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Abstract: In digital image inpainting tasks, existing deep-learning-based image inpainting methods
have achieved remarkable staged results by introducing structural prior information into the network.
However, the corresponding relationship between texture and structure is not fully considered, and
the inconsistency between texture and structure appears in the results of the current method. In this
paper, we propose a dual-branch network with structural branch assistance, which decouples the
inpainting of low-frequency and high-frequency information utilizing parallel branches. The feature
fusion (FF) module is introduced to integrate the feature information from the two branches, which
effectively ensures the consistency of structure and texture in the image. The feature attention (FA)
module is introduced to extract long-distance feature information, which enhances the consistency
between the local features of the image and the overall image and gives the image a more detailed
texture. Experiments on the Paris StreetView and CelebA-HQ datasets prove the effectiveness and
superiority of our method.

Keywords: structural prior information; structure auxiliary branch; generate adversarial network;
image inpainting

1. Introduction

Digital image inpainting technology uses a computer to automatically inpaint the
content of an image defect area using the content of a known area in the image and, at
the same time, ensures the consistency of the overall structure of the image. Using this
technology to inpaint defective images can not only avoid the influence of human subjective
ideas about the content, but also allows the results to adequately meet the perceived needs
of human vision. The rise of deep learning technology has brought this area to the attention
of contemporary researchers in recent times. Digital inpainting technology has become an
important aspect of research in the field of digital image processing and computer vision.

Early traditional methods [1–5] mainly use mathematical knowledge and physical
knowledge to inpaint images. In the case of simple digital image inpainting tasks, such as
small image defect areas, simple textures, and structures, good results can be achieved with
these methods. However, when dealing with complex tasks, such as large-area defects,
traditional methods cannot perceive and understand the high-level semantics of images,
and the results often have inconsistent structures and lack reasonable and clear semantics,
resulting in unsatisfactory effects.

In contrast to traditional methods, convolutional neural networks [6,7] and generative
adversarial networks [8] are applied to digital image inpainting tasks via deep-learning-
based methods [9–30]. Using a convolution operation to extract the high-level semantic
information in the image while inpainting the textural details of the defect area, it can be
ensured that the image has a consistent structure and reasonable semantics. This makes
up for the defects in traditional methods, achieves results that are more satisfactory for
the needs of human visual perception, and improves the quality of the image significantly.
As the research deepens, it has been found that ordinary convolution cannot distinguish
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the defect area of the image from the known area. All the pixels in the current window
are regarded as effective pixels as the convolution operation is performed, which leads to
a series of problems, such as edge response. The problems caused by the indiscriminate
operation of ordinary convolution are more serious in the task of inpainting irregular
defective digital images. As a result, two updated versions of common convolutions are
proposed [12,13]. The two updated versions of the convolution operation are only aimed at
effective pixels and achieved good performance in the task of inpainting irregular defective
digital images. In addition, to solve the problem wherein the traditional convolution
methods cannot extract features from distant regions, researchers have introduced the
attention mechanism [14–18] into the network. Using the attention mechanism, feature
blocks can be borrowed from known regions to fill in defective regions.

In addition to the above methods, researchers have combined structural information
and proposed some two-stage methods [19–23]. These methods inpaint the structural
information of the defect area in the first stage and then use the structural information
to guide the synthesis of pixels in the defect area in the second stage. The successive
emergence of these studies has proved that the structural information of semantic segmen-
tation maps [19], edge maps [20,21], foreground contours [22], and smooth images [23]
play an important role in guiding the generation of better images. However, most of these
algorithms use a two-stage network architecture, first predicting structural information,
and then inpainting the defect area. Obtaining reasonable structural information from
already-defective images is a very challenging task in itself, and, thus, there is a problem in
that the results will deteriorate due to structural prediction errors. To solve the problems of
the above methods, researchers have improved the performance by simultaneously recon-
structing structure and texture features in a single-generation network [24–26]. Recently,
some researchers tried to introduce a transformer network into the digital image inpainting
task [27,28], and the results better meet the needs of human visual perception.

In this paper, we exploit structural information, such as image edge maps, to propose
a dual-branch network with independent structural branches to split image inpainting
into two simultaneous subtasks. That is, the structure branch focuses on the structural
information of the defect area, and the other texture branch focuses on the synthesis
of image texture. In this way, the two parallel and independent branches decouple the
inpainting of low-frequency and high-frequency information in the area to be inpainted.
Correspondingly, we introduce a feature fusion (FF) module with an information selection
function to integrate the structure feature map and texture feature map, so that the feature
information sets of the two branches complement each other and enhance the consistency of
the image structure and texture. At the same time, we also introduce a feature attention (FA)
module to extract features from known regions far away from the defected region, giving
the image more detailed textures. Furthermore, we introduce two Markov discriminators
to evaluate the performance of the generator and force the generator to produce more
realistic images.

We conduct experiments and evaluate using the Paris StreetView and CelebA-HQ
datasets. Both the qualitative results display and quantitative numerical comparisons show
that our method outperforms existing methods.

The main innovations and contributions of this paper are as follows:
We propose a novel network assisted by structural branches, where two branches in

the network focus on image structure and synthesizing image texture, respectively. In this
parallel and independent manner, the inpainting of low-frequency and high-frequency
information is decoupled.

We introduce a feature fusion (FF) module to integrate the structural information and
texture information from the two branches and perform information selection. We allow
these sets of information to complement each other so that the image structure and texture
are more consistent. At the same time, we also introduce a feature attention (FA) module to
extract features from distant regions to generate more detailed textures.
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Through experiments on different types of datasets and comparisons with multi-
ple benchmark methods, our method shows strong and advanced performance in both
qualitative and quantitative aspects.

2. Related Work

Traditional methods were mainly used in early digital image inpainting tasks. Accord-
ing to previous research, these are mainly divided into two categories: one is the method
based on partial differential equations [1–3], and the other is the method based on sample
texture. The method based on partial differential equations establishes a geometric model
according to the correlation of pixels in the image to inpaint the image defect, and the
method based on sample texture fills the defect area by borrowing the texture image block
of the known area. The method based on partial differential equations can achieve better
results when the proportion of the image defect area is small, and the texture around the
defect area is relatively simple. If the proportion of the image defect area is relatively large
or the texture around the defect area is relatively complex, the effect will also be poor,
and the result will be very blurred. Compared with methods based on partial differential
equations, methods based on sample textures can achieve better results in large-area defect
image inpainting tasks and can even inpaint texture details in defect areas to a certain
extent. However, the images still lack reasonable semantics and cannot meet the needs of
human visual perception.

Deep-learning-based methods [9–30] currently occupy a dominant position in the field
of image inpainting due to their powerful data-fitting capabilities. This kind of method
can effectively extract the high-level semantic information in the image, and the results can
meet the perceived needs of human vision to a great extent under the premise of ensuring
the content is reasonable. By introducing structural information, some two-stage methods
have been proposed. Song et al. [19] proposed the SPG-Net network for some methods
that do not make full use of semantic segmentation information to constrain the image
structure. Nazeri et al. [20] proposed the EdgeConnect network by explicitly introducing
the prior information on the edge structure. Similarly, Shun et al. [21] also explicitly
introduced the structural information of the edge map in the E2I network. Xiong et al. [22]
did not use a semantic segmentation map and edge map as structural prior information
but explicitly introduced foreground contour information into the network. Ren et al. [23]
pointed out that smooth images have better global structures, thus explicitly introducing
smooth images into the network as structural prior information. These two-stage methods
generate images with a more reasonable structure by using structural prior information,
but the network in the latter stage is easily affected by the network in the previous stage.
If the reasoning structure is unreasonable, the effect will become unsatisfactory. In view
of the problems existing in the above two-stage methods, some researchers have begun to
try to reconstruct structural features and texture features at the same time. Li et al. [24]
proposed a progressive network for edge structure, the PRVS network, which can gradually
inpaint the edge structure and related edge features through the designed VSR layer.
Liu et al. [25] proposed an inter-encoder-decoder network based on the joint inpainting
of structure and texture. Through multi-scale filling of structural features and texture
features, the network can inpaint the structure and texture of images at the feature level.
Jie et al. [26] designed a structure-embedding layer that was used to gradually embed the
structural feature information into the decoding features of the decoder as prior information.
Recently, some researchers have tried to use a transformer network to generate multiple
results with reasonable content for each defective image. Wan et al. [27] introduced a
transformer network to inpaint the overall structure of the damaged image and then used
a convolutional network to further refine the local texture, thereby generating diverse
images with fine textures. Liu et al. introduced a PUT network [28] based on a transformer
network, which further generated high-quality diverse images by reducing the information
loss in the transformer network.
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3. Method

As shown in Figure 1, the main network of this method is a generative adversarial
network [8], and the generator consists of two convolutional autoencoder networks to
form a dual-branch network. Among them, the structure branch focuses on the structural
information of the defect area, and the texture branch focuses on the synthesis of image
texture. The quality of the image is evaluated by a Markov structure discriminator and
a Markov texture discriminator. In this section, we will elaborate on the generator of the
network, the discriminator, and the loss function of the network training in Sections 3.1–3.3,
respectively.
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3.1. Generator

The generator body consists of two U-net networks [31] as shown in Figure 1a. In
the encoding stage, the encoder uses convolution to encode the defect image and its
corresponding edge map step by step and then projects them into the latent space after
step-by-step compression. The structure branch mainly focuses on structural features, and
the texture branch mainly focuses on textural features. In the decoder, to ensure the quality
of the generated image, some low-level image features such as texture need to be generated
after several decodings. However, because the network layer is too deep, the low-level
image features extracted by the shallow layer are likely to have been lost. This is because
in the process of network propagation, as the network becomes deeper and deeper, the
receptive field of the corresponding feature map will gradually become larger, resulting in
less detailed information being retained. By adding skip connections, the convolutional
features in the encoding process are copied and passed to the corresponding transposed
convolutional layer in the decoding process, which supplements low-level image features
such as a texture for the decoder.

The dual-branch network splits image inpainting into two simultaneous subtasks,
which decouple the inpainting of low-frequency and high-frequency information in a
parallel and independent manner. The structure branch focuses on restoring the structural
information of the defect area and can explicitly utilize the image edge map as a structural
prior to ensure that the inpainted image has a more reasonable structure. The texture
branch focuses on the synthesis of image textures, using skip connections to ensure that the
generated images have texture details.

In the two branches of the generator, we use partial convolutional layers instead of
ordinary convolutional layers to improve the performance of the network in irregular
defect inpainting tasks. In addition, the decoded feature maps output by the two branches
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are input to the feature fusion (FF) module with information selection and integration
functions for feature fusion and then input to the feature attention module (FA) to obtain
the final results.

3.1.1. Feature Fusion (FF) Module

This module is designed to integrate the edge map and texture feature map decoded
by the dual-branch network so that the feature information decoded by two parallel and
independent branches can be integrated. This module is shown in Figure 2.
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Here, we denote the feature maps decoded by the structure branch and the texture
branch by Fs and Ft, respectively. First of all, we first construct an information integration
unit IU, and the obtained process of IU is shown in Formula (1):

IU = σs(Conv(C(Fs · Ft))), (1)

where C(Fs · Ft) represents the concatenation of Fs and Ft in the channel dimension, Conv(·)
represents the convolution operation with a convolution kernel size of 3, and σs(·) repre-
sents the Sigmoid activation function.

Using IU, we fuse Fs and Ft to obtain the texture-based and structure-assisted feature
Fts, and the process of obtaining Fts is shown in Formula (2):

Fts = α1(IU � Fs)⊕ Ft, (2)

where α1 is a trainable parameter whose initial value is 0. � and ⊕ represent element-wise
multiplication and element-wise addition operations, respectively.

Correspondingly, the structure-based and texture-assisted feature Fst is obtained as
shown in Formula (3):

Fst = α2(IU � Ft)⊕ Fs, (3)

where α2 is a trainable parameter, whose initial value is 0.
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Finally, we obtain the fusion feature FF by concatenating Fts and Fst in the channel
dimension. The process of obtaining FF is shown in Formula (4):

FF = C(Fts · Fst), (4)

where C(Fs · Ft) represents the concatenation of Fts and Fst in the channel dimension.

3.1.2. Feature Attention Module (FA)

Traditional convolution methods cannot extract features from distant regions. We have
introduced an attention mechanism into the network, and the attention mechanism can
be used to borrow feature blocks from known regions to fill in missing regions, effectively
solving this problem. By introducing an attention mechanism, we designed this module to
effectively enhance the correlation between image parts, thereby generating more detailed
textures. This module is shown in Figure 3.
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This module mainly performs two steps of attention score calculation and feature
transfer on the feature map. To compute the attention score, here, we denote an unspecified
input feature map by F. We need to first divide F into small block feature maps of 3× 3 size
and calculate the cosine similarity between the small block feature maps. The cosine
similarity calculation process is shown in Formula (5):

CSi,k =

〈
fi
‖ fi‖

,
fk
‖ fk‖

〉
, (5)

where fi and fk are the i-th and k-th small block feature maps, respectively.
Then we use the softmax function to obtain the final attention score of each small block

feature map. This calculation process is shown in Formula (6):

ASi,k =
exp

(
βCSi,k

)
∑N

m=1 exp
(
βCSi,m

) , (6)

where β is a trainable parameter.
Finally, the feature transfer is completed according to the attention score, and the

transfer feature map is obtained. This process is shown in Formula (7):

fi
′ =

N

∑
k=1

fk · ASi,k, (7)

where fi
′ is the i-th small block feature map of the transfer feature map.
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3.2. Discriminator

The GLCIC network [10] uses local and global double discriminators. The local
discriminator acts on a local area of the image, and the global discriminator acts on the
entire image. The two discriminators work at the same time to ensure the consistency of
local and global information and improve the quality of the image. Later, to generate better
image texture details, a Markov discriminator [32] is introduced into the digital image
inpainting task; one of the discriminators used in the PGGAN network [11] is a Markov
discriminator. Inspired by the above network, for the dual-branch structure of the generator
network, two Markov discriminators are used to evaluate the performance of the generator
and to force it to generate more realistic images. The network discriminator is shown in
Figure 1b. One of the two Markov discriminators of our network is used to evaluate the
image structure information to guide the structure reconstruction and is called the structure
discriminator. The other evaluates the whole image and focuses on evaluating the detailed
texture, which is called the texture discriminator.

Due to the sparsity of edge image structure information, in addition to the edge image
obtained by passing the original image or the inpainted image through a residual block, the
grayscale image is also input to the structure discriminator as an addition [20]. According
to the literature [32], we use five convolution layers to form the structure discriminator.
The size of the convolution kernel of the five convolutional layers is four and the filling is
one. The stride of the first three layers is two, and the stride of the last two layers is one.
We apply the Leaky ReLU activation function to the first four layers; the slope is set to 0.2,
and the Sigmoid activation function is used in the last layer to make the predicted value
fall in the range of 0–1. The input of the texture discriminator is the whole original image
or the whole inpainted image, which also consists of five convolutional layers, and the
convolution setting is the same as that of the structure discriminator. The final output of
the Markov discriminator is not a scalar, and it maps the input image to a matrix D of size
N × N. Di corresponds to the discrimination output of the discriminator for a small block of
the input image, and its value represents the probability that the input image block is a true
sample block. In our network, the size of N is set to 30. Finally, the output block matrices
of the two discriminators are concatenated in the channel dimension, and the generative
adversarial loss is calculated from this. Furthermore, we apply spectral normalization [33]
to the discriminator network, which effectively constrains the Lipschitz constant of the
discriminator network to one by shrinking the respective maximum singular values of the
weight matrices, further stabilizing the training of the network.

3.3. Loss Function

According to literature [15,20,25,26], the loss function of the network consists of
five parts, namely reconstruction loss, confrontation loss, perception loss, style loss, and
branch loss. Here, we use Gour to denote a two-branch generator and Dour denote two
Markov discriminators. Iw denotes the undamaged image, Ew denotes the edge map of the
undamaged image, and Gw denotes the grayscale image corresponding to the undamaged
image. M represents a binary mask. Id = Iw �M represents the input image of the defect,
Ed = Ew �M represents the input edge image of the defect, and Gd = Gw �M represents
the input grayscale image of the defect. The inpainted image Ir and the inpainted edge
map Er are obtained from the output of Gour, and this process is represented by (8):

Ir, Er = Gour(Id, Ed, Gd, M). (8)

3.3.1. Reconstruction Loss

The reconstruction loss is mainly used to measure the difference between the gen-
erated image and the real image. The reconstruction loss can be mainly divided into L1
reconstruction loss and L2 reconstruction loss. According to actual needs, the reconstruction
loss can be used for the entire image, or it can be used alone for a certain area or jointly
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weighted for different areas. Here, we choose L1 reconstruction loss and apply it to the
whole image, and its calculation process is shown in Equation (9):

L1 = E[‖Ir − Id‖1]. (9)

3.3.2. Generative Adversarial Loss

The generative adversarial loss is mainly used to ensure the visual authenticity of the
image, and its calculation process is shown in Formula (10):

Ladv = min
Gour

max
Dour

EIw∼Pw ,Ew∼Pwe [log Dour(Iw, Ew)] +EIr∼Pr ,Er∼Pre [log(1− Dour(Ir, Er))], (10)

where Pw represents the distribution of the undamaged image, Pwe represents the distribu-
tion of the edge map of the undamaged image, Pr represents the fitted distribution of the
inpainted image, and Pre represents the fitted distribution of the inpainted edge map.

3.3.3. Perceptual Loss

Perceptual loss [34] is mainly used to measure the difference between generated images
and real image features, which can force the network to capture high-level semantics and
simulate the human perception of image vision. The calculation process is shown in
Formula (11):

Lprec = E
[
∑

i
‖φi(Ir)− φi(Iw)‖1

]
, (11)

where φi represents the feature map of the i-th layer extracted by the VGG-16 network
pre-trained on the ImageNet dataset.

3.3.4. Style Loss

The style loss is mainly used to eliminate the checkerboard artifacts caused by the
transposed convolution to improve the quality of the image. Its calculation process is
shown in Formula (12):

Lstyle = E
[
∑

i
‖Gφ

j (Ir)− Gφ
j (Iw)‖1

]
, (12)

where Gφ
j represents the Cj × Cj Gram matrix constructed from the selected feature maps,

which are the same as those used in the perceptual loss.

3.3.5. Branch Loss

To allow the structure branch and the texture branch to generate more reasonable
structures and finer textures, respectively, we introduce branch losses in the two branches
as shown in Formula (13):

Lbranch = Ls + Lt = B(Ew, Ps(Fs)) + L1(Iw, Pt(Ft)), (13)

where Ls represents the branch loss added to the structural branch. Lt represents the branch
loss added to the texture branch. B represents BECloss and Ps represents the mapping
function that maps Fs to the edge map. Pt represents a mapping function that maps Ft to a
three-channel color image.

3.3.6. Total Loss

The total loss is shown in Formula (14):

Ltotal = λ1L1 + λ2Ladv + λ3Lprec + λ4Lstyle + λ5Lbranch, (14)
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where λ1, λ2, λ3, λ4, and λ5 represent the hyperparameters used to balance different loss
functions. Here, according to literature [20,26], we set λ1 = 10, λ2 = 0.1, λ3 = 0.1, and
λ4 = 250. According to literature [15,25], we set λ5 = 1.

4. Experiment
4.1. Experimental Setup

We conducted experiments on the Paris StreetView [35] dataset and the CelebA-
HQ [36] dataset, and conducted subjective evaluation and objective evaluation of the
results using existing evaluation indicators. In addition, we conducted three ablation
experiments to demonstrate the effectiveness of our designed network and modules.

Our experiments used the Paris StreetView dataset and the CelebA-HQ dataset as
well as the irregular mask dataset proposed in [12]. The irregular mask dataset includes
masks with six defect ratios, and the defect ratios are (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4],
(0.4, 0.5], (0.5, 0.6]. We use torchvision.transforms.Resize to adjust the image and irregular
mask to 256 × 256 pixels. The parameter interpolation in torchvision.transforms.Resize is
set to InterpolationMode.BILINEAR. InterpolationMode.BILINEAR refers to the bilinear
interpolation method. Furthermore, we generated edge maps using a Canny edge detector
whose sensitivity is controlled by the standard deviation of the Gaussian smoothing filter.
In our network, we set it to two based on previous experience [20].

We implemented the network using PyTorch, a deep learning framework. The experi-
ments were performed on an NVIDIA 3090 GPU with a batch size of 12. The commonly
used Adam optimizer was used to optimize the network, and β1 and β2 of the Adam
optimizer was set to 0.9 and 0.999, respectively. The learning rate of the generator was set to
2 × 10−4, and the learning rate of the discriminator was one-tenth of that of the generator,
which was set to 2 × 10−5.

4.2. Benchmark Methods

We selected three benchmark methods, EC network [20], RFR network [29], and
CTSDG network [15], for qualitative and quantitative comparison with the methods pre-
sented in this paper.

EC network explicitly introduced edge structure prior information. The network
proved the effectiveness of structural prior information in inpainting tasks by explicitly
introducing edge images, which provided ideas for future research.

Many existing image inpainting methods use generative adversarial networks as the
main body of the network to generate more realistic inpainted images. However, the RFR
network did not use a generative adversarial network but an autoencoder as the main body
of the network.

CTSDG network is a two-stream architecture. In the decoding stage, the texture
decoder borrows structural features from the structural encoder, while the structural
decoder extracts texture features from the texture encoder.

The main difference between the network proposed in this article and the network
proposed in the literature [15]:

1. Network structure; In literature [15], they proposed a novel two-stream network
for image inpainting. Structure-constrained texture synthesis and texture-guided
structure reconstruction are achieved in a coupled manner through this two-stream
generator. Our generator is a dual-branch network composed of two independent
U-net networks that decouple the inpainting of low-frequency and high-frequency
information in a parallel and independent manner.

2. Attention mechanism; In literature [15], they proposed the Contextual Feature Aggre-
gation module, which utilizes multi-scale feature aggregation to refine the generated
images. By introducing the idea of learning and adding learnable parameters to our
feature attention (FA) module, the performance of this module is further improved,
so that the inpainted image has a more detailed inpainting texture.
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3. Parameter setting; The batch size used in literature [15] is six. The batch size used in
our experiments is 12.

4. Training process; The network proposed in literature [15] needs to adjust the learning
rate to train again after the first training. In contrast, our network training procedure
is relatively simple. Our network only needs to be trained once after it is configured.

4.3. Qualitative Comparison

Figure 4 presents the qualitative comparison results of our method with three bench-
mark methods. The first three columns of Figure 4 show the results on the Paris StreetView
dataset, and the last three columns show the results on the CelebA-HQ dataset. It can be
seen from Figure 4b that there are some incorrect structures in the repaired image of the
EC network [20], and there are obvious artifacts; additionally, the consistency between
the structure and the texture is not well guaranteed. It can be seen from Figure 4c that
there are some artifacts in the results from the RFR network [29], and the phenomenon
of blurred boundaries is more obvious in the results from the CelebA-HQ dataset. It can
be seen from Figure 4d that the CTSDG network [15] is very competitive in inpainting
images. However, in some details, it is not as good as our network restoration (such as
the windowsill in the second row and the nose, ear, and eyes in the face results of the last
three rows). Overall, our network can generate more visually realistic images with clear
boundaries and consistent structure and texture.
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4.4. Quantitative Comparison

We mainly use the three metrics of PSNR and SSIM as well as Mean l1 to quantitatively
compare the results of the three baseline methods with our method on the Paris StreetView
dataset. The proportions of image defects are (0.01, 0.2], (0.2, 0.4], (0.4, 0.6]. From Table 1
(The metrics in Table 1 are the averaged results over all test images), we can see that
the performance of various methods gradually deteriorates as the proportion of image
defects increases. However, our method outperforms the three baseline methods in all
three indicators on the Paris StreetView dataset. The performance of the CTSDG network is
very close to our network. Due to the adjustment of the learning rate, the CTSDG network
needs to be trained twice. In contrast, our network only needs to be trained once, so the
training process of our network is relatively simple. The numerical comparison shows that
our method is not only effective but also superior in performance.

Table 1. Quantitative comparison of our method with three benchmark methods.

Metrics PSNR 1 PSNR 1 PSNR 1 SSIM 1 SSIM 1 SSIM 1 Mean l1 2 Mean l1 2 Mean l1 2

Mask Ratio 0–20% 20–40% 40–60% 0–20% 20–40% 40–60% 0–20% 20–40% 40–60%

EC [20] 33.21436 26.88999 22.36982 0.969226 0.893742 0.741424 0.005998 0.018316 0.039742

RFR [29] 34.17117 26.91602 22.89791 0.974969 0.894790 0.749771 0.005186 0.018146 0.037578

CTSDG [15] 35.93581 28.22912 23.69428 0.980768 0.917800 0.781414 0.004107 0.014532 0.032340

Ours 36.04300 28.30448 23.77611 0.981703 0.918644 0.789554 0.003977 0.014275 0.031878
1 Higher is better; 2 lower is better.

4.5. Ablation Experiment

We conducted ablation experiments on the CelebA-HQ dataset to verify the auxiliary
role of the structure branch and the role of the feature fusion (FF) module and feature
attention (FA) module.

4.5.1. Auxiliary Role of Structural Branches

To verify the auxiliary role of the structure branch, we constructed a single-branch
network, which only uses the texture branch to fill the defect area and inpaint the defective
image. Corresponding to keeping only the texture branch, this network also keeps only the
texture discriminator. As shown in Figure 5b, the single-branch network is not ideal for
nose and face structure inpainting due to the lack of structural information. The results
of the quantitative comparison in Table 2 (The metrics in Table 2 are the averaged results
over all test images) also demonstrate that structural branches can assist in producing
better images.
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Table 2. Quantitative ablation experiment of our method.

Metrics PSNR 1 PSNR 1 PSNR 1 SSIM 1 SSIM 1 SSIM 1 Mean l1 2 Mean l1 2 Mean l1 2

Mask
Ratio 0–20% 20–40% 40–60% 0–20% 20–40% 40–60% 0–20% 20–40% 40–60%

Single
branch 36.04495 28.28100 23.56070 0.988170 0.950049 0.867736 0.003840 0.013230 0.029942

w/o FF 35.94235 28.26042 23.49801 0.986837 0.949126 0.865271 0.003858 0.013239 0.029965

w/o FA 36.38478 28.59062 23.79217 0.988584 0.952620 0.872514 0.003592 0.012827 0.029305

Ours 36.62037 28.71729 23.92498 0.989126 0.953883 0.872923 0.003479 0.012494 0.028673
1 Higher is better; 2 lower is better.

4.5.2. The Role of the Feature Fusion (FF) Module

The feature fusion (FF) module was introduced to enhance the consistency of the
image structure and texture. To reflect the role of this module, we constructed a network
without the feature fusion (FF) module. As shown in Figure 5c, this resulted in more
blurred edges in the image, especially around the nose and eyes. This phenomenon is more
obvious. The quantitative comparison results in Table 2 also demonstrate the effectiveness
of this module in improving the quality of images.

4.5.3. The Role of the Feature Attention (FA) Module

The feature attention (FA) module was introduced to give the image finer textures. To
reflect the role of this module, we constructed a network without the feature attention (FA)
module. As shown in Figure 5d, the rendering of the nose in the resulting image is not
ideal, indicating poor image quality. The results of the quantitative comparison in Table 2
also verify the necessity of this module.

5. Conclusions

In this paper, we propose a method for digital image inpainting with structural branch
assistance. The method focuses on image structure and synthesizing image texture through
a structure branch and texture branch, respectively; this decomposes the image inpainting
into two simultaneous subtasks and decouples the inpainting from low-frequency and
high-frequency information. The feature fusion (FF) module is introduced to enhance the
consistency of the image structure and texture, and the feature attention (FA) module is
introduced to give the image a more detailed texture. Experiments show that our method
exhibits strong and advanced performance in both qualitative and quantitative aspects.
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