
Citation: Zheng, X.; Lu, C.; Zhu, P.;

Yang, G. Visual Multitask Real-Time

Model in an Automatic Driving

Scene. Electronics 2023, 12, 2097.

https://doi.org/10.3390/

electronics12092097

Academic Editor: Ahmed F. Zobaa

Received: 24 February 2023

Revised: 18 April 2023

Accepted: 29 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Visual Multitask Real-Time Model in an Automatic
Driving Scene
Xinwang Zheng 1,2, Chengyu Lu 1,3, Peibin Zhu 2 and Guangsong Yang 2,*

1 Chengyi College, Jimei University, Xiamen 361021, China
2 School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
3 School of Machinery and Transportation, Southwest Forestry University, Kunming 650224, China
* Correspondence: gsyang@jmu.edu.cn

Abstract: In recent years, automatic driving technology has developed rapidly, and environmental
perception is one of the important aspects of the technology of automatic driving. To design a real-
time automatic driving perception system with limited computational resources, we first proposed a
network with faster reasoning speed and fewer parameters by using multitask learning and vision-
based recognition technology, which can target the three tasks of traffic target detection, drivable road
segmentation, and lane detection that need to be performed simultaneously. Based on the Apollo
Scape dataset, the experiment results show that our network is superior to the baseline network in
terms of accuracy and reasoning speed and can perform various challenging tasks.

Keywords: automatic driving; deep learning; multitask learning; image processing; lane line detection;
target detection

1. Introduction

Due to the decreasing oil resources and people’s demand for new technologies, new
energy vehicles are rapidly popularized and bring more possibilities for automatic driving
technology. In the automatic driving technology, the ability to perceive the environment
is the most critical step to achieve the automatic driving technology that meets human
expectations, which can help the vehicle to perceive the surrounding environment and
control the driving direction or other controls of the vehicle independently. Object detection
based on visual recognition is one of the crucial technologies to help vehicles avoid obstacles
or pedestrians and comply with traffic regulations. It also can detect the lane line and the
drivable area by the visual perception system and plan the corresponding driving path
while guaranteeing for the driving safety.

Because there are various possibilities in the real-world environment, it requires that
the auto drive system has high real-time and accuracy, and only in this way can the auto
drive system bring more control safety than human beings. The same applies to the visual
perception system of the auto drive system. Taking the current Advanced Driver Assistance
System (ADAS) [1] as an example, the computing power of its applied hardware platform
is very limited, which is caused by the problems of hardware cost and computing power
miniaturization, which are also difficult to solve in the short term. Therefore, it is expected
that there will be a network that can balance the requirements of real-time, high-precision,
and multitask.

Compared to traditional image processing methods, neural network-based target de-
tection and image segmentation models offer more possibilities. Recently, some noteworthy
work on object detection has been put forward, such as RetinaNet [2]. To solve the problem of
an unbalanced distribution of positive and negative samples in a single-stage, the loss function
is improved in some references to make the performance comparable to that of the two-stage
algorithm. CenterNet [3] applies an anchored detection box network in object detection in a
single scene, Fast R-CNN [4] uses an area detection algorithm to provide an object box, and

Electronics 2023, 12, 2097. https://doi.org/10.3390/electronics12092097 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12092097
https://doi.org/10.3390/electronics12092097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1489-9841
https://doi.org/10.3390/electronics12092097
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12092097?type=check_update&version=1

Electronics 2023, 12, 2097 2 of 15

YOLO [5–8] also uses a predefined prediction area method for target detection. It is a simple
and efficient end-to-end network. Common segmentation networks are usually applied to
the problem of driving region segmentation, such as UNet [9], which uses U-shaped network
structure and has achieved good results in medical segmentation tasks. SegNet [10] and
PSPNet [11] optimize the network structure of the segmentation model, and the segmentation
accuracy has been further improved. In contrast, for lane detection or segmentation tasks, a
stronger network is needed to better integrate the high-level and low-level features so as to
consider the global structured context to enhance the segmentation details [12]. On the other
hand, in the real-time auto drive system, it is usually impractical to run a separate network
for each task [13]. Then, the multitask learning network provides a reliable solution to save
computing costs. The network has been designed as a combination of a backbone network
and multitasking head, with an overall presentation of one backbone and three branches.

The main contributions of our work can be summarized as follows:

a We proposed a new scheme by using CSPNeXt as the backbone network for multitask
learning networks, which achieves efficiency while simplifying the structural design.

b We employed advanced network data enhancement techniques, such as mosaic filling
and image blending during data pre-processing, which facilitated the generalizability
of the model to different road scenarios.

c We also optimized the loss function of the target detection task head by allowing it to
match the detection frame classification and shared weight layers using a soft-label
approach, which is used to improve the accuracy and speed of the target detection
head network.

d Experimental results showed that the proposed network outperforms the underlying
network structure in terms of generalization.

2. Related Work

Some related works are listed in this section.

2.1. Traffic Target Detection in Real Time

In recent years, scholars in the field of deep learning have carried out a lot of research
work in the direction of traffic target detection, which can be roughly divided into first-order
networks and second-order networks [14]. Some works directly improve the network
detection accuracy by optimizing the second-order network or adopting a larger network
model, and some works try to train the single-stage lightweight network through the
continuous optimization of the YOLO series network to achieve rapid real-time detection.
The latter has become the research focus recently.

2.2. Drivable Areas and Lane Splits

The task of image segmentation is one of the hot research directions in image process-
ing. FCN [15] is the first one that has made significant progress in semantic segmentation
by fully using the depth learning method, which has led the research station in this field in
a new direction. In order to improve the speed of lane line detection, HOU [16] proposed a
lightweight network model using a self-attention distillation (SAD) module, which has less
reasoning time but will lose some detailed information. The effect of lane line detection in
complex environments such as lane line missing or no visual clues is not good. NEVEN
proposed LaneNet [17], which regards the lane line detection process as an instance seg-
mentation problem. The LaneNet model consists of two branches. The binary segmentation
branch distinguishes the lane line and the background through pixel-by-pixel semantic
segmentation. The pixel embedding branch decomposes the lane line pixels into different
lane line instances and combines the results of the two branches to obtain the effect of
instance segmentation, thus completing the lane line extraction. In addition, TABELINI
proposed the PolyLaneNet model [18], which uses the deep learning network to regress
the curve equation of the lane line and output a polynomial and confidence score for each

Electronics 2023, 12, 2097 3 of 15

lane line. The real-time performance is high, but when the lane line is seriously blocked,
the detection performance will be significantly reduced.

2.3. Multitask Learning

The goal of multitask learning is to improve the reasoning speed of the multitask
model by sharing most of the network weight parameters compared to the single-task
model. MultiNet [13] implements three major tasks in the deep learning network, namely
scene classification, target detection, and semantic segmentation. YOLOP [19], based
on the lightweight of the YOLO series network, applies multitask learning to the em-
bedded autopilot equipment, realizing real-time performance on the edge computing
platform. On this basis, HyBridNet [20] combined with BiFPN [21,22] to further improve
the accuracy. The previous designs are based on convolutional networks. Since last year,
self-supervised attention mechanism multitasking models for natural language processing
using Transformer [23] networks have been applied to industrial scenarios, such as Vit [24]
and Swin-T [25]. This method has been further applied in Tesla Motors [26]. Although this
method has higher accuracy, its demand for computational power is also high.

3. Our proposed Methods

In this section, we describe the implementation of high-performance neural networks
to jointly perform tasks such as detecting traffic targets, segmenting drivable areas, and
detecting lanes. We focus on three works, i.e., designing the units of the backbone network
structure, optimization of the different task heads, and designing the loss function.

3.1. Design Idea

Based on the encoder and decoder of YOLOP, we modified the model to improve
the reasoning speed of the model. Inspired by RTMDET [27], we redesigned a powerful
backbone network unit and designed a novel target detection head using category sep-
aration and box separation detection heads. In addition, influenced by YOLOPV2 [28],
we conducted experiments on the separation of the backbone network feature layers for
segmentation tasks for specific datasets, and we found that the three branches of the task
head are uniform for feature extraction, especially for lane line detection and drivable area
segmentation, and, if the feature layers of both are input separately, it will lead to more
difficulty for the model to learn effective semantic features. The segmentation accuracy is
improved by optimizing the training parameters and other methods.

3.2. Network Architecture

Figure 1 shows the structure of the proposed network. The system consists of a
backbone network for extracting features from the input image and three task-solving
docks for the matching task.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 17

Figure 1. Schematic of network structure.

3.3. Backbone
Unlike YOLO’s use of CSPdarknet as the backbone, we referred to the backbone net-

work design in RTMDet and adopted the design of CSPNeXt to make use of group con-
volution and let the weights in different layers learn more diverse features. Inspired by
the recent, more popular ConvNeXt and RepLKNet, a large 5 × 5 kernel deep convolution
named CSPNeXtBlock has been added to BasicBlock, as shown in Figure 2. The features
generated at different stages are collected in the neck and merged by stitching. As with
YOLO, the spatial pyramid pooling module (SPP) [29] is used to combine features from
different scales, whereas the feature pyramid network (FPN) module is used to integrate
features from different semantic layers.

Figure 2. Structure diagram of Darknet Block.

As shown in Figure 2a, the BasicBlock consists of 1 × 1 and 3 × 3 convolution layers
followed by the batch normalization and SiLU activation function.

Figure 1. Schematic of network structure.

Electronics 2023, 12, 2097 4 of 15

Electronics 2023, 12, x FOR PEER REVIEW 4 of 17

Figure 1. Schematic of network structure.

3.3. Backbone
Unlike YOLO’s use of CSPdarknet as the backbone, we referred to the backbone net-

work design in RTMDet and adopted the design of CSPNeXt to make use of group con-
volution and let the weights in different layers learn more diverse features. Inspired by
the recent, more popular ConvNeXt and RepLKNet, a large 5 × 5 kernel deep convolution
named CSPNeXtBlock has been added to BasicBlock, as shown in Figure 2. The features
generated at different stages are collected in the neck and merged by stitching. As with
YOLO, the spatial pyramid pooling module (SPP) [29] is used to combine features from
different scales, whereas the feature pyramid network (FPN) module is used to integrate
features from different semantic layers.

Figure 2. Structure diagram of Darknet Block.

As shown in Figure 2a, the BasicBlock consists of 1 × 1 and 3 × 3 convolution layers
followed by the batch normalization and SiLU activation function.

Figure 2. Structure diagram of Darknet Block.

As shown in Figure 2a, the BasicBlock consists of 1 × 1 and 3 × 3 convolution layers
followed by the batch normalization and SiLU activation function.

Figure 2b is the structure of RepConv, which mainly uses re-parameterized blocks
based on BasicBlock and is similar to YOLOv6, YOLOv7, and PPYOLO-E. However, the
training cost of re-parameterization is high and difficult to quantify, so other methods are
needed to compensate for quantization errors.

Figure 2c is RTMDet referenced the recently popular ConvNeXt and RepLKNet meth-
ods and added a large kernel deep convolution to BasicBlock, called the CSPNeXt block,
which can improve the receptive field of a single convolution module in the block or learn
enough features, as shown in Table 1 below.

Table 1. Convolution core size and performance test table.

Kernel Size mAP50:95 Speed (FPS)

YOLOP 76.8 90
CSPNeXtBlock 3 × 3 77.2 133
CSPNeXtBlock 7 × 7 77.8 107
CSPNeXtBlock 5 × 5 77.5 126

The speeds in all above tables are represented by frames per second (FPS). The main
modules of the core network are composed of CSPLayer-T and SSP, as illustrated in Figure 3.
The SSP layer is connected by the residual from the convolution layer and three max
pooling layers and, finally, the output layer. SSP can enhance the receptive field of the
dorsal network without reducing performance. CSPLayer-T is made up of the volume layer
and CSPNeXtBlock, which were combined by channel attention.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 17

Figure 2b is the structure of RepConv, which mainly uses re-parameterized blocks
based on BasicBlock and is similar to YOLOv6, YOLOv7, and PPYOLO-E. However, the
training cost of re-parameterization is high and difficult to quantify, so other methods are
needed to compensate for quantization errors.

Figure 2c is RTMDet referenced the recently popular ConvNeXt and RepLKNet
methods and added a large kernel deep convolution to BasicBlock, called the CSPNeXt
block, which can improve the receptive field of a single convolution module in the block
or learn enough features, as shown in Table 1 below.

Table 1. Convolution core size and performance test table.

Kernel Size mAP50:95 Speed (FPS)
YOLOP 76.8 90

CSPNeXtBlock 3 × 3 77.2 133
CSPNeXtBlock 7 × 7 77.8 107
CSPNeXtBlock 5 × 5 77.5 126

The speeds in all above tables are represented by frames per second (FPS). The main
modules of the core network are composed of CSPLayer-T and SSP, as illustrated in Figure
3. The SSP layer is connected by the residual from the convolution layer and three max
pooling layers and, finally, the output layer. SSP can enhance the receptive field of the
dorsal network without reducing performance. CSPLayer-T is made up of the volume
layer and CSPNeXtBlock, which were combined by channel aĴention.

Figure 3. Backbone network architecture.

3.4. Task Headers
As mentioned above, we designed three different decoupling docks for each task.

Similar to YOLOvX, we used a multiscale detection scheme decoupled by classification
and regression branches. First, we used a boĴom-up path aggregation network (PAN) to
beĴer extract semantic features at different scales. By combining PAN and FPN features
to form a dual pyramid structure, global semantic information is fused with these local
features to obtain richer, high-level semantic information, and then the multiscale feature
maps output from the Neck structure are detected.

The Neck structure is shown in Figure 4 below. Its main component module is
CSPLayer-N, because it is adopted before input and does not use the CSPNeXtBlock layer.

Figure 3. Backbone network architecture.

Electronics 2023, 12, 2097 5 of 15

3.3. Task Headers

As mentioned above, we designed three different decoupling docks for each task.
Similar to YOLOvX, we used a multiscale detection scheme decoupled by classification and
regression branches. First, we used a bottom-up path aggregation network (PAN) to better
extract semantic features at different scales. By combining PAN and FPN features to form a
dual pyramid structure, global semantic information is fused with these local features to
obtain richer, high-level semantic information, and then the multiscale feature maps output
from the Neck structure are detected.

The Neck structure is shown in Figure 4 below. Its main component module is
CSPLayer-N, because it is adopted before input and does not use the CSPNeXtBlock layer.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17

Figure 4. Neck network architecture.

For each grid in the multiscale feature maps of the object-box regression branch, an-
chors were assigned to three different aspect ratios, and the sensing head predicted posi-
tion offset, height, and width of the scale and predicted the likelihood of each class and
the corresponding confidence value, referring to the practice of NAS-FPN in the first two
layers of the detection task head, using the SepBN head, sharing the values of the convo-
lution weights across different layers but computing the batch normalization separately.
The structure of the sensing task header is composed of three sensing modules in parallel,
as shown in Figure 5. Note that the two outputs of the detection module correspond to
the box loss and the classification loss, respectively.

Figure 5. Detect head network architecture.

In our approach, both the drivable zone and lane line segmentation are performed in
task heads with similar, but separate, structures. Unlike YOLOPV2, the features for both
tasks come from the last layer of the neck. We found that segmenting the drivable region
was difficult in the ApolloScape dataset [30] and that features extracted from the deeper
layers of the network were necessary to segment the drivable region. Shallow features do
not improve prediction performance. In this way, the segmentation head of the drivable
region is connected to the end of the FPN for the input of the deeper feature maps, similar
to that in YOLOP. In the case of lane line segmentation, the task branches also branch to
the end of the FPN in order to extract deeper features, as the lane lines are often very fine
and difficult to detect in the input image. Therefore, as shown in Figure 6, the main mod-
ule in the windowing network is CSPLayer-US, in which the top sampling operation is
mainly performed in the feature map. The decoder stage of lane line detection also makes
use of deconvolution to further improve performance.

Figure 4. Neck network architecture.

For each grid in the multiscale feature maps of the object-box regression branch,
anchors were assigned to three different aspect ratios, and the sensing head predicted
position offset, height, and width of the scale and predicted the likelihood of each class
and the corresponding confidence value, referring to the practice of NAS-FPN in the
first two layers of the detection task head, using the SepBN head, sharing the values of
the convolution weights across different layers but computing the batch normalization
separately. The structure of the sensing task header is composed of three sensing modules
in parallel, as shown in Figure 5. Note that the two outputs of the detection module
correspond to the box loss and the classification loss, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17

Figure 4. Neck network architecture.

For each grid in the multiscale feature maps of the object-box regression branch, an-
chors were assigned to three different aspect ratios, and the sensing head predicted posi-
tion offset, height, and width of the scale and predicted the likelihood of each class and
the corresponding confidence value, referring to the practice of NAS-FPN in the first two
layers of the detection task head, using the SepBN head, sharing the values of the convo-
lution weights across different layers but computing the batch normalization separately.
The structure of the sensing task header is composed of three sensing modules in parallel,
as shown in Figure 5. Note that the two outputs of the detection module correspond to
the box loss and the classification loss, respectively.

Figure 5. Detect head network architecture.

In our approach, both the drivable zone and lane line segmentation are performed in
task heads with similar, but separate, structures. Unlike YOLOPV2, the features for both
tasks come from the last layer of the neck. We found that segmenting the drivable region
was difficult in the ApolloScape dataset [30] and that features extracted from the deeper
layers of the network were necessary to segment the drivable region. Shallow features do
not improve prediction performance. In this way, the segmentation head of the drivable
region is connected to the end of the FPN for the input of the deeper feature maps, similar
to that in YOLOP. In the case of lane line segmentation, the task branches also branch to
the end of the FPN in order to extract deeper features, as the lane lines are often very fine
and difficult to detect in the input image. Therefore, as shown in Figure 6, the main mod-
ule in the windowing network is CSPLayer-US, in which the top sampling operation is
mainly performed in the feature map. The decoder stage of lane line detection also makes
use of deconvolution to further improve performance.

Figure 5. Detect head network architecture.

In our approach, both the drivable zone and lane line segmentation are performed in
task heads with similar, but separate, structures. Unlike YOLOPV2, the features for both
tasks come from the last layer of the neck. We found that segmenting the drivable region
was difficult in the ApolloScape dataset [30] and that features extracted from the deeper

Electronics 2023, 12, 2097 6 of 15

layers of the network were necessary to segment the drivable region. Shallow features do
not improve prediction performance. In this way, the segmentation head of the drivable
region is connected to the end of the FPN for the input of the deeper feature maps, similar
to that in YOLOP. In the case of lane line segmentation, the task branches also branch to the
end of the FPN in order to extract deeper features, as the lane lines are often very fine and
difficult to detect in the input image. Therefore, as shown in Figure 6, the main module in
the windowing network is CSPLayer-US, in which the top sampling operation is mainly
performed in the feature map. The decoder stage of lane line detection also makes use of
deconvolution to further improve performance.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 17

Figure 6. Segmentation head network architecture.

3.5. Loss Function Design
Given that we have three task decoders in our network, our multi-task loss contains

three components. As can be seen in Equation (1), the target detection loss is a weighted
sum of the detection frame category loss, the detection frame object loss, and the detection
frame size loss.

Lௗ௧ = 𝛼ଵ𝐿ୡ୪ୟୱୱ + 𝛼ଶL + 𝛼ଷL௫ (1)

where 𝐿௦௦ and L are part of the focal loss, which is proposed to solve the problem
of unbalanced distribution of a large number of positive and negative samples in the can-
didate frame of the target detection. Focal loss takes the perspective of sample difficulty
classification so that the loss focuses on discriminating difficult samples. 𝐿௦௦ is used to
distinguish which loss of the detection frame belongs to the category to be classified, and
L indicates for the loss of the detection frame belonging to the background or the ob-
ject. L௫ is derived from Lூ ; it takes into account the center distance, overlap, scale,
and aspect ratio of the predicted frame to the actual annotated frame.

We have introduced the Softmax method of label processing of 𝐿௦, in Equation (2).
The existing methods usually use binary direct labels to calculate the classification loss,
which leads to a high classification score for the boundary box prediction, so the predic-
tion of its detection frame boundary is unreasonable.. However, the prediction with a low
classification score but high detection frame score obtained a lower-than-expected loss
score. The soft label method is helpful to solve this problem.

𝐿௦ = 𝐶𝐸(𝑃, 𝑌௦௧௫) × (𝑌௦௧௫ − 𝑃)ଶ (2)

Inspired by GFL [31], this design uses the predicted value of IoU between the predic-
tion frame and the true frame as a soft-label 𝑌௦௧௫ to train the classification loss in the
target detection head. The soft classification cost in the assignment not only re-weighs the
matching loss of different regression quality prediction frames but also avoids the unbal-
anced and confusing feedback caused by direct binary labelling.

Division of the driving area Lି௦ and lane line division Lି௦ loss includes loga-
rithmic cross entropy loss 𝐿 , the purpose of which is to minimize the classification error
between the network output pixel and the target. It is worth mentioning that IoU loss in
Equation (3) shows the following:

Lூ = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3)

Figure 6. Segmentation head network architecture.

3.4. Loss Function Design

Given that we have three task decoders in our network, our multi-task loss contains
three components. As can be seen in Equation (1), the target detection loss is a weighted
sum of the detection frame category loss, the detection frame object loss, and the detection
frame size loss.

Ldet = α1Lclass + α2Lobj + α3Lbox (1)

where Lclass and Lobj are part of the focal loss, which is proposed to solve the problem
of unbalanced distribution of a large number of positive and negative samples in the
candidate frame of the target detection. Focal loss takes the perspective of sample difficulty
classification so that the loss focuses on discriminating difficult samples. Lclass is used to
distinguish which loss of the detection frame belongs to the category to be classified, and
Lobj indicates for the loss of the detection frame belonging to the background or the object.
Lbox is derived from LCIoU ; it takes into account the center distance, overlap, scale, and
aspect ratio of the predicted frame to the actual annotated frame.

We have introduced the Softmax method of label processing of Lcls, in Equation (2).
The existing methods usually use binary direct labels to calculate the classification loss,
which leads to a high classification score for the boundary box prediction, so the prediction
of its detection frame boundary is unreasonable.. However, the prediction with a low
classification score but high detection frame score obtained a lower-than-expected loss
score. The soft label method is helpful to solve this problem.

Lcls = CE(P, Yso f tmax)× (Yso f tmax − P)2 (2)

Inspired by GFL [31], this design uses the predicted value of IoU between the pre-
diction frame and the true frame as a soft-label Yso f tmax to train the classification loss in
the target detection head. The soft classification cost in the assignment not only re-weighs

Electronics 2023, 12, 2097 7 of 15

the matching loss of different regression quality prediction frames but also avoids the
unbalanced and confusing feedback caused by direct binary labelling.

Division of the driving area Lll−seg and lane line division Lll−seg loss includes loga-
rithmic cross entropy loss Lce, the purpose of which is to minimize the classification error
between the network output pixel and the target. It is worth mentioning that IoU loss in
Equation (3) shows the following:

LIoU = 1− TP
TP + FP + FN

(3)

Because it is particularly effective for the prediction of sparse categories of lane lines,
it is added to Lll−seg. Lda and Lll−seg defines Equations (4) and (5), respectively.

Lda−seg = Lce (4)

Lll−seg = Lce + LIoU (5)

To sum up, our final loss is the weighted sum of the three parts, as shown in Equation (6).

Lall = γ1Ldet + γ2Lda−seg + γ3Lll−seg (6)

Among them, α1, α2, α3, γ1, γ2, γ3 are adjustable weighting factors for each compo-
nent loss value. By default, these parameters are set to α1 = 1, α1 = 3, α1 = 1, γ1 = 1,
γ2 = 2, γ3 = 2.

3.5. Algorithm Details Implementation

We tried different methods to train the model, such as the step-by-step method,
task type step-by-step method, end-to-end method, and pre-training paradigm. In these
experiments, we found that using the ImageNet dataset [32] as a pre trained backbone
model followed by downstream task fine-tuning can achieve high accuracy. The process of
our end-to-end direct training method is shown in Algorithm 1.

Algorithm 1. The end-to-end direct training method

Input: Complete data set : Dm; single batch size : Km;
the target neural network F ; random initialization parameters θ0;
maximum number of iterations: T; learning rate : Lr.
Output: Well− trained network : F (x; θ0)
1 For t = 1 in T do
// There are three tasks
2 For m = 1 in 3 do
3 Randomly divide dataset Dm into sets with c = Dm/Km
4 Bm = {Jm,1,Jm,2, . . . ,Jm,c};
5 End
6 Merge all small batch samples B = B1 ∪ B2 ∪ B3;
7 Random sorting B;
8 Foreach J in B do
9 Calculate the J of samples loss L(θn);
10 Merge the losses on each task Lall(F (x; θn)); // x is the input image
11 Update parameters : θt ← θt−1 − Lr · ∇θ Lall(θn)
12 End
13 End
14 Return Trained networks F (x; θ)

4. Experimental Evaluation

This section describes the data set setting and parameter configuration of our ex-
periment. The model training in this paper uses two RTX3080 GPUs and a torch 1.10
environment. All reasoning experiments are based on the configuration environment of
RTX3060 GPU and torch 1.10.

Electronics 2023, 12, 2097 8 of 15

4.1. Data Sets

For the experimental research, we used ApolloScape as our benchmark dataset, which
is a publicly available dataset consisting of challenging driving scenarios. The dataset
contains 1 million frames from various camera viewpoints on top of the car, 800 thousand
frames of LiDAR point cloud data, and 1000 km of city traffic collection trajectories. The
dataset has been referenced for a variety of autonomous driving tasks, such as binocular
and monocular depth map generation challenges, traffic participant trajectory prediction,
and more. The ApolloScape dataset also supports eight vision tasks.

In comparison to other popular driving datasets, such as Cityscapes, Camvid, and
BDD100, ApolloScape provides a larger number of data types, such as laser radar and
stereo cameras. This facilitates further new developments for downstream tasks, such
as a predictive algorithm for the generation of bird’s-eye-views (BEV) [33] from a higher
perspective of autonomous driving. As in other research, we extracted a target detection
dataset from the scene segmentation dataset and combined it with the original scene
segmentation dataset as well as the lane detection dataset to form the dataset that is used
in this paper. The dataset is split into a training set of 70,000 images, a validation set of
10,000 images, and a test set of 20,000 images. Figure 7 shows a portion of the dataset, which
is, from left to right, the original camera input image, the scene segmentation annotation,
the lane annotation, and the extracted target detection annotation.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 17

4. Experimental Evaluation
This section describes the data set seĴing and parameter configuration of our exper-

iment. The model training in this paper uses two RTX3080 GPUs and a torch 1.10 envi-
ronment. All reasoning experiments are based on the configuration environment of
RTX3060 GPU and torch 1.10.

4.1. Data Sets
For the experimental research, we used ApolloScape as our benchmark dataset,

which is a publicly available dataset consisting of challenging driving scenarios. The da-
taset contains 1 million frames from various camera viewpoints on top of the car, 800
thousand frames of LiDAR point cloud data, and 1000 km of city traffic collection trajec-
tories. The dataset has been referenced for a variety of autonomous driving tasks, such as
binocular and monocular depth map generation challenges, traffic participant trajectory
prediction, and more. The ApolloScape dataset also supports eight vision tasks.

In comparison to other popular driving datasets, such as Cityscapes, Camvid, and
BDD100, ApolloScape provides a larger number of data types, such as laser radar and
stereo cameras. This facilitates further new developments for downstream tasks, such as
a predictive algorithm for the generation of bird’s-eye-views (BEV) [33] from a higher per-
spective of autonomous driving. As in other research, we extracted a target detection da-
taset from the scene segmentation dataset and combined it with the original scene seg-
mentation dataset as well as the lane detection dataset to form the dataset that is used in
this paper. The dataset is split into a training set of 70,000 images, a validation set of 10,000
images, and a test set of 20,000 images. Figure 7 shows a portion of the dataset, which is,
from left to right, the original camera input image, the scene segmentation annotation, the
lane annotation, and the extracted target detection annotation.

Figure 7. Visualization of dataset annotations.

4.2. Experimental Process
Our experimental procedure only had a multiple iteration approach, following a

global update of hyperparameters and partial structures after one complete training of the
model, gradually completing the full method improvement. The experimental flowchart
is shown in Figure 8.

Figure 7. Visualization of dataset annotations.

4.2. Experimental Process

Our experimental procedure only had a multiple iteration approach, following a global
update of hyperparameters and partial structures after one complete training of the model,
gradually completing the full method improvement. The experimental flowchart is shown
in Figure 8.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17

Figure 8. Experimental flowchart.

4.3. Training Methods
During the training process, we used the cosine annealing strategy to tune the learn-

ing rate, where the optimizer and initial learning rates β1 and β2 were fixed at 0.001, 0.879,
and 0.999, respectively. In order to achieve faster and beĴer network convergence, the
learning rate was tuned by preheating and cosine annealing. A total of 300 training itera-
tions were performed. During the training and testing phase, the image in the Apol-
loScape dataset was a crop from 3384 × 2710 × 3 to 2710 × 2710 × 3, then scaled down to
640 × 640 × 3 in a proportional manner.

The loss curve obtained from the training is shown in Figure 9. The abscissa repre-
sents the number of training steps, and the vertical coordinate is the composite loss value
during training. As shown in Figure 9, the loss value decreases rapidly at the beginning
of the training process, indicating that the selection of the learning rate is appropriate.
When the iteration reaches 1250 steps, the curve tends to be flat, indicating that the model
has converged. Our model training loss is lower than YOLOP, and the validation effect is
also beĴer.

It should be noted that we used the number of steps instead of epochs to draw the
line graph of the loss value, because we found that it will change greatly in epochs in the
experiment. In order to facilitate observation, we used the number of steps to save the
results.

Figure 9. Loss curve during training.

Figure 8. Experimental flowchart.

Electronics 2023, 12, 2097 9 of 15

4.3. Training Methods

During the training process, we used the cosine annealing strategy to tune the learning
rate, where the optimizer and initial learning rates β1 and β2 were fixed at 0.001, 0.879, and
0.999, respectively. In order to achieve faster and better network convergence, the learning
rate was tuned by preheating and cosine annealing. A total of 300 training iterations were
performed. During the training and testing phase, the image in the ApolloScape dataset
was a crop from 3384 × 2710 × 3 to 2710 × 2710 × 3, then scaled down to 640 × 640 × 3 in
a proportional manner.

The loss curve obtained from the training is shown in Figure 9. The abscissa represents
the number of training steps, and the vertical coordinate is the composite loss value during
training. As shown in Figure 9, the loss value decreases rapidly at the beginning of the
training process, indicating that the selection of the learning rate is appropriate. When
the iteration reaches 1250 steps, the curve tends to be flat, indicating that the model has
converged. Our model training loss is lower than YOLOP, and the validation effect is
also better.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17

Figure 8. Experimental flowchart.

4.3. Training Methods
During the training process, we used the cosine annealing strategy to tune the learn-

ing rate, where the optimizer and initial learning rates β1 and β2 were fixed at 0.001, 0.879,
and 0.999, respectively. In order to achieve faster and beĴer network convergence, the
learning rate was tuned by preheating and cosine annealing. A total of 300 training itera-
tions were performed. During the training and testing phase, the image in the Apol-
loScape dataset was a crop from 3384 × 2710 × 3 to 2710 × 2710 × 3, then scaled down to
640 × 640 × 3 in a proportional manner.

The loss curve obtained from the training is shown in Figure 9. The abscissa repre-
sents the number of training steps, and the vertical coordinate is the composite loss value
during training. As shown in Figure 9, the loss value decreases rapidly at the beginning
of the training process, indicating that the selection of the learning rate is appropriate.
When the iteration reaches 1250 steps, the curve tends to be flat, indicating that the model
has converged. Our model training loss is lower than YOLOP, and the validation effect is
also beĴer.

It should be noted that we used the number of steps instead of epochs to draw the
line graph of the loss value, because we found that it will change greatly in epochs in the
experiment. In order to facilitate observation, we used the number of steps to save the
results.

Figure 9. Loss curve during training. Figure 9. Loss curve during training.

It should be noted that we used the number of steps instead of epochs to draw the
line graph of the loss value, because we found that it will change greatly in epochs in
the experiment. In order to facilitate observation, we used the number of steps to save
the results.

4.4. Comparison of Experimental Results

Table 2 shows how our model compares with YOLOP and HybridNets. All tests were
performed in the same experimental setting and with the same evaluation metrics.

Table 2. Comparison of network parameters and reasoning speed.

Model Input Shape Parameters Reasoning Time (ms)

YOLOP 640 × 640 7.92 M 11.1
HybridNets 640 × 640 12.84 M 21.7
Our method 640 × 640 6.3 M 7.6

It can be seen in Table 2 that our method has a parameter size of 6.3 million (repre-
sented by 6.3 M), which is smaller than the 2 baseline models and requires less processor
computation. The computing performance of our method is better because of the efficient
network design and sensible use of the GPU memory strategy.

Electronics 2023, 12, 2097 10 of 15

Unlike the baseline algorithm YOLOP, mAP50:95 and recall are used here as evaluation
metrics; mAP50:95 refers to the value of IOUs taken from 50% to 95% in steps of 5%, and
then the mean of the average precision among these IOUs is calculated. Our network
achieved a higher mAP50:95 and recall rate, as shown in Table 3.

Table 3. Traffic Target Detection Results.

Model mAP50:95 Recall

MultiNet 59.1 83.2
DLT-Net 68.3 86.4

HybridNets 75.4 92.3
YOLOV5s 77.9 94.3

YOLOP 76.8 93.8
Our method 78.6 94.6

In the drivable region segmentation task, we used mIoU to evaluate the segmentation
performance of different models. As can be seen from the table, our network had better
performance, as shown in Table 4 below.

Table 4. Results of driving area segmentation.

Model Drivable mIoU

DLT-Net 79.2
HybridNets 95.4

YOLOP 96.0
Our method 97.1

In the ApolloScape dataset, the tracks consist of multiple labels and, thus, must be
preprocessed. By using lane lines and zebra crossings as lane line labels, we also use the
pixel accuracy and the lane throughput as evaluation metrics. Pixel accuracy represents
the number of correctly classified pixels in the lane line segmentation task divided by the
number of all pixels. Table 5 shows that our network achieved the highest value in terms
of precision.

Table 5. Lane detection results.

Model Lane mIoU Accuracy (CCP/AP)

MultiNet 55.9 68.8
DLT-Net 69.4 70.9

HybridNets 85.3 77.6
YOLOP 85.3 76.5

Our method 86.8 78.7

4.5. Visualization

Figures 10–13 display the visualized comparison results of YOLOP and our model
on the ApolloScape dataset under different road tests. Figure 10 shows the test results
on Road 1. The first column is the ground truth labeled image, and the second column
lists YOLOP’s effects. There are several predicted wrong drivable areas in the first scene.
In Figure 11, YOLOP’s prediction result has missing detection boxes of small objects and
the wrong segmentation of the drivable area. In the test results on Road 3, in Figure 12,
missed detection of lanes are found. In the test results of Road 4, in Figure 13, different
degrees of false alarms are marked at the left turn, of which YOLOP has false detection
at the far intersection. Based on those results, the right column shows our results, which
demonstrates the better performance of our network in various scenarios.

Electronics 2023, 12, 2097 11 of 15

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17

Table 5. Lane detection results.

Model Lane mIoU Accuracy (CCP/AP)
MultiNet 55.9 68.8
DLT-Net 69.4 70.9

HybridNets 85.3 77.6
YOLOP 85.3 76.5

Our method 86.8 78.7

4.5. Visualization
Figures 10–13 display the visualized comparison results of YOLOP and our model

on the ApolloScape dataset under different road tests. Figure 10 shows the test results on
Road 1. The first column is the ground truth labeled image, and the second column lists
YOLOP’s effects. There are several predicted wrong drivable areas in the first scene. In
Figure 11, YOLOP’s prediction result has missing detection boxes of small objects and the
wrong segmentation of the drivable area. In the test results on Road 3, in Figure 12, missed
detection of lanes are found. In the test results of Road 4, in Figure 13, different degrees of
false alarms are marked at the left turn, of which YOLOP has false detection at the far
intersection. Based on those results, the right column shows our results, which demon-
strates the beĴer performance of our network in various scenarios.

Figure 10. Road 1 scenario test results.

Figure 11. Road 2 scenario test results.

Figure 10. Road 1 scenario test results.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17

Table 5. Lane detection results.

Model Lane mIoU Accuracy (CCP/AP)
MultiNet 55.9 68.8
DLT-Net 69.4 70.9

HybridNets 85.3 77.6
YOLOP 85.3 76.5

Our method 86.8 78.7

4.5. Visualization
Figures 10–13 display the visualized comparison results of YOLOP and our model

on the ApolloScape dataset under different road tests. Figure 10 shows the test results on
Road 1. The first column is the ground truth labeled image, and the second column lists
YOLOP’s effects. There are several predicted wrong drivable areas in the first scene. In
Figure 11, YOLOP’s prediction result has missing detection boxes of small objects and the
wrong segmentation of the drivable area. In the test results on Road 3, in Figure 12, missed
detection of lanes are found. In the test results of Road 4, in Figure 13, different degrees of
false alarms are marked at the left turn, of which YOLOP has false detection at the far
intersection. Based on those results, the right column shows our results, which demon-
strates the beĴer performance of our network in various scenarios.

Figure 10. Road 1 scenario test results.

Figure 11. Road 2 scenario test results. Figure 11. Road 2 scenario test results.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17

Figure 12. Road 3 scenario test results.

Figure 13. Road 4 scenario test results.

In Figures 10–13, the blue boxes represent the results of traffic target detection, the
yellow circles represent the differences between the test results of different models, the
green areas represent the segmentation results of the driveable area, and the red lines rep-
resent the results of lane line detection.

4.6. Ablation Studies
We conducted various modifications and improvements to the baseline network and

corresponding experiments. Table 6 shows some of the changes we made and their corre-
sponding improvements in experiments. The experimental results show that each of our
improvements bring a corresponding performance improvement. The main reasoning
speed improvement comes from the improvement of the backbone network, and the im-
provement of target detection accuracy is mainly from the introduction of SepBN Head
and the optimization of the loss function. In addition, the accuracy of lane line detection
is also crucial to the improvement of deconvolution.

Table 6. Evaluation of efficient experiments.

Method
Reasoning

Speed (FPS)

Object Detec-
tion

mAP50:95

Object De-
tection Recall

Drivable
Area mIoU

Lane Detec-
tion Accuracy

YOLOP (Baseline) 90 76.8 93.8 96.0 76.5
+CSPNeXt 126 77.5 94.3 96.1 77.3

+MosaicandMixup 124 778 94.8 96.1 77.5
+Convtranspose2d 136 76.8 94.8 96.1 78.7

+SepBN Head 131 78.6 94.6 96.1 78.7

Figure 12. Road 3 scenario test results.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17

Figure 12. Road 3 scenario test results.

Figure 13. Road 4 scenario test results.

In Figures 10–13, the blue boxes represent the results of traffic target detection, the
yellow circles represent the differences between the test results of different models, the
green areas represent the segmentation results of the driveable area, and the red lines rep-
resent the results of lane line detection.

4.6. Ablation Studies
We conducted various modifications and improvements to the baseline network and

corresponding experiments. Table 6 shows some of the changes we made and their corre-
sponding improvements in experiments. The experimental results show that each of our
improvements bring a corresponding performance improvement. The main reasoning
speed improvement comes from the improvement of the backbone network, and the im-
provement of target detection accuracy is mainly from the introduction of SepBN Head
and the optimization of the loss function. In addition, the accuracy of lane line detection
is also crucial to the improvement of deconvolution.

Table 6. Evaluation of efficient experiments.

Method
Reasoning

Speed (FPS)

Object Detec-
tion

mAP50:95

Object De-
tection Recall

Drivable
Area mIoU

Lane Detec-
tion Accuracy

YOLOP (Baseline) 90 76.8 93.8 96.0 76.5
+CSPNeXt 126 77.5 94.3 96.1 77.3

+MosaicandMixup 124 778 94.8 96.1 77.5
+Convtranspose2d 136 76.8 94.8 96.1 78.7

+SepBN Head 131 78.6 94.6 96.1 78.7

Figure 13. Road 4 scenario test results.

In Figures 10–13, the blue boxes represent the results of traffic target detection, the
yellow circles represent the differences between the test results of different models, the

Electronics 2023, 12, 2097 12 of 15

green areas represent the segmentation results of the driveable area, and the red lines
represent the results of lane line detection.

4.6. Ablation Studies

We conducted various modifications and improvements to the baseline network
and corresponding experiments. Table 6 shows some of the changes we made and their
corresponding improvements in experiments. The experimental results show that each of
our improvements bring a corresponding performance improvement. The main reasoning
speed improvement comes from the improvement of the backbone network, and the
improvement of target detection accuracy is mainly from the introduction of SepBN Head
and the optimization of the loss function. In addition, the accuracy of lane line detection is
also crucial to the improvement of deconvolution.

Table 6. Evaluation of efficient experiments.

Method Reasoning Speed
(FPS)

Object Detection
mAP50:95

Object Detection
Recall

Drivable Area
mIoU

Lane Detection
Accuracy

YOLOP (Baseline) 90 76.8 93.8 96.0 76.5
+CSPNeXt 126 77.5 94.3 96.1 77.3

+MosaicandMixup 124 778 94.8 96.1 77.5
+Convtranspose2d 136 76.8 94.8 96.1 78.7

+SepBN Head 131 78.6 94.6 96.1 78.7

5. Conclusions

In this work, we propose an optimal network by using CSPNeXts to implement a
backbone network and introduce soft labels and shared weights in target detection. We
also used advanced data augmentation techniques for this real-time multitask learning
network to improve the performance of the algorithm in autonomous driving scenarios. We
conducted experiments on the challenging dataset of ApolloScape. Our network achieved
the best performance in all three tasks: mAP50:95 of 0.786 for the target detection task,
mIoU of 96.1 for the drivable area segmentation task, and accuracy of 78.7 for lane detection.
It improved both accuracy and speed compared to the baseline model. In model inference,
the frame FPS execution speed improved to 131 FPS on the NVIDIA RTX 3060 device,
higher than the 90 FPS of YOLOP under the same experimental conditions. Overall, the
network parameters were reduced by 24%, reasoning speed was increased by 45%, and the
required computational power was also lowered.

This work can be used in edge devices with limited resources to perform multitasks,
which can be applied in different scenarios, such as rural roads, unstructured roads, and
special roads. Moreover, it also can be used in computer vision for autonomous driving to
improve the safety of driving by reducing accidents caused by human error.

In the future, we will strive to apply autonomous driving multitask learning to more di-
verse datasets and different weather scenarios and add new tasks such as depth estimation,
pedestrian posture prediction, and traffic object prediction.

Author Contributions: Conceptualization, X.Z. and G.Y.; methodology, X.Z. and G.Y.; software, X.Z.
and C.L.; validation, X.Z., C.L. and P.Z.; formal analysis, X.Z. and C.L.; investigation, C.L.; resources,
G.Y. and X.Z.; data curation, X.Z. and C.L.; writing—original draft preparation, X.Z., C.L., G.Y. and
P.Z.; writing—review and editing, X.Z., C.L., G.Y. and P.Z.; visualization, C.L.; supervision, X.Z. and
C.L.; project administration, X.Z.; funding acquisition, X.Z. and G.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Young and Middle-aged teachers in Fujian Province under
grant number JAT210674 and by the Natural Science Foundation of Fujian Province under grant
number 2021J01865, 2021J01866.

Electronics 2023, 12, 2097 13 of 15

Data Availability Statement: We include a data availability statement with all Research Articles
published in an MDPI journal.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Term Term Definition

ADAS
Advanced driver assistance systems, a technology that assists drivers in the driving process, found in
reference [1].

ApolloScape An open-source dataset for autonomous driving research and computer vision tasks, found in reference [30].
BasicBlock A building block of convolutional neural networks used for feature extraction.

BEV
Bird’s eye view, a perspective view used in computer vision to represent a top-down view of an object or
environment, found in reference [33].

BiFPN Bidirectional feature pyramid network, a network used for object detection tasks, found in reference [22].

CCP/AP
Pixel accuracy represents the number of correctly classified pixels in the lane line segmentation task divided
by the number of all pixels

CenterNet An object detection framework that uses keypoint estimation to detect objects, found in reference [3].

ConvNeXt
A type of convolutional neural network architecture that improves upon traditional convolutional layers by
using grouped convolutions, found in reference [27].

CSPdarknet A lightweight deep learning framework for computer vision tasks.
CSPNeXt A deep neural network model for image classification and object detection tasks.
CSPNeXtBlock A building block used in CSPNeXt architectures.
CSPLayer-T A layer used in CSPNeXt architectures.

FCN
Fully convolutional network, a type of neural network commonly used for semantic segmentation tasks,
found in reference [15].

FPN Feature pyramid network, a neural network used for object detection and semantic segmentation tasks.
GFL Generalized focal loss, a loss function used in object detection tasks, found in reference [31].
HybridNet A neural network architecture that combines both convolutional and recurrent layers, found in reference [20].
LaneNet A neural network used for lane detection and segmentation tasks, found in reference [19].
MultiNet A multitask learning framework used for various computer vision tasks, found in reference [13].
PAN Path aggregation network, a type of neural network used for semantic segmentation tasks.
PolyLaneNet A neural network used for lane marking detection in autonomous driving.

PSPNet
Pyramid scene parsing network, a neural network used for semantic segmentation tasks, found in
reference [11]

RepLKNet A neural network architecture for object detection and instance segmentation tasks.
RetinaNet An object detection framework that uses focal loss to address class imbalance issues, found in reference [2]
R-CNN Region-based convolutional neural network, an object detection framework, found in reference [4]

RTMDet
Real-time multi-person detection, an object detection framework used for real-time multi-person detection,
found in reference [27]

SAD
Learning lightweight lane detection convolutional models through self-attentive refinement, found in
reference [16]

SegNet A neural network used for semantic segmentation tasks, found in reference [10]

SepBN Head
Separable batch normalization head, a type of normalization technique used in convolutional neural
networks.

Softmax A function used to convert a vector of numbers into probabilities that sum to one.

SPP
Spatial pyramid pooling, a method used to handle variable-sized inputs in neural networks, found in
reference [29]

Swin-T
Swin Transformer, a transformer-based neural network architecture commonly used for computer vision
tasks, found in reference [25]

UNet A neural network architecture used for image segmentation tasks, found in reference [9]

Vit
Vision transformer, a transformer-based neural network architecture commonly used for computer vision
tasks, found in reference [24]

YOLO
You only look once, an object detection framework that predicts bounding boxes and class probabilities
directly from the input image, found in reference [6]

YOLOP
You only look once for panoptic driving perception, a multitask learning model for autonomous driving,
found in reference [19]

Electronics 2023, 12, 2097 14 of 15

References
1. Bengler, K.; Dietmayer, K.; Farber, B.; Maurer, M.; Stiller, C.; Winner, H. Three Decades of Driver Assistance Systems: Review and

Future Perspectives. IEEE 2014, 6, 6–22. [CrossRef]
2. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.
3. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.

2017, 99, 2999–3007.
4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
6. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
7. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
8. Lin, G.; Liu, K.; Xia, X.; Yan, R. An Efficient and Intelligent Detection Method for Fabric Defects Based on Improved YOLO v5.

Sensors 2023, 23, 97. [CrossRef] [PubMed]
9. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. Unet 3+: A full-scale connected unet for

medical image segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1055–1059.

10. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

11. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

12. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. Scnn: An
accelerator for compressed-sparse convolutional neural networks. ACM SIGARCH Comput. Archit. News 2017, 45, 27–40.
[CrossRef]

13. Teichmann, M.; Weber, M.; Zoellner, M.; Cipolla, R.; Urtasun, R. Multinet: Real-time joint semantic reasoning for autonomous
driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1013–1020.

14. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. [CrossRef]

15. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

16. Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning lightweight lane detection CNNs by self attention distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE
Press: Piscataway, NJ, USA, 2019; pp. 1013–1021.

17. Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards end-to-end lane detection: An instance
segmentation approach. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
IEEE Press: Piscataway, NJ, USA, 2018; pp. 286–291.

18. Tabelini, L.; Berriel, R.; Paixao, T.M.; Badue, C.; De Souza, A.F.; Oliveira-Santos, T. PolyLaneNet: Lane estimation via deep
polynomial regression. In Proceedings of the International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January
2021; IEEE Press: Piscataway, NJ, USA, 2021; pp. 6150–6156.

19. Wu, D.; Liao, M.W.; Zhang, W.T.; Wang, X.G.; Bai, X.; Cheng, W.Q.; Liu, W.Y. Yolop: You only look once for panoptic driving
perception. Mach. Intell. Res. 2022, 19, 550–562. [CrossRef]

20. Vu, D.; Ngo, B.; Phan, H. HybridNets: End-to-End Perception Network. arXiv 2022, arXiv:2203.09035.
21. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
22. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), IEEE, Seattle, WA, USA, 13–19 June 2020.
23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
24. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
25. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021.

26. Xu, C. Text/Picture Robots, autopilots and supercomputers approach Tesla AI Day 2022. Microcomputer 2022, 5, 17.
27. Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. RTMDet: An Empirical Study of Designing

Real-Time Object Detectors. arXiv 2022, arXiv:2212.07784.

https://doi.org/10.1109/MITS.2014.2336271
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.3390/s23010097
https://www.ncbi.nlm.nih.gov/pubmed/36616696
https://doi.org/10.1109/TPAMI.2016.2644615
https://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1145/3140659.3080254
https://doi.org/10.1007/978-3-319-46448-0_2[P]
https://doi.org/10.1007/s11633-022-1339-y

Electronics 2023, 12, 2097 15 of 15

28. Han, C.; Zhao, Q.; Zhang, S.; Chen, Y.; Zhang, Z.; Yuan, J. YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception.
arXiv 2022, arXiv:2208.11434.

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [CrossRef] [PubMed]

30. Zhang, S.; Ma, Y.; Yang, R. CVPR 2019 WAD Challenge on Trajectory Prediction and 3D Perception. arXiv 2020, arXiv:2004.05966.
31. Li, X.; Lv, C.; Wang, W.; Li, G.; Yang, L.; Yang, J. Generalized Focal Loss: Towards Efficient Representation Learning for Dense

Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3139–3153. [CrossRef] [PubMed]
32. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.

Process. Syst. 2012, 25. [CrossRef]
33. Li, H.; Sima, C.; Dai, J.; Wang, W.; Lu, L.; Wang, H.; Xie, E.; Li, Z.; Deng, H.; Tian, H.; et al. Delving into the Devils of

Bird’s-eye-view Perception: A Review, Evaluation and Recipe. arXiv 2022, arXiv:2209.05324.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2015.2389824
https://www.ncbi.nlm.nih.gov/pubmed/26353135
https://doi.org/10.1109/TPAMI.2022.3180392
https://www.ncbi.nlm.nih.gov/pubmed/35679384
https://doi.org/10.1145/3065386

	Introduction
	Related Work
	Traffic Target Detection in Real Time
	Drivable Areas and Lane Splits
	Multitask Learning

	Our proposed Methods
	Design Idea
	Network Architecture
	Task Headers
	Loss Function Design
	Algorithm Details Implementation

	Experimental Evaluation
	Data Sets
	Experimental Process
	Training Methods
	Comparison of Experimental Results
	Visualization
	Ablation Studies

	Conclusions
	References

