation IoT. J. Netw. Comput. Appl. 2020, 169, 102763. [Google Scholar] [CrossRef]
- Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 291–319. [Google Scholar]
- Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27. [Google Scholar] [CrossRef]
- Airehrour, D.; Gutierrez, J.; Ray, S.K. Secure routing for internet of things: A survey. J. Netw. Comput. Appl. 2016, 66, 198–213. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things: A survey. Futur. Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- HaddadPajouh, H.; Dehghantanha, A.; Parizi, R.M.; Aledhari, M.; Karimipour, H. A survey on internet of things security: Requirements, challenges, and solutions. Internet Things 2021, 14, 100129. [Google Scholar] [CrossRef]
- Goudarzi, A.; Ghayoor, F.; Waseem, M.; Fahad, S.; Traore, I. A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook. Energies 2022, 15, 6984. [Google Scholar] [CrossRef]
- Romkey, J. Toast of the IoT: The 1990 Interop Internet Toaster. IEEE Consum. Electron. Mag. 2016, 6, 116–119. [Google Scholar] [CrossRef]
- Rajaraman, V. Radio frequency identification. Resonance 2017, 22, 549–575. [Google Scholar] [CrossRef]
- Yang, G. An Overview of Current Solutions for Privacy in the Internet of Things. Front. Artif. Intell. 2022, 5, 812732. [Google Scholar] [CrossRef]
- Yu, T.; Sekar, V.; Seshan, S.; Agarwal, Y.; Xu, C. Handling a trillion (unfixable) flaws on a billion devices: Rethinking network security for the internet-of-things. In Proceedings of the 14th ACM Workshop on Hot Topics in Networks, Philadelphia, PA, USA, 16–17 November 2015; pp. 1–7. [Google Scholar]
- Andrea, I.; Chrysostomou, C.; Hadjichristofi, G. Internet of Things: Security vulnerabilities and challenges. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 180–187. [Google Scholar]
- Nieles, M.; Dempsey, K.; Pillitteri, V.Y. An introduction to information security. NIST Spec. Publ. 2017, 800, 101. [Google Scholar] [CrossRef]
- Russell, B.; Van Duren, D. Practical Internet of Things Security; Packt Publishing Ltd: Birmingham, UK, 2016. [Google Scholar]
- Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv. Tutor. 2018, 21, 1636–1675. [Google Scholar] [CrossRef]
- Taherdoost, H. Understanding Cybersecurity Frameworks and Information Security Standards—A Review and Comprehensive Overview. Electronics 2022, 11, 2181. [Google Scholar] [CrossRef]
- Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowl.-Based Syst. 2020, 189, 105124. [Google Scholar] [CrossRef]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Pereira, T.; Barreto, L.; Amaral, A. Network and information security challenges within Industry 4.0 paradigm. Procedia Manuf. 2017, 13, 1253–1260. [Google Scholar] [CrossRef]
- Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 1–4. [Google Scholar]
- Moyne, J.; Mashiro, S.; Gross, D. Determining a security roadmap for the microelectronics industry. In Proceedings of the 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 30 April–3 May 2018; pp. 291–294. [Google Scholar]
- Benias, N.; Markopoulos, A.P. A review on the readiness level and cyber-security challenges in Industry 4.0. In Proceedings of the 2017 South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Kastoria, Greece, 23–25 September 2017; pp. 76–80, ISBN 978-618-83314-0-2. [Google Scholar]
- Hassanzadeh, A.; Modi, S.; Mulchandani, S. Towards effective security control assignment in the Industrial Internet of Things. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 795–800. [Google Scholar] [CrossRef]
- Autenrieth, P.; Lörcher, C.; Pfeiffer, C.; Winkens, T.; Martin, L. Current significance of IT-infrastructure enabling industry 4.0 in large companies. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–8. [Google Scholar]
- Esposito, C.; Castiglione, A.; Martini, B.; Choo, K.-K.R. Cloud Manufacturing: Security, Privacy, and Forensic Concerns. IEEE Cloud Comput. 2016, 3, 16–22. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Kitchenham: Durham, UK, 2007. [Google Scholar]
- Taherdoost, H. Non-Fungible Tokens (NFT): A Systematic Review. Information 2023, 14, 26. [Google Scholar] [CrossRef]
- Abu Saa, A.; Al-Emran, M.; Shaalan, K. Factors Affecting Students’ Performance in Higher Education: A Systematic Review of Predictive Data Mining Techniques. Technol. Knowl. Learn. 2019, 24, 567–598. [Google Scholar] [CrossRef]
- de Lacalle, L.N.L.; Posada, J. Special issue on new Industry 4.0 advances in industrial IoT and visual computing for manufacturing processes. Appl. Sci. 2019, 9, 4323. [Google Scholar] [CrossRef]
- Tayyaba, S.; Khan, S.A.; Tariq, M.; Ashraf, M.W. Network security and Internet of things. In Industrial Internet of Things and Cyber-Physical Systems: Transforming the Conventional to Digital; IGI Global: Hershey, PA, USA, 2020; pp. 198–238. [Google Scholar]
- Logrippo, L. Multi-level models for data security in networks and in the Internet of things. J. Inf. Secur. Appl. 2021, 58, 102778. [Google Scholar] [CrossRef]
- El-Latif, A.A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E.; Elwahsh, H.; Piran, J.; Bashir, A.K.; Song, O.-Y.; Mazurczyk, W. Providing End-to-End Security Using Quantum Walks in IoT Networks. IEEE Access 2020, 8, 92687–92696. [Google Scholar] [CrossRef]
- Li, Y.; Sha, J.; Geng, R. Research on internal network data security monitoring method based on NB-IOT. Web Intell. 2021, 19, 191–202. [Google Scholar] [CrossRef]
- Batra, I.; Verma, S.; Kavita; Alazab, M. A lightweight IoT-based security framework for inventory automation using wireless sensor network. Int. J. Commun. Syst. 2020, 33, e4228. [Google Scholar] [CrossRef]
- Kalyani, G.; Chaudhari, S. Cross Layer Security MAC Aware Routing Protocol for IoT Networks. Wirel. Pers. Commun. 2022, 123, 935–957. [Google Scholar] [CrossRef]
- Ali, F.; Mathew, S. An efficient multilevel security architecture for blockchain-based IoT networks using principles of cellular automata. PeerJ Comput. Sci. 2022, 8, e989. [Google Scholar] [CrossRef] [PubMed]
- Kaňuch, P.; Macko, D. E-HIP: An Energy-Efficient OpenHIP-Based Security in Internet of Things Networks. Sensors 2019, 19, 4921. [Google Scholar] [CrossRef] [PubMed]
- Parne, B.L.; Gupta, S.; Chaudhari, N.S. SEGB: Security Enhanced Group Based AKA Protocol for M2M Communication in an IoT Enabled LTE/LTE-A Network. IEEE Access 2018, 6, 3668–3684. [Google Scholar] [CrossRef]
- Tao, M.; Ota, K.; Dong, M.; Qian, Z. AccessAuth: Capacity-aware security access authentication in federated-IoT-enabled V2G networks. J. Parallel Distrib. Comput. 2018, 118, 107–117. [Google Scholar] [CrossRef]
- Pan, M.; Tian, S.; Yuan, J.; Chen, S. Simulation of Dynamic User Network Connection Anti-Interference and Security Authentication Method Based on Ubiquitous Internet of Things. Math. Probl. Eng. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Medhane, D.V.; Sangaiah, A.K.; Hossain, M.S.; Muhammad, G.; Wang, J. Blockchain-Enabled Distributed Security Framework for Next-Generation IoT: An Edge Cloud and Software-Defined Network-Integrated Approach. IEEE Internet Things J. 2020, 7, 6143–6149. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, D. Security authentication technology based on dynamic Bayesian network in Internet of Things. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 573–580. [Google Scholar] [CrossRef]
- Sankar, S.P.; Subash, T.D.; Vishwanath, N.; Geroge, D.E. Security improvement in block chain technique enabled peer to peer network for beyond 5G and internet of things. Peer Netw. Appl. 2021, 14, 392–402. [Google Scholar] [CrossRef]
- Hu, B.; Tang, W.; Xie, Q. A two-factor security authentication scheme for wireless sensor networks in IoT environments. Neurocomputing 2022, 500, 741–749. [Google Scholar] [CrossRef]
- Shahid, H.; Ashraf, H.; Javed, H.; Humayun, M.; Jhanjhi, N.; AlZain, M.A. Energy Optimised Security against Wormhole Attack in IoT-Based Wireless Sensor Networks. Comput. Mater. Contin. 2021, 68, 1967–1981. [Google Scholar] [CrossRef]
- Verma, S.; Kawamoto, Y.; Kato, N. A Network-Aware Internet-Wide Scan for Security Maximization of IPv6-Enabled WLAN IoT Devices. IEEE Internet Things J. 2021, 8, 8411–8422. [Google Scholar] [CrossRef]
- Wu, F.; Xu, L.; Kumari, S.; Li, X. A privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security. J. Ambient. Intell. Humaniz. Comput. 2017, 8, 101–116. [Google Scholar] [CrossRef]
- Yu, H.; He, J.; Liu, R.; Ji, D. On the Security of Data Collection and Transmission from Wireless Sensor Networks in the Context of Internet of Things. Int. J. Distrib. Sens. Netw. 2013, 9, 806505. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Shang, H. Security Analysis on Wireless Sensor Network in the Data Center for Energy Internet of Things. Int. J. Saf. Secur. Eng. 2020, 10, 397–402. [Google Scholar] [CrossRef]
- Sun, N.; Li, T.; Song, G.F.; Xia, H.R. Network Security Technology of Intelligent Information Terminal Based on Mobile Internet of Things. Mob. Inf. Syst. 2021, 2021, 6676946. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Q.; Zhang, Q.; Yang, L.; Qin, J. Beamforming Design for Physical Layer Security in a Two-Way Cognitive Radio IoT Network With SWIPT. IEEE Internet Things J. 2019, 6, 10786–10798. [Google Scholar] [CrossRef]
- Teng, D. Industrial Internet of Things Anti-Intrusion Detection System by Neural Network in the Context of Internet of Things for Privacy Law Security Protection. Wirel. Commun. Mob. Comput. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Yin, X.C.; Liu, Z.G.; Ndibanje, B.; Nkenyereye, L.; Islam, S.M.R. An IoT-Based Anonymous Function for Security and Privacy in Healthcare Sensor Networks. Sensors 2019, 19, 3146. [Google Scholar] [CrossRef]
- Manimuthu, A.; Ramesh, R. Privacy and data security for grid-connected home area network using Internet of Things. IET Netw. 2018, 7, 445–452. [Google Scholar] [CrossRef]
- Boussard, M.; Bui, D.T.; Douville, R.; Justen, P.; Le Sauze, N.; Peloso, P.; Vandeputte, F.; Verdot, V. Future Spaces: Reinventing the Home Network for Better Security and Automation in the IoT Era. Sensors 2018, 18, 2986. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Awang, A.; Karim, S.A.B.A. Security in Internet of Things: A Review. IEEE Access 2022, 10, 104649–104670. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A. Internet of Things: Security and Solutions Survey. Sensors 2022, 22, 7433. [Google Scholar] [CrossRef] [PubMed]
Inclusion Standards | Exclusion Standards |
---|---|
Should consider network security | Articles not written in English |
Should include Data Privacy/Communication Systems/Transfer/Acquisition/Sharing/Confidently in the title/abstract/keywords | Duplicated articles |
Document Type: Article | Articles in Press |
Source Type: Journal | Articles not written between 2012 to 2022 |
Subject Area | Number of Articles |
---|---|
Computer Science | 22 |
Engineering | 13 |
Mathematics | 4 |
Biochemistry, Genetics and Molecular Biology | 3 |
Chemistry | 3 |
Materials Science | 3 |
Physics and Astronomy | 3 |
Decision Sciences | 1 |
Environmental Science | 1 |
Neuroscience | 1 |
Data Privacy | Data Sharing | Data Communication Systems | Data Confidently | Data Acquisition | Data Transfer | |
---|---|---|---|---|---|---|
Hu et al. [72] | 🗸 | |||||
Kalyani and Chaudhari [63] | 🗸 | |||||
Teng [80] | 🗸 | |||||
Pan et al. [68] | 🗸 | 🗸 | ||||
Yin et al. [81] | 🗸 | |||||
Manimuthu and Ramesh [82] | 🗸 | 🗸 | ||||
Boussard et al. [83] | 🗸 | |||||
Tao et al. [67] | 🗸 | |||||
Parne et al. [66] | 🗸 | |||||
Wu et al. [75] | 🗸 | |||||
Shahid et al. [73] | 🗸 | 🗸 | ||||
Ali and Mathew [64] | 🗸 | |||||
Sankar et al. [71] | 🗸 | 🗸 | 🗸 | |||
Sun et al. [78] | 🗸 | |||||
Zhang and Xu [70] | 🗸 | |||||
Deng et al. [79] | 🗸 | |||||
Verma et al. [74] | 🗸 | |||||
Logrippo [59] | 🗸 | |||||
Medhane et al. [69] | 🗸 | |||||
Li et al. [61] | 🗸 | |||||
Batra et al. [62] | 🗸 | |||||
Yu et al. [76] | 🗸 | |||||
Xie et al. [77] | 🗸 | |||||
El-Latif et al. [60] | 🗸 | |||||
Kaňuch and Macko [65] | 🗸 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherdoost, H. Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics 2023, 12, 1901. https://doi.org/10.3390/electronics12081901
Taherdoost H. Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics. 2023; 12(8):1901. https://doi.org/10.3390/electronics12081901
Chicago/Turabian StyleTaherdoost, Hamed. 2023. "Security and Internet of Things: Benefits, Challenges, and Future Perspectives" Electronics 12, no. 8: 1901. https://doi.org/10.3390/electronics12081901
APA StyleTaherdoost, H. (2023). Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics, 12(8), 1901. https://doi.org/10.3390/electronics12081901