Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression
Abstract
:1. Introduction
2. Research Methods
2.1. Multi-Level Target Decomposition Method for SRN
2.2. Proposed CNN–SVR Prediction Method
3. Predictive Modeling and SRN Prediction
3.1. Experimental Design
3.2. Methods and Investigated Vehicles
3.3. SRN Prediction Based on CNN–SVR
4. SRN Improving and Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress, methods and challenges. Electronics 2022, 11, 2162. [Google Scholar] [CrossRef]
- Qin, Y.C.; Tang, X.L.; Jia, T.; Duan, Z.W.; Zhang, J.M.; Li, Y.N.; Zheng, L. Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges. Renew. Sustain. Energ. Rev. 2020, 124, 109782. [Google Scholar] [CrossRef]
- Shi, R.W.; Yang, S.C.; Chen, Y.Y.; Wang, R.; Zhang, M.Y.; Lu, J.Y.; Cao, Y.J. CNN-Transformer for visual-tactile fusion applied in road recognition of autonomous vehicles. Pattern Recognit. Lett. 2023, 166, 200–208. [Google Scholar] [CrossRef]
- Darwiche, M.; Mokhiamar, O. SVR approach for predicting vehicle velocity for comfortable ride while crossing speed humps. Alex. Eng. J. 2022, 61, 6119–6128. [Google Scholar] [CrossRef]
- Sha, M.Z.; Boukerche, A. Performance evaluation of CNN-based pedestrian detectors for autonomous vehicles. Ad Hoc Netw. 2022, 128, 102784. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, J.; Xu, B.; Zhu, S.; Xiang, J.; Tang, H. Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump. Mech. Syst. Signal Process. 2019, 129, 201–217. [Google Scholar] [CrossRef]
- Fan, D.L.; Dai, P.S.; Yang, M.L.; Jia, W.Y.; Jia, X.L.; Huang, H.B. Research on Maglev Vibration Isolation Technology for Vehicle Road Noise Control. SAE Int. 2022, 6, 233–245. [Google Scholar] [CrossRef]
- Huang, H.B.; Huang, X.R.; Ding, W.P.; Yang, M.L.; Yu, X.Y.; Pang, J. Vehicle vibro-acoustical comfort optimization using a multi-objective interval analysis method. Expert Syst. Appl. 2023, 213, 119001. [Google Scholar] [CrossRef]
- Gao, Y.; Lou, X.B.; Zhou, H.Q.; Dong, L.; Yang, M.J. Transfer path identification and optimization of tire cavity noise in vehicle. Automot. Eng. 2019, 41, 1215–1220. [Google Scholar]
- Yu, X.Y.; Min, F.J.; Wen, W.; Zhao, L.F.; Liu, Y. Structural transfer path analysis of tire/road noise. Automot. Eng. 2013, 35, 1031–1034. [Google Scholar]
- Kido, I.; Ueyama, S.; Hashioka, M.; Yamamoto, S.; Tsuchiyama, M.; Yamaoka, H. Tire and road input modeling for low-frequency road noise prediction. SAE Int. 2011, 4, 1277–1282. [Google Scholar] [CrossRef]
- Chen, S.M.; Peng, D.Z.; Wang, D.F.; Liang, J. Structural-acoustic coupling and optimal experimental design for automotive interior low frequency noise. J. Jilin Univ. (Eng. Technol. Ed.) 2014, 44, 1550–1556. [Google Scholar]
- Xing, Y.F.; Wang, Y.S.; Shi, L.; Guo, H.; Chen, H. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods. Mech. Syst. Signal Process. 2016, 66, 875–892. [Google Scholar] [CrossRef]
- Liang, L.Y.; Chen, S.M.; Li, P.R. The evaluation of vehicle interior impact noise inducing by speed bumps based on multi-features combination and support vector machine. Appl. Acoust. 2020, 163, 107212. [Google Scholar] [CrossRef]
- Fan, D.L.; Jia, W.Y.; Jia, X.L.; Ma, D.Z.; Li, S.; Zhang, J.; Yu, X.Y. A Vehicle Structural-Borne Road Noise Prediction Method. China Patent CN113886974A, 4 January 2022. [Google Scholar]
- Almiron, J.O.; Bianciardi, F.; Corbeels, P.; Pieroni, N.; Kindt, P.; Desmet, W. Vehicle road noise prediction using component-based transfer path analysis from tire test-rig measurements on a rolling tire. J. Sound Vib. 2022, 523, 116694. [Google Scholar] [CrossRef]
- Sun, Z.J.; Xue, L.; Xu, Y.M.; Wang, Z. Overview of deep learning. Appl. Res. Comput. 2012, 29, 2806–2810. [Google Scholar]
- Pang, J. Automobile Body Noise and Vibration Control, 1st ed.; Machinery Industry Press: Beijing, China, 2015; pp. 1–38. [Google Scholar]
- Mao, J.; Chen, Z.D.; Qiu, Y.; Zhou, C.S.; Zhang, Y.N.; Yao, Z.Q. Road noise sound quality development by time-domain transfer path analysis. Appl. Acoust. 2022, 41, 815–821. [Google Scholar]
- Huang, H.B.; Lim, T.C.; Wu, J.H.; Ding, W.P.; Pang, J. Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge-and data-driven method. Mech. Syst. Signal Process. 2023, 197, 110361. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Wang, H.; Wan, Z.B. Ore image classification based on improved CNN. Comput. Electr. Eng. 2022, 99, 107819. [Google Scholar] [CrossRef]
- Goncalves, C.B.; Souza, J.R.; Fernandes, H. CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Comput. Biol. Med. 2022, 142, 105205. [Google Scholar] [CrossRef]
- Xu, W.T.; Zhang, X.; Yao, L.; Xue, W.L.; Wei, B. A multi-view CNN-based acoustic classification system for automatic animal species identification. Ad Hoc Netw. 2020, 102, 102115. [Google Scholar] [CrossRef]
- Luo, J.Q.; Fang, H.S.; Shao, F.M.; Zhong, Y.; Hua, X. Multi-scale traffic vehicle detection based on faster R-CNN with NAS optimization and feature enrichment. Def. Technol. 2021, 17, 1542–1554. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, W. Research on Railway Dispatcher Fatigue Detection Method Based on Deep Learning with Multi-Feature Fusion. Electronics 2023, 12, 2303. [Google Scholar] [CrossRef]
- Xiao, Z.M.; Song, K.Y.; Gupta, M.M. Development of a CNN edge detection model of noised X-ray images for enhanced performance of non-destructive testing. Measurement 2021, 174, 109012. [Google Scholar] [CrossRef]
- Lu, S.Y.; Lu, Z.H.; Zhang, Y.D. Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. 2019, 30, 41–47. [Google Scholar] [CrossRef]
- Gan, J.Y.; Jiang, K.Y.; Tan, H.Y.; He, G.H. Facial beauty prediction based on lighted deep convolution neural network with feature extraction strengthened. Chin. J. Electron. 2020, 29, 312–321. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Huang, H.B.; Huang, X.R.; Ding, W.P.; Zhang, S.W.; Pang, J. Optimization of electric vehicle sound package based on LSTM with an adaptive learning rate forest and multiple-level multiple-object method. Mech. Syst. Signal Process. 2023, 187, 109932. [Google Scholar] [CrossRef]
- Guo, L.; Fang, W.G.; Zhao, Q.H.; Wang, X. The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality. Comput. Ind. Eng. 2021, 161, 107598. [Google Scholar] [CrossRef]
- Wu, W.C.; Zhang, M.H.; Zhao, L.; Dong, H.; Zhang, J.Y. CFD-DPM data-driven GWO-SVR for fast prediction of nitrate decomposition in blast furnaces with nozzle arrangement optimization. Process Saf. Environ. 2023, 176, 438–449. [Google Scholar] [CrossRef]
- He, Y.; Xiao, Z.; Li, Y.F.; Wu, P.C.; Liu, D.J.; Du, J. An assembly quality prediction method for automotive instrument clusters using CNN-SVR. China Mech. Eng. 2022, 33, 825–833. [Google Scholar]
- Huang, H.B.; Wu, J.H.; Lim, T.C.; Yang, M.L.; Ding, W.P. Pure electric vehicle nonstationary interior sound quality prediction based on deep CNNs with an adaptable learning rate tree. Mech. Syst. Signal Process. 2021, 148, 107170. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learing, 1st ed.; Tsinghua University Press: Beijing, China, 2016; pp. 121–145. [Google Scholar]
- Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [Google Scholar] [CrossRef]
- Huang, H.B.; Wu, J.H.; Huang, X.R.; Ding, W.P.; Yang, M.L. A novel interval analysis method to identify and reduce pure electric vehicle structure-borne noise. J. Sound Vib. 2020, 475, 115258. [Google Scholar] [CrossRef]
- Song, X.D.; Wu, D.J.; Li, Q.; Botteldooren, D. Structure-borne low-frequency noise from multi-span bridges: A prediction method and spatial distribution. J. Sound Vib. 2016, 367, 114–128. [Google Scholar] [CrossRef]
- Shantal, M.; Othman, Z.; Bakar, A.A. A Novel Approach for Data Feature Weighting Using Correlation Coefficients and Min–Max Normalization. Symmetry 2023, 15, 2185. [Google Scholar] [CrossRef]
- Tong, Q.B.; Liu, Z.Y.; Lu, F.Y.; Feng, Z.W.; Wan, Q.Z. A New De-Noising Method Based on Enhanced Time-Frequency Manifold and Kurtosis-Wavelet Dictionary for Rolling Bearing Fault Vibration Signal. Sensors 2022, 22, 6108. [Google Scholar] [CrossRef]
- Goodfellow, L.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; Posts & Telecom University Press: Beijing, China, 2017; pp. 63–99. [Google Scholar]
- Küçükönder, H.; Boyaci, S.; Akyüz, A. A modeling study with an artificial neural network: Developing estimation models for the tomato plant leaf area. Turk. J. Agric. For. 2016, 40, 203–212. [Google Scholar] [CrossRef]
- Liu, G.; Yang, C.L.; Liu, S.; Xiao, C.B.; Song, B. Feature selection method based on mutual information and support vector machine. Int. J. Pattern Recogn. Artif. Intell. 2021, 35, 210–215. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization, 1st ed.; Tsinghua University Press: Beijing, China, 2013; pp. 497–593. [Google Scholar]
- Zhu, Z.; Cai, Y.F.; Chen, L.; Xia, C.G.; Shi, D.h. A Study on Parameter Matching of Hydro-mechanical Transmission System Based on Genetic Algorithm. Automot. Eng. 2020, 42, 74–80. [Google Scholar]
- Zheng, Y.N.; Luo, J.; Chen, J.B.; Chen, Z.Y.; Shang, P.P. Natural gas spot price prediction research under the background of Russia-Ukraine conflict-based on FS-GA-SVR hybrid model. J. Environ. Manag. 2023, 344, 118446. [Google Scholar] [CrossRef] [PubMed]
Model | SPL at Driver’s Right-Ear | |
---|---|---|
MSE | R2 | |
SVR | 0.457 | 0.873 |
CNN | 0.286 | 0.915 |
SVR–CNN | 0.112 | 0.972 |
Factors | MIV |
---|---|
Dynamic stiffness of rear axle bushing hollow-direction | 0.495 |
Dynamic stiffness of the large front swing arm bushing hollow-direction | 0.449 |
Dynamic stiffness of rear axle bushing solid-direction | 0.396 |
Dynamic stiffness of the large front swing arm bushing solid-direction | 0.375 |
Dynamic stiffness of the front shock absorber upper mounting bushing axle-direction | 0.204 |
Dynamic stiffness of the rear shock absorber upper mounting bushing axle-direction | 0.195 |
Rear shock absorber damping force | 0.168 |
Front shock absorber damping force | 0.159 |
Dynamic stiffness of the large front swing arm bushing axle-direction | 0.123 |
Dynamic stiffness of the front shock absorber upper mounting bushing radial-direction | 0.096 |
Dynamic stiffness of the rear shock absorber upper mounting bushing radial-direction | 0.078 |
Dynamic stiffness of rear axle bushing axle-direction | 0.063 |
Dynamic stiffness of the small front swing arm bushing radial-direction | 0.057 |
Dynamic stiffness of the small front swing arm bushing axle-direction | 0.036 |
Dynamic Stiffness of Bushings (100 Hz) | Original Value | Optimized Value |
---|---|---|
/(N·mm−1) | /(N·mm−1) | |
Rear axle bushing hollow-direction | 1080 | 920 |
Rear axle bushing solid-direction | 1969 | 1679 |
The large front swing arm bushing hollow-direction | 883 | 761 |
The large front swing arm bushing solid-direction | 2172 | 1873 |
Status | Model Prediction Results | Measured Results | Relative Error |
---|---|---|---|
/dB(A) | /dB(A) | /% | |
Pre-improvement | 63.2 | 63.9 | 1.10 |
Post-improvement | 60.8 | 61.3 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Zhou, L.; Huang, H.; Pang, J.; Yang, L. Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression. Electronics 2024, 13, 113. https://doi.org/10.3390/electronics13010113
Jia X, Zhou L, Huang H, Pang J, Yang L. Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression. Electronics. 2024; 13(1):113. https://doi.org/10.3390/electronics13010113
Chicago/Turabian StyleJia, Xiaoli, Lin Zhou, Haibo Huang, Jian Pang, and Liang Yang. 2024. "Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression" Electronics 13, no. 1: 113. https://doi.org/10.3390/electronics13010113
APA StyleJia, X., Zhou, L., Huang, H., Pang, J., & Yang, L. (2024). Improving Electric Vehicle Structural-Borne Noise Based on Convolutional Neural Network-Support Vector Regression. Electronics, 13(1), 113. https://doi.org/10.3390/electronics13010113