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Abstract: The segmentation of retinal vessels plays an essential role in the early recognition of
ophthalmic diseases in clinics. Increasingly, approaches based on deep learning have been pushing
vessel segmentation performance, yet it is still a challenging problem due to the complex structure
of retinal vessels and the lack of precisely labeled samples. In this paper, we propose a self-paced
dual-axis attention fusion network (SPDAA-Net). Firstly, a self-paced learning mechanism using a
query-by-committee algorithm is designed to guide the model to learn from easy to hard, which makes
model training more intelligent. Secondly, during fusing of multi-scale features, a dual-axis attention
mechanism composed of height and width attention is developed to perceive the object, which brings
in long-range dependencies while reducing computation complexity. Furthermore, CutMix data
augmentation is applied to increase the generalization of the model, enhance the recognition ability of
global and local features, and ultimately boost accuracy. We implement comprehensive experiments
validating that our SPDAA-Net obtains remarkable performance on both the public DRIVE and
CHASE-DB1 datasets.

Keywords: retinal vessel segmentation; dual-axis attention; self-paced learning

1. Introduction

Retinal vessel segmentation is a process of extracting the blood vessels from retinal
fundus images that can help with quantitative analysis and diagnosis of retinal diseases
caused by stroke, diabetes, hypertension, and glaucoma. Morphological properties of
retinal vessels, such as vessel diameter, tortuosity, bifurcation pattern, and so on are
important biomarkers for these diseases [1]. Thus, it is required to segment retinal vessels
with high accuracy. On the other hand, with the development of computer-aid diagnose
methods, the automatic segmentation technology of retinal vessels can ease the workload of
ophthalmologists and assist the inexperienced ones. Therefore, the automatic segmentation
of retinal vessels is important for the clinical diagnosis and treatment of eye diseases.

However, retinal vessel segmentation is not an easy task due to various challenges
that affect the image quality and segmentation performance. First, anatomical variability
between subjects and thin retinal vessels are difficult for identification. Second, the number
of training samples accurately labeled by doctors is limited. Third, there can be low
contrast, noise, and uneven illumination in blood vessel images. Additionally, vessels can
be disturbed or covered by other components in the retina, such as the optic disc or lesions.

Efforts have been dedicated for the above challenges by proposing deep-neural-
network-based methods [1–6]. Many of them have attempted to improve U-Net [7] by
incorporating some carefully designed specific network modules. Wang et al. [4] proposed
the Dual-Encoding U-Net (Dual-E U-Net) that remarkably enhanced the network’s ca-
pability to segment retinal vessels in an end-to-end and pixel-to-pixel way. Gu et al. [6]
proposed a context encoder network (CE-Net) to capture more high-level information and
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preserve spatial information for 2D medical image segmentation. Wang et al. [1] proposed
the hard attention net (HAnet) that enhanced the ability to segment hard and easy regions
independently from three decoder branches. U-Net structures obtain high-level feature
representations by stacked convolution and down-sampling and utilize mirrored opera-
tions with skip connections to recover the original-resolution feature maps for pixel-level
supervised learning.

Although existing methods have continued to improve the segmentation accuracy
and sensitivity, some limitations still exist. First, they lack the ability to learn the semantic
information of tiny-scale vessels since valuable spatial information is diminished after
downsampling, and they lack the ability to model long-range dependencies that are present
in an image. Secondly, retinal vessel segmentation lacks large-scale labeled datasets. How
to take full advantage of the data to guide the model to train at an appropriate speed and
level of difficulty needs to be further explored.

In this paper, we propose a self-paced dual-axis attention fusion network for retinal
vessel segmentation. Firstly, inspired by the learning process of humans, a self-paced learn-
ing method based on a query-by-committee (QBC) algorithm is designed that calculates
the difficulty of samples through our designed committee blocks and selects input samples
for training in each epoch with an adaptive threshold from easy to hard, hence improving
model performance with limited data. Secondly, a dual-axis attention module is introduced
to the encoder of the subsequent U-Net. The height-axis and width-axis attention enrich the
capability of extracting precise vascular structural features while reducing computational
complexity more than 2D attention. Thirdly, CutMix data augmentation is applied for
vessel segmentation to improve model robustness. CutMix prevents overfitting and boosts
classification accuracy by cutting out parts of one image and pasting them over another
image while also mixing their labels according to the area ratio.

The contributions of this paper are summarized as follows:

• An end-to-end retinal vessel segmentation network with dual-axis attention mecha-
nism and self-paced learning method is proposed to improve model sensitivity and
accuracy.

• A width and height dual-axis attention module is employed to fuse the features with
different scales and to integrate local and global semantics for better segmentation of
various vessels.

• A human-inspired self-paced learning method that leverages a query-by-committee
algorithm to assign the easiness weight of training sample is proposed for vessel
segmentation and guides the model to learn from easy to hard, avoid local optima,
and boost accuracy. To the best of our knowledge, this is the first work that applies
self-paced learning for this task.

• We evaluate our framework on the DRIVE and CHASE-DB1 datasets. The designed
self-paced learning loss is used as the loss function, and CutMix data augmentation
is applied to increase the diversity of the training data. The experimental results
demonstrate that our method achieves remarkable performance on both datasets.

2. Related Work
2.1. Retinal Vessel Segmentation

The structural information of retinal blood vessels has important guiding significance
for the diagnosis of ophthalmic diseases, Accurate segmentation of retinal blood vessels
has become an urgent clinical need. To improve the segmentation accuracy a lot of work
has been done by numerous researchers.

To solve low vessel edge visibility and high vessel complexity, Wang et al. [1] proposed
the hard attention net (HAnet), which can pay more attention to the vessels with high
complexity. He et al. [8] proposed an evolvable adversarial framework that has fewer mis-
segmented regions and more accurate boundaries. Liu et al. [9] proposed the OCTA retinal
vessel segmentation method (ARP-Net) based on the adaptive gated axial transformer
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(AGAT), Residual and point repair modules guide the network to focus on low vessel
edge visibility.

To solve the problem that some features related to detailed structures are not discrimi-
native enough, Zhang et al. [10] proposed a boundary enhancement and feature denoising
(BEFD) module to prevent loss of high-frequency information. Xu et al. [11] proposed a local-
region and cross-dataset contrastive learning method to enhance the tiny-feature embedding
ability. Wang et al. [12] proposed a context-spatial U-Net with a two-channel encoder that
can capture spatial information and multi-scale context information, respectively.

2.2. Self-Paced Learning

Self-paced learning (SPL) is a method that adaptively prioritizes easy and reliable
samples before complex ones. It helps models learn better and avoid local optima.

Kumar et al. [13] introduced a self-paced regular function to the supervised algorithm
by optimizing the improved objective function; the SPL not only optimizes the parameters
of the supervised algorithm but also continuously improves the course. They used binary
weights to select simple samples for classification and segmentation.

Jiang et al. [14] used self-paced learning to detect movements and events; they pro-
posed a soft weight rule that assigns floating-point weights to measure the difficulty and
diversity of samples. They proposed a self-paced learning-with-diversity (SPLD) method
that extracts easy samples from diverse sets for fast access to complex knowledge and to
obtain better performance.

Li et al. [15] used multi-objective optimization to design a self-paced learning method
(MOSPL). They split the objective function into two parts and optimized them separately.
They obtained a compromise value as the final result.

Since self-paced learning has evolved to the present state, the main difficulty is how to
let the model distinguish the difficulty of training samples and how to control the learning
speed, specifically, the transition from learning easy samples to difficult samples. There-
fore, further methods that can better distinguish the difficulty of samples and adaptively
optimize the thresholds of input samples need to be developed.

From the perspective of vessel segmentation, the major challenge is the complex struc-
ture of blood vessels that makes it difficult to separate blood vessels from the surrounding
tissues. The step-by-step learning mode of self-paced learning from easy to hard may
contribute to precise vessels segmentation.

2.3. Active Learning and Query by Committee

Active learning is a machine learning algorithm that finds the most valuable training
samples to add to the training set by actively finding them, and if those samples are
unlabeled, it automatically asks for manual labeling before using them for model training.
In simple terms, it means training a model with as high performance as possible with fewer
training samples.

The most widely used current active learning algorithms are the informativeness-
based methods, which select as training data the samples with the highest uncertainty
about the current model. Another popular class of methods is query by committee, which
select as training data the samples with the most uncertainty for different models. In the
following, we focus on the analysis of query by committee.

The basic idea of query by committee (QBC) is to view the optimized machine learning
model as a version space search, and QBC finds the best machine learning model by
compressing the search scope of the version space [16]. The steps of active learning based
on QBC are to train multiple models with the same architecture on the same training set.
Uncertain samples are identified by voting among the models, and then they are labeled
and added to the training set. This process is repeated until satisfactory performance is
achieved. It has been found that a committee size of two or three models is sufficient,
and that diversity among the models is essential for effective integration.
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The formula for calculating the voting entropy of the QBC method is as follows:

Vqbc = − arg max ∑
i

Vot(yi)

C
log

Vot(yi)

C
(1)

where C is the number of categories in the classification and Vot(yi) is the number of votes
received by category yi.

In QBC, each sample is sent to a different member of the committee, and then each
member votes on the sample, judging the difficulty of the sample based on the consistency
of the voting results: if the voting results are similar, it is an easy sample; conversely, if the
voting results have great difference, it is a hard sample. This implies that the QBC method
is an effective and reliable technique for assessing sample complexity.

3. Our Proposed Method
3.1. Framework Overview

As illustrated in Figure 1, our self-paced dual-axis attention fusion network (SPDAA-
Net) consists of a series of committee blocks for the self-paced learning mechanism and a
subsequent dual-axis attention U-like-Net for precise vessel segmentation. First, the input
image is cropped into patches and CutMix data augmentation is applied to increase the
robustness of the model. Then, a self-paced learning mechanism is adopted by using
committee blocks to measure the difficulty of the input. The subsequent U-like-net is
designed with dual-axis attention for height and width axes, which contributes to higher
segmentation accuracy for vessel segmentation while reducing computational complexity.
Finally, the network is trained with samples from easy to hard according to the self-paced
learning, and the predicted segmentation result is obtained after passing through the
fusion network.

Figure 1. Scheme of the proposed self-paced dual-axis attention fusion network (SPDAA-Net).

Specifically, the committee block is comprised of a three-Conv-block encoder to extract
multi-scale feature maps, and the output of the last layer of the encoder is used in the QBC
algorithm for SPL by calculating the similarity and sorting and sampling the training data
by a designed adaptive threshold.

The bottom part of Figure 1 shows the architecture diagram of the dual-axis attention
module. A traditional axial attention layer propagates information along one particular
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axis. To capture global information, dual-axial attention layers for the height axis and width
axis sequentially are employed. Both of the axial attention layers adopt the multi-head
attention mechanism.

3.2. The Axis Attention Module

For providing accurate and efficient segmentation, it is essential to understand which
pixels belong to the mask and which belong to the background. As the background of the
image is scattered, learning long-range dependencies among the background pixels can
help the network avoid misclassifying a pixel as part of the mask and can reduce false
positives (assuming 0 is the background and 1 is the segmentation mask). Likewise, when
the segmentation mask is large, learning long-range dependencies among the mask pixels
can also help make efficient predictions.

At present, transformers have been shown to be able to encode long-range depen-
dencies. Parmar et al. [17] proposed adding positional bias while computing affinities
through a self-attention mechanism, which helped make the affinities sensitive to the po-
sitional information. Relative positional encodings are often employed as this bias term.
These encodings are trainable parameters that can represent the spatial features of the
image. For any given input feature map x, the 2D self-attention mechanism with positional
encodings can be written as [17]:

y = ∑
p∈Nm×m(o)

softmaxp

(
qT

o kp + qT
o rq

p−o + kT
p rk

p−o

)(
vp + rv

p−o

)
(2)

While transformer methods present strong capabilities to model the global context,
their computational complexity grows quadratically, limiting their ability to scale up
to high-resolution scenarios. To overcome the computational complexity of calculating
the affinities, referred to as axial attention [18], self-attention is decomposed into two self-
attention modules. The first module performs self-attention on the feature map’s height axis,
and the second one operates on the width axis. The axial attention consequently applied
on the height and width axes effectively models the original self-attention mechanism
with much better computational efficiency. Wang et al. [19] proposed an attention-based
model for image segmentation that leverages both the axial attention mechanism and the
positional encodings. Moreover, unlike previous attention models that only used relative
positional encodings for queries [20], they suggested applying them to all queries, keys, and
values. This additional position bias in queries, keys, and values can enhance long-range
interaction with accurate positional information.

The self-attention mechanism with positional encodings along the dual-axis for the
input feature map x can be expressed as:

yi−h = ∑
p∈N H×1

softmaxp

(
qTkhj + qTrq

hj + kTrk
hj

)(
v + rv

hj

)
(3)

yw−o = ∑
p∈N 1×W

softmaxp

(
qTkiw + qTrq

iw + kTrk
iw

)
(v + rv

iw) (4)

where the formulation in Equations (3) and (4) refer to the attention model proposed in [17]
and rq, rk, rv ∈ RW×W for the width-wise axial attention model. Equation (3) describes the
axial attention applied along the height axis of the tensor. Subsequently, Equation (4) is also
used to apply axial attention along the height axis, and together they form a 1D-axis-based
self-attention fusion model that is computationally efficient.

The dual-axis attention module is then adopted to the encoder of the U-Net structure.
Optional striding is performed on each axis after the corresponding axial attention layer.
The two 1 × 1 convolutions are kept to shuffle the features. The dual-axis attention module
is illustrated in the bottom part of Figures 1 and 2. In the model, a 1 × 1 convolution is not
applied between the two axial attention layers, and the stem from the original U-Net is
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retained. This leads to a Conv–stem model where the first layer uses convolution and the
rest of the block uses attention layers.

Figure 2. Scheme of the height-axis attention and width-axis attention.

3.3. Self-Paced Learning for Vessel Segmentation

Self-paced learning is inspired by the learning process of humans, who learn with
easier concepts at first and then gradually involve more complex ones into training. The ob-
jective function of SPL with the self-paced regularity g(v, λ) can be defined as:

min E(w, v, λ) =
n

∑
i=1

viL(yi, f (xi, w)) + g(vi, λ) (5)

g(v, λ) = −λv, v ∈ [0, 1] (6)

where λ indicates the learning speed, f represents the machine learning model, xi and
yi represent the training data and its corresponding labels, respectively, w represents the
model parameters, vi represents the weight variables that measures the difficulty of each
sample, and L represents the loss function.

Learning robustness relies on sample selection to distinguish the reliable samples
from the confusing ones. To train on samples organized in ascending order of learning
difficulty, a query-by-committee algorithm is introduced in this paper to assign weights to
the training data that reflect the easiness of the samples.

Supposing data D = {(x1, y1), (x2, y2), · · · , (xn, yn)} are a collection of image patches
cropped from training images, C = {c1, c2, c3} is a committee of three members, and each
member shares the same backbone, as shown in Figure 3. The encoder-based backbone
used to construct the committee consists of three Conv blocks of different sizes. The multi-
scale Conv blocks possess the ability to extract features of different receptive-field sizes,
thereby enabling better feature extraction of samples. The feature map is extracted from the
last layer of the encoder using the Global Average Pooling Layer (GAP) to transform the
feature map into a vector; each of the three members of the committee generates a vector
that represents the characteristics of the input image. To avoid algorithm failure due to
having the same vector between outputs, we randomly initialize the model parameters with
different seeds in each CNN. The vector generated from ci is defined as~bi; the similarity
between two members is measured by the cosine distance, and the formula is as follows:

simij =
~bi •~bj∣∣∣~bi

∣∣∣× ∣∣∣~bj

∣∣∣ (7)
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where
∣∣∣~bi

∣∣∣ represents the length of the feature vector extracted by member ci in committee
C. We define the feature similarity of the kth input sample xk between committees as:

sim(xk) =
1
z

z

∑
i>j>0

simij(xk) (8)

Figure 3. Scheme of proposed QBC-based self-paced learning for retinal vessel segmentation.

High similarity between vectors indicates that all z members of the committee have
sufficiently learned the input data xi (z is set to 3 in this paper). Therefore, if the vector
similarity between members is high, it means that it is a simple sample. Conversely, if the
similarity is low, it means that it is a hard sample that is difficult for the model to learn.
After obtaining the similarity of all training samples they are normalized to the form of SPL
regular terms. Then, the weights to reflect the easiness of the samples can be calculated as:

vk =
sim(xk)−mini∈[1,n]sim(xi)

maxi∈[1,n]sim(xi)−mini∈[1,n]sim(xi)
(9)

To control the learning speed, a dynamic adaptive threshold λ is designed. When vk
exceeds the threshold, the sample xk is fed into the network; λ adaptively updates every
round, and its value is calculated from the maximum value of the previous round vk−1
according to the following formula:

λ = α(1− e
m
) max

k∈[1,n]
vk (10)

where e represents the current training iteration and m represents the total number of
training iterations; the hyperparameter α is set to 0.9 in our experiments.

For vessel segmentation, the self-paced guided loss function is designed as:

min E(w, v, λ) =
n

∑
i=1

viLBCE(yi, f (xi, w))− λ
n

∑
i=1

vi (11)

4. Experiments
4.1. Datasets

We evaluated the proposed vessel segmentation framework on the DRIVE [21] and
CHASE-DB1 datasets [22]. The DRIVE dataset has 40 color fundus images and ground-truth
masks manually labeled by experts, from which 20 images are used for training and the
remaining 20 images are used for testing. The image size of the DRIVE dataset is 584 by
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565 pixels. The other common benchmark for retinal vessel segmentation is the CHASE-
DB1 dataset, which contains 28 color retinal images, from which the first 20 images are
used for training and the other 8 images are for testing. The image size of the CHASE-DB1
dataset is 999 by 960 pixels.

4.2. Implementation Details

During training, patches with a size of 128 × 128 are cropped as the input of the
SPDAA-Net. All patches are randomly cropped, flipped, and zoomed in for data enhance-
ment. We adopt the CutMix [23] data augmentation method for vessel segmentation, as
shown in Figure 4. Patches are cut and pasted among training images wherein the ground-
truth labels are also mixed proportionally to the area of the patches. The new combined
images x̃ and labels ỹ can be defined as:

x̃ = M� xA + (1−M)� xB

ỹ = λyA + (1− λ)yB
(12)

where xA and xB represent two training samples, M denotes a binary mask indicating
where to drop out and fill in from two images, 1 is a binary mask filled with ones, and � is
element-wise multiplication. In our experiments, the combination ratio is sampled from the
uniform distribution λ ∼ U(0, 1). Note that the major difference is that CutMix generates
more locally natural images than MixUp does and also prevents the model from overfitting
the training distribution and improves its generalization ability.

Figure 4. CutMix data augmentation for various retinal vessel segmentation. Red box indicates the
combination of two different samples.

The binary mask M is sampled according to the bounding box coordinates
B = (rx, ry, rw, rh). In our experiments, we sample rectangular masks M whose aspect ratio
is proportional to the original image. The box coordinates are uniformly sampled according
to: rx ∼ U(0, W), ry ∼ U(0, H), rw = W

√
1− λ, and rw = W

√
1− λ. Within the cropping

region, the binary mask M is decided by filling with 0 within the bounding box B and 1
otherwise.
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In each training iteration, a CutMixed sample (x̃, ỹ) is generated by combining two
randomly selected training samples in a mini-batch according to Equation (12). The pa-
rameter settings of the self-paced learning was described in Section 3.3. We trained our
network on two NVIDIA A40 GPUs with a batch size of 16 and used an Adam optimizer
with a learning rate of 0.0005. The evaluation indicators are accuracy (ACC), sensitivity
(SEN), and area under curve (AUC).

4.3. Experimental Results
4.3.1. Performance of Different Methods under Comparison

To verify the effectiveness of our proposed network, we conducted experiments on
the Drive and CHASE-DB1 datasets and compared our model with advanced methods
based on the U-Net structure and attention-based models. As shown in Table 1, our
proposed network achieved an accuracy of 97.08% and an AUC of 98.93% on DRIVE, which
outperforms the results obtained from the above end-to-end retinal vessel segmentation
models. Our proposed network achieved an accuracy of 97.69% and an AUC of 99.13% on
CHASE-DB1, which achieves good performance while reducing computational complexity.

Table 1. Comparison with advanced methods on the DRIVE and CHASE-DB1 datasets.

Dataset Method Year ACC SEN AUC

DRIVE Dual E-UNet [4] 2019 0.9567 0.794 0.9772
CE-Net [6] 2019 0.9545 0.8309 0.9779
HANet [1] 2020 0.9581 0.7991 0.9823
SA-UNet [3] 2020 0.9698 0.8212 0.9864
BEFD-UNet [10] 2020 0.9701 0.8215 0.9867
CAR-UNet [2] 2021 0.9699 0.8135 0.9852
SCL–Net [24] 2021 0.9678 0.8086 0.982
LRCL-Net [11] 2022 0.9705 0.8441 0.989
FR-UNet [5] 2022 0.9705 0.8556 0.9889
Our proposed 2023 0.9708 0.8561 0.9893

CHASEDB1 Dual E-U-Net [4] 2019 0.9661 0.8074 0.9812
HANet [1] 2020 0.9673 0.8186 0.9881
SA-UNet [3] 2020 0.9755 0.8573 0.9905
CAR-UNet [2] 2021 0.9751 0.8439 0.9898
SCL-UNet [24] 2021 0.9751 0.8162 0.9879
LRCL-Net [11] 2022 0.9771 0.8543 0.9919
DA-Net [25] 2022 0.9766 0.8704 0.9913
Our proposed 2023 0.9769 0.8793 0.9913

4.3.2. Ablation Studies

In order to verify the role of the self-paced module in enhancing accuracy and sensitiv-
ity in our proposed retinal vessel segmentation network, we compared the baseline model
with and without SPL. Table 2 shows the results of the ablation study. The best segmentation
performance is obtained after we apply all of the proposed components. The experimental
result indicates that self-paced learning can significantly improve the method.

Table 2. Ablation study on DRIVE dataset.

Method ACC AUC SP DICE

Baseline w/o SPL 0.9691 0.9889 0.9826 0.8310
Baseline w/ SPL 0.9706 0.9891 0.9829 0.8315
Baseline + SPL + CutMix (our SPDAA-Net) 0.9708 0.9893 0.9830 0.8316

4.3.3. Visualization

We also give the visualization results in Figure 5 to show how these methods are visu-
ally different on probability maps and binary maps. The U-Net method can discriminate a
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few of the hard pixels of detailed structures (capillaries and vessel boundaries), but break-
points still exist on the binary segmentation results. Meanwhile, our proposed SPDAA-Net
extracts more vessel pixels with insignificant feature differences, and the connectivity of
the segmented vessels is greatly enhanced.

Figure 5. Visualization of segmentation results: (a,b) represent the binary maps; (c,d) represent the
probability maps. From left to right: retina images and ground truths, proposed SPDAA-Net outputs,
and U-Net outputs.

Figure 6 shows some visual segmentation results of our SPDAA-Net on the DRIVE
and the CHASE-DB1 datasets. We can clearly see that our SPDAA-Net can obtain better
segmentation visual results.

Figure 6. Visualization of segmentation results on DRIVE (top) and CHASE-DB1 (bottom) datasets.
From left to right: retina images, ground truth, U-Net output, and proposed SPDAA-Net output.
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5. Discussion

Deep learning has led to significant advancements in retinal blood vessel segmentation
research. Despite the emergence of numerous deep learning-based methods in recent years,
challenges remain in addressing the complexity of vessel segmentation and the limited
availability of professionally labeled samples. In the face of these challenges, we developed
a new method to enhance performance.

Due to the complexity of retinal blood vessels, network predictions may break or miss
thin vessel segments. Some methods have attempted to solve this problem by increasing
the field of view of the network. While some have increased the size of the convolution
kernel [6,10], the receptive field remains limited. Others have added an attention module at
the bottom of the network [1,12], but they still face the problem of inaccurate global context
information. In this paper, we developed an axis-attention-based network bringing in long
dependencies to extract global information to grasp the potential correlation and connectiv-
ity between blood vessels. Axial attention on a square image of size N = S× S performs
attention on S sequences of length S: this is a total of O(S · S2) = O(N

√
N) computations,

an O(
√

N) savings in computation over standard self-attention. The experimental results
in Section 4.3 demonstrated that our proposed method outperforms the previous method
in the retinal blood vessel segmentation task.

In addition, due to the high level of expertise required for medical annotation and
the individual variations in medical images, the dataset size is much smaller compared
to digital images. Developing methods to effectively utilize the available samples for
network training is a pressing research challenge. In this paper, we set up feature extraction
committees to calculate cosine similarity and use the similarity normalized by deviation to
represent the weights of sample difficulty. Then, we designed an adaptive threshold that
guides the network to take full use of available samples and learn from easy to difficult in a
more intelligent manner, similar to human learning habits, by filtering the threshold during
the training process. By designing the loss function based on self-paced learning and the
segmentation task, the network can be trained more intelligently. Ablation experiments
verified that our method based on self-learning has improved performance in retinal
segmentation tasks. The combination of self-paced learning and an axis attention network
enables our method to better solve the problems of vascular rupture or loss.

Although our proposed method effectively segments the complex retinal vascular
structures, there is still some further work that could be researched. First, we can further
improve the way the transformer interacts with the convolutions to make it more consistent
with the retinal blood vessel segmentation task so as to further improve our network.
Second, the calculation strategy for self-paced learning could be further improved, such
as optimizing the settings of hyperparameters and the frequency of threshold updates.
At present, the calculation of the self-learning module takes a relatively long time, with an
average of less than two item per second in our training environment. In addition, we can
also introduce more powerful data-enhancement technologies to expand the dataset so that
the network can learn more useful information.

6. Conclusions

In this paper, a self-paced dual-axis attention fusion network for retinal vessel segmen-
tation is proposed. In the network, the committee blocks extract features with a multi-scale
receptive field and guide the model to learn samples from easy to hard based on diffi-
cultly to segment using self-paced learning. Moreover, to learn long-range dependency
information and improve segmentation accuracy, a U-structure network with a width and
height dual-axis attention module is applied to vessel segmentation. In addition, CutMix
data augmentation is also applied to increase the diversity of the training data and to
enhance model performance with various sizes of vessels and difficult samples. All of
these demonstrate that our proposed method is accurate and efficient for retinal vessel
segmentation. In future work, we will further improve accuracy through more efficient
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attention mechanisms and will apply our proposed method to other few-shot medical
imaging analyses.
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