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Abstract: The quick development of machine learning techniques provides a superior capability
for manufacturing enterprises to make effective decisions about inventory management based on
spare parts demand (SPD) data. Since SPD sequences in practical maintenance applications usually
show an intermittent distribution, it is not easy to represent the demand pattern of such sequences.
Meanwhile, there are some aspects like manual report errors, environmental interference, sudden
project changes, etc., that bring large and unexpected fluctuations to SPD sequences, i.e., anomalous
demands. The inventory decision made based on the SPD sequences with anomalous demands
is not trusted by enterprise engineers. For such SPD data, there are two great concerns, i.e., false
alarms in which sparse demands are recognized to be anomalous and missing alarms in which
the anomalous demands are categorized as normal due to their adjacent demands having extreme
values. To address these concerns, a new unsupervised anomaly-detection method for intermittent
time series is proposed based on a dual-tailed probability. First, the multi-way delay embedding
transform (MDT) was applied on the raw SPD sequences to obtain higher-order tensors. Through
Tucker tensor decomposition, the disturbance of extreme demands can be effectively reduced. For
the reconstructed SPD sequences, then, the tail probability at each time point, as well as the empirical
cumulative distribution function were calculated based on the probability of the demand occurrence.
Second, to lessen the disturbance of sparse demand, the non-zero demand sequence was distilled
from the raw SPD sequence, with the tail probability at each time point being calculated. Finally, the
obtained dual-tailed probabilities were fused to determine the anomalous degree of each demand.
The proposed method was validated on the two actual SPD datasets, which were collected from a
large engineering manufacturing enterprise and a large vehicle manufacturing enterprise in China,
respectively. The results demonstrated that the proposed method can effectively lower the false
alarm rate and missing alarm rate with no supervised information provided. The detection results
were trustworthy enough and, more importantly, computationally inexpensive, showing significant
applicability to large-scale after-sales parts management.

Keywords: anomaly detection; intermittent time series; unsupervised learning; spare parts demand;
tensor decomposition

1. Introduction

In recent years, the after-market service of large manufacturing enterprises has become
a key focus for business transformation and value increase [1]. Leveraging operational data
acquired throughout the product lifecycle to optimize and upgrade core processes in the
after-market service can effectively reduce enterprise’s time and labor costs. Intelligent
maintenance can then promote the transformation of manufacturing’s after-market services
in the direction of intelligence and automation. With the rapid development of machine
learning techniques, enterprises are starting to utilize historical spare parts demand (SPD)
data to forecast the quantity of parts needed in the future period, enabling intelligent spare
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parts planning [2]. Accurate SPD prediction often relies on the quality of historical demand
data. The demand for spare parts can then be accumulated as a type of sensing data for
the after-market maintenance of an enterprise. Having a somewhat different form of the
well-known sensing data, like vibration signals and monitoring images, the SPD data are
capable of reflecting the operational status of manufacturing enterprises. The analysis and
utilization of SPD data for manufacturing enterprises have tremendous research scope.

The demand for after-sales parts in manufacturing enterprises typically arises from
the replacement of faulty parts or the initiation of new projects. However, there are also
“unusual demands” that occur outside of typical business situations hidden within the
sequences of demand [3]. There are several factors that can result in anomalous demand for
spare parts, such as manual report errors, which lead to the accumulation of historical repair
orders, or environmental interference like seasonal high temperatures, pollen, sandstorms,
etc. The quantity of such anomalous demands often exceeds normal demands several times
over. Especially when multiple factors are combined, this can lead to an anomalous demand
with an extreme value (also named extreme demand in this paper), e.g., ten to even dozens
of times higher than the usual demand. Anomalous demand will lead to poor model
robustness and bring great deviation to spare parts planning. Therefore, anomaly detection
in SPD data is of great significance in enhancing the tolerance of predictive models and
realizing intelligent spare parts planning [4].

For large manufacturing enterprises, the demand for spare parts occurs randomly,
while the interval of demand occurrence is not fixed. Consequently, the SPD data show
an intermittent distribution, and SPD sequences over time can be regarded as intermit-
tent time series. The demand for spare parts is influenced by various factors, such as the
lifespan of the equipment, the failure rate, seasonal factors, and changes in production
output. These factors make the prediction of spare parts demand more complex and dif-
ficult. Therefore, to understand and predict these requirements, time series analysis is
introduced to help us forecast evolutionary patterns and trends in SPD data. By analyzing
data that changes over time, we can better understand the seasonality, trends, and other
characteristics of spare parts demand. The uniqueness of this process lies in its ability to
analyze the impact of various factors on demand. For example, we can analyze historical
data on equipment failure rates to analyze their impact on spare parts demand. In addition,
we can also identify and predict seasonal demand patterns. However, although time series
analysis has many advantages in predicting spare parts demand, it also has its limitations.
First, the demand for historical data is the foundation of this kind of study, but for some
emerging enterprises, it may become a challenge with the limited data volume. In this
case, it might be necessary to use interpolation techniques or expert opinions to fill in
the data gap. Second, time series analysis assumes that future demand patterns will be
similar to those of the past, which is too strict for all situations. Especially in industries
with rapidly changing technology or market conditions, this assumption may not hold
true. As a kind of time series analysis, time series anomaly detection aims to identify a
small portion of the data points with outliers, fluctuations, or other exceptional condi-
tions. Since manual labeling is costly, most time series data lack annotated information
about anomalies, leading to unsupervised time series anomaly detection. Unsupervised
anomaly-detection methods can typically be categorized into three classes: partition-based
methods, prediction-based methods, and reconstruction-based methods. Partition-based
anomaly-detection methods include shallow anomaly detection models such as one-class
support vector machines (OCSVMs) [5], local outlier factors (LOFs) [6], K-nearest neighbors
(KNN) [7], isolation forest (IForest) [8], and others. These models measure the outlier
degree of data points by means of density, statistics, distance, etc. These models have a
fast calculation speed and are suitable for small-sample data. One representative method
is deep support vector data description (Deep SVDD) [9]. It maps data representations
to a minimal hypersphere inside which the mapping of normal values falls and outside
which the mapping of anomalies is located. Prediction-based anomaly-detection methods
assign anomaly scores by measuring the distance between the predicted values of a fore-
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casting model and the actual values [10]. Classical anomaly-detection methods employ
the variants of autoregressive moving average models for time series [11]. On the basis
of classical autoregressive methods, Bontemps et al. [12] modeled the correlation between
different sequences by employing recurrent neural networks (RNNs) with long short-term
memory (LSTM) units, referred to as LSTM-RNN. Hundman et al. introduced LSTMs and
nonparametric dynamic thresholding [13], which utilizes LSTM for time series prediction
and employs an adaptive error threshold to determine outliers without any threshold set in
advance. Specifically, LSTM-NDT treats the error values as a non-parametric distribution
and dynamically estimates the probability density function of errors using kernel density
estimation. Within this probability density function, this method identified anomaly points
by finding specific confidence intervals. Garg et al. [14] used the transposed convolution to
replace the convolutional filter in temporal convolutional networks and proposed an au-
toencoder (AE) network to realize time series reconstruction. Deldari et al. [15] introduced
a contrastive prediction encoding approach that utilizes temporal convolutional networks
for feature extraction and detects anomalies in time series data. Reconstruction-based
anomaly-detection methods are primarily based on AEs [16], such as the variational AE
(VAE) proposed by Kingma et al. [17] and the recursive AE (RAE) introduced by Cho
et al. [18]. Park et al. combined LSTM with the VAE to build a reconstruction-based
anomaly-detection method, known as the LSTM-VAE [19], by analyzing reconstruction
errors. Niu et al. [20] proposed a time series anomaly-detection method based on a hybrid
model called LSTM-VAE-GAN. This approach utilizes LSTM networks for training and
detects anomalies based on reconstruction differences and discriminative results. Dan
et al. [21,22] proposed two anomaly-detection methods based on generative adversarial
networks (GANs), called GAN-AD and MAD-GAN. These methods utilize an RNN to
capture the distribution of the time series data and detect potential anomalies by com-
puting the error between the reconstruction data from the GAN model’s discriminator
and the real values. Fan et al. [23] constructed a new abnormal fluctuation similarity
matrix and introduced it into the support vector machine model for hypersphere training.
Schmidl et al. [24] conducted a wide-ranging literature survey by evaluating state-of-the-art
anomaly-detection algorithms based on their commonalities and performance metrics, such
as effectiveness, efficiency, robustness, etc. Li et al. [25] categorized time series anomalies
into three types, namely abnormal time points, time intervals, and time series, and used
LSTM and an autoencoder to detect abnormal time points and abnormal time intervals.
Kim et al. [26] fused the Transformer model to predict anomalies by inputting global trends
and the local matching of time series. Ren et al. [27] borrowed spectral residuals (SRs) and
convolutional neural networks (CNNs) from the field of visual saliency detection for time
series anomaly detection for the first time. Such deep-learning-based anomaly-detection
methods generally require a large amount of training data and will not perform well in
small-scale environments. According to our literature survey, there are a few works on
few-shot anomaly detection. For instance, Bashar et al. [28] introduced the TAnoGAN
model for detecting anomalies on small-sample data. But, it still suffers from uncertainty in
the data. In summary, although the above-mentioned methods have achieved promising
results on some datasets, when applied the SPD data in manufacturing enterprises, these
methods are prone to identifying normal intermittent data as anomalous demand, leading
to false alarms, or recognize anomalous demand as normal, resulting in missing alarms.

Based on the analysis mentioned above, the key to improving intermittent time series
anomaly detection lies in: (1) how to identify and reasonably correct extreme demand to
avoid false alarms; (2) how to handle the intermittent distribution of SPD data to avoid
missing alarms. Following this idea, this paper proposes an unsupervised intermittent time
series anomaly-detection method based on dual-tailed probabilities. This method designs a
dual methodology: one for addressing missing alarms and the other one for false alarms.
Specifically, this method reconstructs the original SPD sequence into a non-zero demand
sequence and a tensor reconstruction sequence. Then, the tail probability for each sequence
is calculated respectively. Here, we comprehensively considered two factors: the quantity
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of anomalous demand and its occurrence time. This way, we aimed to uncover potential
(covered by extreme demands) demand anomalies in the sequence by introducing tensor
decomposition to handle extreme demands in the sequence. The algorithmic procedure
was as follows: First, we employed the multi-way delay embedding transform (MDT)
to extract temporal information along the time dimension. The MDT is able to convert
the one-dimensional SDP sequence into a higher-order tensor. We utilized Tucker tensor
decomposition to project this tensor onto a compressed core tensor and reconstructed it as
a new time series. This process can effectively eliminate extreme demand from the original
SPD sequence, which achieves a reasonable correction of the demand distribution and pro-
vides high-quality data support for the subsequent algorithmic steps. Second, we utilized
dual-tailed probabilities for anomaly detection in the sequence. We separately calculated the
empirical cumulative distribution functions for both the non-zero demand quantity sequence
and the reconstruction sequence. Utilizing these functions, we determined the tail probabili-
ties on each time point (i.e., demand occurrence) and obtained two sets of anomaly-detection
results from each sequence. By combining them with appropriate weighting, we obtained the
final anomaly detection result. This methodology takes into account both the abnormality
of demand occurrence and the demand quantity at each time point. This approach can
effectively avoid excessively strict detection outcomes caused by the sparse distribution of
the original SPD sequence while maintaining high computational efficiency.

The theoretical contribution of this paper lies in proposing a new unsupervised
anomaly-detection method for intermittent time series data. In comparison to traditional
methods, this method can accurately identify and effectively correct the extreme demands
in the original SPD sequence through Tucker tensor decomposition. It successfully ad-
dresses the interference of extreme demands in the original sequence, thereby solving
the problem of missing alarm. Furthermore, this method considers anomalies from two
perspectives: the time of anomalous demand occurrence and the quantity of anomalies.
The false alarms can then be mitigated by calculating the tail probabilities within the inter-
mittent time series. To the best of our knowledge, the research on anomaly detection for
intermittent time series is still in its infancy.

2. Background
2.1. Demand Patterns

In general, demand patterns can be categorized based on the average demand interval
(ADI) and the squared coefficient of variation (CV2) [29]. Due to the intermittent distribu-
tion of SPD data, the demand for different spare parts fluctuates greatly. It will be helpful
to construct an effective detection model by classifying spare parts demands according
to their intermittent characteristics. Through the categorization with the ADI and CV2,
one can better understand and manage spare parts requirements, thereby improving the
maintenance efficiency of equipment and the accuracy of anomaly detection, for instance
choosing appropriate parameters for the detection model for different types of SPD distri-
butions. For an intermittent time series X = {x1, x2, ..., xn} with n periods, the ADI and
CV2 are calculated by:

ADI =
n
d

(1)

CV2 =

(
Sd
x̄d

)2
(2)

where d and Sd represent the number of periods and the standard deviation of the non-
zero demand sequence in X, respectively, and x̄d is the average of the non-zero demand
sequence. According to ADI and CV2, the demand sequence can be divided into four
categories: stable demand, unstable demand, intermittent demand, and blocky demand.
The specific classification criteria are as follows:
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(1) Stable demand (ADI < 1.32, CV2 < 0.49): this category of demand is relatively stable
with few zero demand periods.

(2) Unstable demand (ADI < 1.32, CV2 ≥ 0.49): the demand is unstable with high
variability and occurs frequently.

(3) Intermittent demand (ADI ≥ 1.32, CV2 < 0.49): the demand is irregular and scattered,
but relatively stable.

(4) Blocky demand (ADI ≥ 1.32, CV2 ≥ 0.49): this category has a random demand
pattern, with a large number of time periods having no demand and the demands
varying greatly from period to period, accompanied by a significant number of zero
demand stages.

2.2. Multi-Way Delay Embedding Transform

Multi-way delay embedding transform (MDT) technology can embed low-rank data
into high-dimensional space and can be used to construct Hankel matrices or block Hankel
tensors [30]. The tensors obtained from the MDT have low-rank characteristics, which
smooth the original data and facilitate training. Assuming that the Hankel matrix of vector
v = (v1, ..., vL)

T ∈ RL with a delay of τ is shown in Equation (3), this process is called the
Hankel transformation of the vector:

Hτ(v) :=


v1 v2 · · · vL−τ+1
v2 v3 · · · vL−τ+2
...

...
. . .

...
vτ vτ+1 · · · vL

 ∈ Rτ×(L−τ+1)−b ±
√

b2 − 4ac
2a

(3)

First, the duplication matrix S ∈ {0, 1}τ×(L−τ+1)×L is constructed with a delay of τ as:

ST =


Iτ

Iτ

. . .
Iτ


τ×τ

T (4)

Second, the vector v is transformed into a Hankel matrix, denoted as Hτ(v). The
replication matrix S is essentially a linear transformation. The specific way of expanding to
quantization is:

vec(Hτ(v)) = Sv, Sv ∈ Rτ×(L−τ+1) (5)

where vec() is a matrix that extends along the column direction, and the Hankel matrix
obtained through delayed embedding can be represented as:

Hτ(v) = f old(L,τ)(Sv) := vH ,
f old(L,τ) : Rτ×(L−τ+1) → Rτ×(L−τ+1) (6)

where f old(L,τ) is the process of folding a vector into a matrix.
The inverse transformation of the multi-way delay embedding of vectors can convert

data from a high-dimensional space to a low-dimensional target space, and its calculation
method is as follows:

H−1
τ (VH) = S†vec(VH) (7)

S† :=
(

STS
)−1

ST (8)

where † is the Moore–Penrose inverse matrix.

2.3. Tucker Tensor Decomposition

The process of decomposing high-order tensor data into a set of low-rank matrices
or vectors is called tensor decomposition, which is often applied to tasks such as data
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compression, dimensionality reduction, and feature extraction. Tucker tensor decomposi-
tion decomposes an Nth-order tensor χ ∈ RI1×I2×···×IN into the product of the core tensor
ςt ∈ RJ1×J2×···×JN and N factor matrices U(n) ∈ RIn×Jn , as shown in Equation (9). The factor
matrix obtained by Tucker tensor decomposition represents the principal components of
tensor modal expansion, while the kernel tensor captures the correlation between these
components [31].

χ = ς × 1U(1) × 2U(2) · · · ×NU(N) (9)

where ς × 1U(n) is the n-mode product of the modular (n) expansion of tensor S and matrix
U(n) ∈ RIn×Jn : [

ς × U(n)
]

j1···jn−1in jn+1···jN
=

Jn

∑
jn=1

gj1···jn−1in jn+1···jN uin jn

ς × U(n) ∈ RJ1×J2×···×JN

(10)

According to the above equation, any specific point in the tensor can be extended to:

xi1i2···iN = ∑
j1,j2,···,jN

gj1···jN u(1)
i1 j1

u(2)
i2 j2

· · · u(3)
i3 j3

(11)

For the ease of understanding, Figure 1 shows the use of Tucker tensor decomposition
to decompose a third-order tensor, resulting in a smaller kernel tensor and the product of
three factor matrices.

Figure 1. Illustration of Tucker tensor decomposition.

3. The Proposed Method

To address the problem of false alarms and missing alarms caused by the intermittent
distribution characteristic, this section proposes the unsupervised anomaly detection of
intermittent demand for spare parts based on a dual-tailed probability, which comprehen-
sively judges the abnormality level of demand from two perspectives: demand occurrence
time and demand quantity.

First, the original SPD sequences are transformed into high-order tensors using the
MDT technique. The obtained tensors are further reconstructed by Tucker tensor decompo-
sition to reduce the interference of extreme demand. The empirical cumulative distribution
function is calculated according to the frequency of the demand occurrence in the recon-
structed sequence at each time point, and then, the tail probability of each demand can be
obtained. Second, to avoid sparse demand interference, the non-zero demand sequence is
extracted from the original SPD sequence to calculate the tail probability of each time point.
Finally, two probability values are used to judge the anomaly degree of the sample points.
The specific workflow of the proposed method is shown in Figure 2.
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Figure 2. Flowchart of the proposed method.

3.1. Data Pre-Processing

Since the intermittent distribution of the SPD sequence has a huge impact on the
results of anomaly detection, we chose to split the intermittent time series in order to
obtain a non-zero demand quantity sequence. The obtained non-zero sequence is able
to better express the information of demand quantity and expose a more-pronounced
periodicity pattern compared to the original SPD sequence. An example of an intermittent
time series before and after sequence segmentation is shown in Figure 3. Obviously, the
temporal information is exposed more after splitting, which can well support the following
anomaly detection.

Figure 3. An example of the intermittent time series before and after sequence segmentation.

According to the intermittency assessment metrics listed in Section 2.1, the distribution
of intermittency between the original sequence and the non-zero quantity sequence is
shown in Table 1. According to the categorization criteria introduced in Section 2.1, the
non-zero quantity sequence is more stable, while the original sequence is rather unstable.
This case shows that sequence segmentation can change the characteristics of the original
SPD sequence such as intermittency and instability and convert the original sequence into
a more-stable one.
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Table 1. Comparison of serial indicators before and after segmentation.

Original Sequence Sequence after Segmentation Category of Sequence

ADI 0.733 1.000 Unstable sequence
CV2 0.878 0.373 Stable sequence

3.2. Anomaly Detection Based on Dual-Tailed Probability

In this section, the original SPD sequence needs to be reconstructed by using the MDT
technique and Tucker tensor decomposition. The one-dimensional demand sequence is first
converted to high-dimensional data using the MDT technique in order to expand the tem-
poral information. The high-dimensional data are further decomposed and reconstructed
to extract the core tensor using Tucker tensor decomposition under orthogonal constraints.
Finally, the core tensor is converted again to a one-dimensional sequence with the original
size by using the inverse MDT technique. This process is shown in Figure 4.

Figure 4. Flowchart of the reconstruction process based on the MDT and Tucker tensor decomposition.

Specifically, the aforementioned process begins by converting multiple time series into
a higher-order block Hankel tensor using the MDT. The input data are the SPD sequence set
X ∈ I×T . The three-dimensional block Hankel tensor χ̂ ∈ I×τ×(T−τ+1) is then obtained by
performing the MDT in the time dimension. Here, the block Hankel tensor is assumed to
be low rank and smooth in the embedding space. Note that the proposed method applies
the MDT only along the time direction, which is due to the fact that the strength of the
correlation between multiple demand sequences for spare parts is usually much weaker
than the temporal correlation within the sequences. Next, the core tensor ς̂t is obtained by
Tucker tensor decomposition on χ̂:

ς̂t = χ̂t × 1Û(1)T
· · · ×MÛ(M)T

(12)

where the factor matrix Û maximally preserves the time continuity. ς̂t can represent the
essential information from the original Hankel tensor, avoiding the interference of non-
essential information and effectively realizing noise reduction. Finally, ς̂t is converted to a
time series in the original space, i.e., reconstructed sequence, by means of the inverse MDT.

In order to avoid the interference by sparse demands, the proposed method jointly
determines whether the demand for spare parts is abnormal or not from the two perspec-
tives: demand occurrence time and demand quantity. With the reconstructed sequence, the
quantity information of demand is now more obvious and regular. Meanwhile, the intermit-
tent distribution characteristic of the quantity sequence is weakened, which can effectively
reduce the influence of sparse demand on the detection results. The tail probability of the
sequence is then calculated by using the empirical cumulative distribution function for
both the quantity sequence and the reconstructed sequence. Finally, the abnormality degree
of the SPD data can be determined by the tail probability.

Tail probability refers to the probability of a point being distributed in extreme po-
sitions, which is divided into the left-tailed probability and the right-tailed probability.
Suppose xi follows a distribution function FX and FX(xi) = P(X ≤ xi) is the left-tailed
probability of xi, while 1 − FX(xi) = P(X ≥ xi) is the right-tailed probability of xi. If the
tail probability is very small, this indicates that the probability of observing this value



Electronics 2024, 13, 195 9 of 20

is very small, that is this value should not occur frequently, and this point is considered
as an outlier. Meanwhile, the weights are calculated using both the number of non-zero
cycles and the total cycles, and then, the weights are added to the anomaly scores of the
two sequences to obtain the final anomaly-detection results. The benefit of introducing the
weights lies in the fact that they enable the algorithm to detect different types of demand
sequences, which improves the applicability. The process of anomaly detection based on
the tail probability is shown in Figure 5.

Figure 5. Diagram of anomaly detection for intermittent time series based on tail probability.

The detailed calculation is as follows. First, the reconstructed sequence X = [x1, x2, ..., xn]
is divided into a non-zero demand quantity sequence Q = [q1, q2, ..., qm](m ≤ n). Second,
the empirical left-tailed cumulative distribution function and empirical right-tailed cu-
mulative distribution function are, respectively, calculated for both sequences, which are
approximately regarded as tail probabilities. The left-tailed probability can be approximated
by calculating the empirical cumulative distribution function [32]. The detailed calculation
of the empirical cumulative distribution function for X is shown in Equation (13), where
∧
F(x) represents the probability of observing sample points. The right-tailed probability can
then be calculated by Equation (14).

∧
F(x) = P((−∞, x)) =

1
n

n

∑
i=1

I(Xi ≤ x) (13)

∧
F(x) =

1
n

n

∑
i=1

I(−Xi ≤ −x) (14)

By taking the negative logarithm of the tail probabilities, the maximum value is
regarded as the outlier score O(X) = [X1, X2, ..., Xn], as shown by Equations (15)–(17).
Intuitively, the smaller the tail probability, the larger its negative logarithm. So, a point
with a small left-tailed probability or a small right-tailed probability has a large probability
to be an outlier.

pl = − log
(

∧
F(x)

)
(15)

pr = − log

(
∧
F(x)

)
(16)

O(xi) = max{pl , pr} (17)

Following the aforementioned process, the detected outliers for the reconstructed
sequence Ô(X) =

[
X̂1, X̂2, ..., X̂n

]
and the outliers for the quantity sequence Ô(Q) =[

Q̂1, Q̂2, ..., Q̂m

]
can be obtained, respectively. The anomaly detection results R1 and R̂2

are obtained based on the relative values of such outliers. Then, the final results R can be
obtained by weighting the two results according to the frequency of the demand occurrence:

f re =
Numdemand

Numtotal
(18)

R = (1 − f re) · R2 + f re · R1 (19)
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where Numdemand is the number of non-zero demand occurrences and Numtotal is the total
number of cycles in the sequence. From Equation (18), a larger value of f re indicates a
greater number of non-zero demand occurrences and, certainly, fewer zero values in the
original SPD sequence.

Overall, the proposed anomaly-detection method can be summarized as shown in
Algorithm 1.

Algorithm 1: Unsupervised anomaly detection of intermittent demand for spare parts based on dual-tailed probability.

Input: An SPD sequence D = [d1, d2, ..., dn].

Output: Detected anomalous demands R = [r1, r2, ..., rn].

Step1: Run Tucker tensor decomposition to obtain the reconstructed sequence X = [x1, x2, ..., xn] by Equation (12).

Step2: Split X to obtain a sequence of non-zero demand quantity Q = [q1, q2, ..., qm](m ≤ n), and perform the following steps for X
and Q:

(1) Calculate the empirical left-tailed cumulative distribution function and the empirical right-tailed cumulative distribution
function by Equations (13) and (14), approximated as the tail probability.

(2) Calculate by Equation (17) the outlier score Ô(X) =
[

X̂1, X̂2, ..., X̂n

]
for each data point in X and Ô(Q) =

[
Q̂1, Q̂2, ..., Q̂m

]
for

each data point in Q.

Step3: Obtain the anomaly detection results R1 and R̂2 on X and Q based on the relative values of Ô(X) and Ô(Q). Calculate the
final result R by Equation (19).

4. Experimental Results
4.1. Dataset Introduction

In this section, the proposed method was validated using two real-life spare parts
datasets. One was collected from a large engineering manufacturing enterprise in China,
referred to as Dataset 1. For a fair evaluation, we also introduced an open inventory
dataset provided by the Zoomlion Heavy Industry Science & Technology Co., Ltd. in China
(Changsha, China) (https://www.industrial-bigdata.com (accessed on 7 December 2023)),
referred to as Dataset 2. Dataset 1 encompasses historical demand data for 1687 categories
of spare parts, including 407 sequences in which the anomalous demands were annotated
by the enterprise engineers. The demands came from central and site warehouses, spanning
from November 2018 to September 2021, totaling 34 months. Dataset 2 comprises the actual
demand data for 366 categories of spare parts over a period of 30 months, including
165 sequences in which the anomalous demands were annotated. The implementation of
the proposed method and the data used are available at https://github.com/MMAIGX/
gxll/tree/master (accessed on 7 December 2023).

Figures 6 and 7 illustrate the monthly demand quantity distribution for the two
datasets. In Figure 6, ADI and CV2 are presented to show the demand type. The red hori-
zontal and vertical lines represent the intermittent criteria ADI = 1.32 and CV2 = 0.49 [33],
respectively. It is noticeable that Dataset 1 predominantly exhibits intermittent and lumpy
demand patterns, while Dataset 2 is characterized by lumpy and non-stationary de-
mand patterns.

Figure 7 displays the distribution of demand quantity in both datasets. In Dataset 1,
the demand quantities are primarily concentrated in the range of 0–15, with some instances
of anomalous demand. In contrast, Dataset 2 exhibits larger demand quantities, concen-
trated between 1 and 100. Overall, both datasets show intermittent demand patterns with
occasional anomalies, including some extreme anomalies.

https://www.industrial-bigdata.com
https://github.com/MMAIGX/gxll/tree/master
https://github.com/MMAIGX/gxll/tree/master
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Figure 6. Intermittent distribution characteristic of (a) Dataset 1 and (b) Dataset 2. The metrics
utilized for this analysis are the ADI (see Equation (1)) and CV2 (see Equation (2)).

Figure 7. Distribution of demand quantities from (a) Dataset 1 and (b) Dataset 2.

4.2. Evaluation Metric

To evaluate the detection performance of proposed method, we employed the follow-
ing evaluation metrics: Precision, Recall, and F1-score. These indicators are commonly
used in classification problems to comprehensively quantify the performance of classifiers.
Accuracy refers to the proportion of correctly classified samples to the total number of
samples, which reflects the overall accuracy of the classifier. Recall, also known as the recall
rate, refers to the proportion of correctly classified positive samples to true positive samples,
which reflects the classifier’s ability to find all true positive examples. The F1-score is the
harmonic average of the accuracy and recall, which comprehensively considers these two
indicators and is a comprehensive indicator for evaluating classifier performance. The
definitions of these three metrics are as follows:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2 × Precision × Recall
Precision + Recall

(22)

where TP represent instances correctly detected as anomalies, FP represent instances
incorrectly detected as anomalies when they are normal, TN represent instances correctly
recognized as normal, and FN represent instances incorrectly recognized as normal when
they are anomalies.
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4.3. Comparative Experiment

In this section, a total of eight comparative methods were chosen, as listed in Table 2.
We believe these eight methods cover the classical strategies of time series anomaly detection.
The implementation introduction will be placed in the discussion of the experimental results.

Table 2. Introduction of the anomaly-detection methods for comparison.

Type Name

Probability Model COPOD [32]
Probability Model ECOD [34]
Probability Model PCA [35]

Partition-Based Method IForest [8]
Distance-Based Method KNN [7]
Density-Based Method LOFs [6]

Classification-Based Method OCSVM [5]
Deep Learning Method DeepSVDD [9]

In enterprise maintenance, the SPD data typically are unlabeled due to the high cost of
manual annotation. To have ground-truth labels, we selected two categories of spare parts
from the two datasets and entrusted several enterprise engineers to annotate anomalous
demand based on actual results. The final anomaly labeling (ground-truth) was obtained by
merging the results from each expert. To improve understanding, we provide the statistical
information of the annotated anomalous demands in Figure 8. It is clear that each sequence
in Dataset 1 and Dataset 2 contains a maximum of 4 and 3 anomalous demands, respectively.
The quantity of anomalous demands will directly generate a discrete value of the three
metrics. For instance, the value of recall for some sequences may be 100% or 75%, rather
than a continuous value, which will be shown in the following figures.

(a) (b)

Figure 8. Statistical information of anomalous demands in (a) Dataset 1 and (b) Dataset 2.

For an overall evaluation, Figure 9 shows the detection accuracy of all nine methods on
Dataset 1. Figure 10 provides the performance comparison of all nine methods on the two
datasets in terms of the three metrics, accuracy, recall, and F1-score. Due to space limitations,
we will not provide the accuracy results on Dataset 2 here. From Figure 9, the proposed
method obtained much higher detection accuracy than the other eight methods. On some
categories, the proposed method can obtain 100% accuracy. The comparative results
validated the effectiveness of the dual-tailed probability in the unsupervised anomaly
detection. From Figure 11, the proposed method outperformed all the other methods
on the three metrics. We observed an interesting phenomenon in which Deep SVDD
obtained a very low recall value on both datasets. The reason came from the adaptive
feature extraction in Deep SVDD, which easily includes the anomalous demands into
the constructed hypersphere. Consequently, the anomalous demands will be recognized
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incorrectly. This also indicates that, for intermittent time series, deep learning techniques
are not applicable due to the potential model bias.

Figure 9. Detection accuracy of all 9 methods on the total of 407 sequences from Dataset 1.

(a)

(b)

Figure 10. Performance comparison of all 9 methods in terms of the the three metrics, accuracy, recall,
and F1-score on (a) Dataset 1 and (b) Dataset 2.

Here, we chose some sequences for a detailed comparison, as shown in Figure 11. To
provide a visual evaluation, Figure 12 shows the detection results of all nine methods on
these four sequences, accompanied by the expert-annotated anomalies. We also evaluated
the operational efficiency of each compared method for a comprehensive evaluation. Table 3
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gives the average execution time of 30 repeated trials for each method. Please note that
the methods COPOD and ECOD are Croston-like methods, which essentially are statistical
techniques. Since these two methods and our method were all built on probability analysis,
they had no explicit formulation of time complexity for the comparison. So, we chose
the execution time to evaluate the computational complexity. We believe that the average
time of 30 repeated trials is able to provide an unbiased estimate for the complexity
analysis. From the results listed, the proposed method can comprehensively consider
the operation efficiency and detection accuracy of abnormal demand detection for spare
parts and obtain the best performance in balancing the computational complexity and
algorithmic effectiveness.

Table 3. Execution time of different methods (unit: seconds).

Dataset COPOD ECOD IForest KNN LOFs OCSVM PCA DeepSVDD Proposed Method

Dataset 1 0.4548 0.4538 85.608 1.7463 1.7154 2.2751 1.7513 1064.5993 1.131
Dataset 2 0.2204 0.1865 50.1218 0.9828 0.8273 0.6951 1.166 449.343 0.4708

From Figures 11 and 12, COPOD and ECOD, the two unsupervised anomaly-detection
methods, performed well on some sequences, effectively identifying anomalies with a fast
execution time. Since both methods use empirical cumulative distribution functions, the
anomaly detection based on the probability calculation can be proven valid. However,
for the sequences including sparse demand, their detection results were unsatisfactory,
indicating overly strict detection. In this case, they can easily recognize the normal demands
as anomalies. IForest, an ensemble learning algorithm, is suitable for continuous data,
but it performed poorly on the sequences with sparse demand. It failed to accurately
identify anomalies, and its detection results for the No. 37 part did not align with the
actual values. Additionally, its execution time increased rapidly with more base learners.
KNN achieved unsupervised anomaly detection by evaluating the distribution distance
between sample points. It exhibited high accuracy in detecting anomalies with prominent
local demand variations. However, it introduced big errors in detecting sequences that
were continuous and demand-dense. LOFs use a density estimation approach to search
for the nearest neighbors and marked the sample points located in the sparse regions as
anomalies. This method also performed well in detecting anomalies with prominent local
variations in the demand sequence. OCSVM’s detection results on most SPD sequences
were poorer compared to the other methods. This method struggled to train appropriate
support vectors from short-length, highly fluctuating sequences for the classification. PCA
detected sequence anomalies by contrasting the changes in sample points before and after
running eigenvalue decomposition. Its execution time was also higher than the methods
with the probability model. It was sensitive to the maximum value in the sequence and
lacked sensitivity to the anomalies, resulting in insufficient detection results. Deep SVDD
is an anomaly-detection method based on deep neural networks. It had a significantly
higher execution time compared to the other methods, and unfortunately, it was not able to
effectively detect the anomalies within the sequences. It struggled to achieve high detection
precision for intermittent sequences, with a higher number of false alarms and false alarms.
Although the proposed method had a longer execution time than COPOD and ECOD,
it was still more efficient than the other methods. From Figure 11 and Table 3, it can be
concluded that the proposed method is a highly efficient and accurate detection method.
Although the COPOD and ECOD methods have lower computational complexity than
the proposed method, their detection results were worse than this method. The proposed
method provided good detection results on all four categories of spare parts, which verified
the effectiveness of the dual-tailed probability used.
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(a)

(b)

(c)

(d)

Figure 11. Detection performance by different methods, where (a–d) are for the spare parts numbered
37, 335, 702, and 807 from Dataset 1, respectively. Since each spare part generally has 2–4 abnormal
demands (please refer to Figure 8), the value of the metric recall is limited, so the indicator values
look identical.
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(a)

(b)

(c)

(d)

Figure 12. Visual detection results by different methods on Dataset 1, where (a–d), respectively,
represent the results on the spare parts numbered 37, 335, 702, and 807. The x-axis and y-axis
represent the month index and the number of spare parts required, respectively. Each image displays
the algorithm’s name and the part index at the top. The red dot indicates the anomalous demand.
The anomalies annotated by business experts are also provided.

4.4. Ablation Experiment

To analyze the influence of tensor decomposition and sequence segmentation on the
detection results, a set of ablation experiments was conducted on Dataset 1, as shown in
Table 4:
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Table 4. Settings of ablation experiments.

Group Fixed Part Implementation

Experiment 1 Remove sequence segmentation
and tensor decomposition

The original SPD sequences
are dealt with only by COPOD

Experiment 2 Remove tensor decomposition The original SPD sequences and the non-zero
quantity sequences are dealt with by COPOD.

Experiment 3 Remove sequence
segmentation

The sequences after tensor decomposition
are dealt with by COPOD.

Experiment 4 None The proposed method

Figure 13 displays the demand distribution for the No. 335 and No. 264 parts before
and after running the tensor decomposition, with red points indicating changes in the
demand values. It can be observed that the combination of the MDT with tensor decom-
position effectively reduced the extreme demand in the sequence, providing a solid data
support for the subsequent anomaly detection.

Figure 13. Demand changes before and after running tensor decomposition for the (a) No. 335 part
and (b) No. 264 part. The red dot indicates the anomalous demand.

Figure 14 shows the comparative results of the ablation experiments that are shown
in Table 4. Due to space limitations, we only provide the results on the two spare parts
indexed by No. 264 and No. 335. The results indicated that sequence segmentation can
effectively avoid overly strict detection results caused by sparse demand and address the
problem of false alarms. For the No. 335 part, Experiment 1 and Experiment 3 detected
many anomalous demands from the original SPD sequence. However, these anomalies
showed almost no difference from the normal values, resulting in overly strict results
that did not align with the actual business requirements. Moreover, the introduction of
tensor decomposition was helpful to avoid missing alarms caused by extreme anomalous
demand. In the No. 264 sequence, there were two distinct extreme demands with quantities
several times higher than the daily demand. In Experiment 1 and Experiment 2, only
extreme demands were recognized, while some anomalous demands were unable to be
identified, leading to false alarms. In contrast, Experiment 3 and Experiment 4, which
included tensor reconstruction, effectively mitigated the impact of extreme demands and
accurately identified all abnormal points. The ablation results demonstrated that the
proposed method can effectively address the issues of false alarms and missing alarms
encountered in intermittent time series anomaly detection and provide a solid data support
for spare parts planning and demand forecasting in intelligent maintenance.
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(a)

(b)

Figure 14. Results of ablation experiment on the (a) No. 264 part and (b) No. 335 part. The red dot
indicates the anomalous demand. Due to space limitations, we do not provide the results on the other
spare parts, which are similar to the results listed here.

5. Conclusions

In this paper, a new unsupervised anomaly-detection method was proposed to recog-
nize the anomalous demands from intermittent SPD sequences. This method solves the
missing alarms caused by extreme demands by employing the MDT technique and Tucker
tensor decomposition. This method further solves the problem of false alarms caused
by sparse demand through comprehensively evaluating the anomalous degree from the
perspectives of demand occurrence time and demand quantity. We believe this method
is of superior practical significance in the intelligent maintenance of large manufacturing
enterprises. The specific conclusions are as follows:

(1) The dual-tailed probability is suitable to detect anomalous demand from real-world
SPD sequences since it does not require label information. Both false alarms and miss-
ing alarms can be effectively recognized in unsupervised mode, which can broaden
the application range.

(2) The proposed method has a very low computational cost by avoiding complex model
training like deep learning techniques. A fast anomaly-detection method is of great
importance to practical applications.

We would like to point out that the proposed method can not only be an effective
solution, but also serve as a feasible framework for intermittent time series anomaly
detection. The techniques used, e.g., Tucker tensor decomposition and tail probability
calculation, can be replaced by more-efficient methods, providing good flexibility for future
improvement.

In our future work, we plan to introduce the reliability concept to the proposed
anomaly-detection method, since for practical applications, the maintenance decision
should be trustworthy to engineers and managers. Machine learning techniques can also
be introduced to conduct detection from the dynamic evolution of intermittent time series.
To tackle the SPD sequences of multiple spare parts, a transfer learning algorithm can be
used to reduce the concern about data dependency. Interpretability should be paid more
attention to in the unsupervised anomaly-detection method.
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