
Citation: Vyšniūnas, T.; Čeponis, D.;

Goranin, N.; Čenys, A. Risk-Based

System-Call Sequence Grouping

Method for Malware Intrusion

Detection. Electronics 2024, 13, 206.

https://doi.org/10.3390/

electronics13010206

Academic Editor: Aryya

Gangopadhyay

Received: 7 November 2023

Revised: 30 December 2023

Accepted: 1 January 2024

Published: 2 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Risk-Based System-Call Sequence Grouping Method for
Malware Intrusion Detection
Tolvinas Vyšniūnas, Dainius Čeponis , Nikolaj Goranin and Antanas Čenys *

Department of Information Systems, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University,
LT-08412 Vilnius, Lithuania; tolvinas.vysniunas@stud.vilniustech.lt (T.V.); dainius.ceponis@vilniustech.lt (D.Č.);
nikolaj.goranin@vilniustech.lt (N.G.)
* Correspondence: antanas.cenys@vilniustech.lt

Abstract: Malware intrusion is a serious threat to cybersecurity; that is why new and innovative
methods are constantly being developed to detect and prevent it. This research focuses on malware
intrusion detection through the usage of system calls and machine learning. An effective and clearly
described system-call grouping method could increase the various metrics of machine learning
methods, thereby improving the malware detection rate in host-based intrusion-detection systems.
In this article, a risk-based system-call sequence grouping method is proposed that assigns riskiness
values from low to high based on function risk value. The application of the newly proposed
grouping method improved classification accuracy by 23.4% and 7.6% with the SVM and DT methods,
respectively, compared to previous results obtained on the same methods and data. The results
suggest the use of lightweight machine learning methods for malware attack can ensure detection
accuracy comparable to deep learning methods.

Keywords: system calls; malware; host-based intrusion detection; machine learning

1. Introduction

An intrusion-detection system (IDS) is a device or software that monitors a network or
system for malicious activity or violations of established policies [1]. IDSs can be divided
into two major types [1]: network-based intrusion-detection systems (NIDSs) [2] and
host-based intrusion-detection systems (HIDSs) that detect malware or host-level attacks
on a server or local computer and are able to perform additional system-level checks
such as data integrity, registry monitoring, log analysis, rootkit detection and system-call
analysis [2] and complement network-based intrusion-detection systems by focusing on
internal threats and unauthorized activities [3]. HIDSs can detect various types of attacks,
including malware infections, unauthorized access attempts, privilege escalation, and
suspicious system modifications [4]. In this research, we focus on the host-level intrusion
detection of malware attacks since network-level detection has been thoroughly examined
and presented in numerous articles that contain promising results [5,6], while different
malware, especially ransomware attacks still pose one of the major threats to cybersecurity.

Classical HIDS and antivirus (AV) approaches are based on change monitoring of criti-
cal files and malware signatures, respectively, but are not resistant to zero-day attacks [7].
Although modern malware types, such as advanced persistent threats (APTs) cause more
and more threats, classical malware types still dominate the landscape and the need for
attack detection using anomaly-based methods remains not fully met. Recent research
has focused on using system calls as a basis for intrusion detection, with an increasing
number of papers exploring this approach. System calls provide the raw source of infor-
mation about what the applications are doing in the system and they allow us to predict
the maliciousness of the application itself [8–10]. An operating system API function call
(or a system call) is a programmatic way to request the operating system to perform an
activity. Many of these functions are implemented in a part of the operating system called

Electronics 2024, 13, 206. https://doi.org/10.3390/electronics13010206 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010206
https://doi.org/10.3390/electronics13010206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2796-9001
https://orcid.org/0000-0002-2263-3947
https://orcid.org/0000-0002-0208-7176
https://doi.org/10.3390/electronics13010206
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010206?type=check_update&version=1

Electronics 2024, 13, 206 2 of 17

the kernel, which interacts directly with the computer’s hardware, hard disk, input and
output devices and tells the computer when and at what time CPU and memory resources
must be made available to execute a particular process [11]. System functions are called
through the underlying libraries offered by the operating system to perform the required
functionality so that the required library module is included to execute a selected process,
and then the desired method is called from the selected module that interacts with the
operating system kernel [12]. By analyzing system-call patterns, it is possible to detect
anomalies and identify potential security breaches in Windows systems [13], which are still
used by more than 74% of desktop users in 2022 [14], and other operating systems. This is
particularly relevant given the popularity of Windows as an operating system, making it a
prime target for attackers [7].

In recent years, there has been growing interest in leveraging artificial intelligence
(AI) techniques to enhance the detection capabilities of HIDSs by analyzing large volumes
of data, identifying patterns, and detecting anomalies that may indicate malicious activi-
ties [15] and for system-call-pattern recognition [7]. One approach in the AI direction is
the use of autoencoders, a type of neural network, for intrusion detection [16]. Autoen-
coders can learn the normal behavior of a system and detect deviations from it, which can
be indicative of an intrusion. By training the autoencoder on a large dataset of normal
system behavior, it can effectively reconstruct and predict the features of the system. When
presented with anomalous behavior, the reconstruction error will be higher, triggering an
alert for potential intrusion [16]. Another AI-based improvement for HIDSs is the use of
ensemble methods, where multiple AI models are combined to improve detection accuracy.
Neural network ensembles have been proposed for distributed intrusion-detection systems,
allowing for better adaptation to the challenges of modern attacks [17]. Additionally, sup-
port vector machine (SVM) algorithms have been utilized in hybrid intrusion-detection
systems for wireless sensor networks, combining anomaly detection and signature-based
rules to provide lightweight and effective intrusion detection [18]. Still, the need to increase
the detection accuracy of machine learning methods for attack detection at system level
remains, as well as the need for relatively lightweight machine learning methods. In this
article, we propose a risk-based system-call sequence grouping method for malware intru-
sion detection that allows deep learning method accuracy to be achieved using relatively
lightweight SVM and decision tree (DT) methods.

Simple machine learning methods for malware detection based on API calls offer
several advantages that align with contemporary requirements. These methods have
been shown to be effective in detecting malware by analyzing the behavioral semantics of
applications and API calls, as demonstrated by [19]. Additionally, the use of lightweight
classifiers and feature extraction methods based on API call graphs, as seen in the work
of [20], provides efficient and practical solutions for malware detection. Furthermore,
consideration of the relationships between API calls during training, as highlighted by [21],
contributes to the successful prediction of malware families.

The main contributions of this paper are the following:

• The proposed malware riskiness method evaluation based on sequence call frequency
and function risk value;

• Experimental evaluation of several of the most prospective ML methods for malware
intrusion detection on the converted dataset with riskiness data that demonstrated
results comparable with DL methods applied on the original dataset without riski-
ness data.

This paper is organized as follows: the Introduction section presents the host level
intrusion-detection problem area; the second section describes prior and related work
carried out on anomaly-based malware detection using system calls as well as available
datasets used for training; the third section introduces the proposed risk-based system-
call sequence grouping method for malware intrusion detection and the fourth sections
discusses the experimental results obtained. Finally, the article offers its conclusions and
possible directions of future work.

Electronics 2024, 13, 206 3 of 17

2. Prior and Related Work

The first part of this section will analyze the methods used for system-call grouping
in the scope of applicability for malware detection. In addition, this part also reviews the
ML and DL methods used for malware and intrusion detection. The second part evaluates
datasets suitable for malware and intrusion-detection training.

2.1. Overview of Research on System-Call Grouping and Machine Learning Methods

System-call grouping is an important technique in computer science and intrusion-
detection systems. System-call grouping refers to the categorization and organization of
system calls based on their characteristics and relationships. This grouping allows the
analysis and understanding of system-call patterns and dependencies, which can be useful
in various domains such as malware detection [22] and anomaly-based intrusion-detection
systems [23]. By grouping system calls together, researchers and practitioners can identify
commonalities and differences among system-call behaviors, enabling them to develop
more effective detection and classification algorithms [22].

One example of system-call grouping is the study conducted by [23], where they
considered system calls such as read, readv, pread, and fread as the same system call. This
approach of grouping similar system calls together enabled a more comprehensive analysis
of their behavior and could improve the accuracy of anomaly-detection systems. Another
relevant reference is the work by [22], which discusses the utilization of temporal graphs of
system-call group relations for malicious software detection and classification. By creating
a system-call dependency graph and grouping related system calls, it demonstrates how
the graph can be used to identify patterns and relationships among system calls, aiding
in the detection and classification of malicious software. However, the research does not
mention any experiments conducted with real data as the focus of the paper is on discussing
the technological status of malware detection and classification and presenting the main
components of the proposed model.

System-call grouping is not only used in malware detection, but also in the graphical
representation of applications. The graphical representation of system calls is a valuable
approach for understanding and analyzing the behavior of these calls in an operating
system. Several studies have explored the use of clustering methods in conjunction with
graphical representations of system calls. One study [24] utilized the open-source tool
Graphviz to generate graphical representations of Unix process system calls. This approach
facilitated the comprehension of the behavior of these system calls, aiding in the learning of
the Unix operating system. By visualizing the relationships between different system calls,
clustering methods could be applied to identify patterns and group similar calls together.
Another work proposed the collection of sequences of system functions from malware
samples and map them to color heat maps [11]. To represent such a heat map, the author
defined a system function on one axis, a process that calls this function, and the number
of calls on the other. The problem with this way of mapping is that it maps the system
functions of several processes and does not map just one malware sample, but the system
functions called by many applications and their processes. This issue does not allow the
reuse of the mapping technique for system-call grouping properly for later analysis with
ML methods.

Another way to represent the actions of a malware that researchers have proposed is
mentioned in [25]. The authors collected the dataset and visualized the functions’ actions
using a tree map algorithm, which displays the information in defined rectangles for each
group of records. With this mapping method, the more the malware calls a specific system
function, the larger the rectangle for that call will be. In total, 120 different system functions
were analyzed but, unfortunately, the authors did not specify how the image creation was
performed [25]. As with the aforementioned heat mapping approach, there was also a loss
of sequences.

The authors of another research paper decided to group Windows API functions
according to their level of maliciousness, from non-malicious to very malicious [26]. For

Electronics 2024, 13, 206 4 of 17

each level, the colors were indicated, and a bar was generated from the called system
functions, in order to replace the entry of each function with a bar of a given, specified
color. By generating bands of function sequences, the authors were able to preserve the
order of the function sequences, unlike other representations of system functions discussed
in other approaches. Knowing which function is followed by which function is essential,
as it is likely that not only the called functions could be used to determine whether it is
a malware, but also the order of the harmful functions. This is the most appropriate way
to represent system-call sequences because, as mentioned before, the order is preserved,
but there was a major problem with the representation: there was no indication of how
the author had grouped or determined the riskiness of each function and its effectiveness.
Also, when looking at the figures, it was difficult to determine whether the figure referred
to a malware or a benign code, as the authors used too many different colors.

In summary, system-call grouping is a valuable technique that enables the catego-
rization and analysis of system calls based on their characteristics and relationships. It
has applications in various domains, including malware detection and anomaly-based
detection systems. A comparison of reviewed methods is presented in Table 1. By grouping
system calls together, researchers and practitioners can gain insights into their behavior
and patterns, leading to more effective detection and classification algorithms. More im-
portantly, the analysis of work where graphical representation is described could help to
improve host-based intrusion-detection systems, as they can provide valuable information
on how to cluster system calls by similar properties.

Table 1. Comparison of the system-call grouping methods.

Method Description Limitations

Temporal graphs [22]
Discusses the utilization of temporal graphs
of system-call group relations for malicious

software detection and classification.

Only model presented without any
experimental results.

Graphical representation of
system calls [24]

Method uses visualization of the
relationships between different system calls.

More suitable for representing application
workflow.

Color map for system calls [11]
Proposed to collect sequences of system

functions from malware samples and map
them to color heat maps.

Method maps the system functions of several
processes and does not map just one malware

sample, but the system functions called by
many applications and their processes.

Tree map algorithm [25]
The authors collected the dataset and

visualized the functions’ actions using a tree
map algorithm.

The authors did not specify how the image
creation was performed (actual grouping

algorithm).

Grouping by maliciousness [26]

The authors proposed to group Windows
API functions according to their level of

maliciousness, from non-malicious to very
malicious.

There is no indication of how the author has
grouped or determined the riskiness of each

function and its effectiveness.

Moreover, the use of sequential system calls and API call sequences, as demonstrated
by [27], enables the incremental detection of malware, addressing the need for continuous
monitoring and detection in contemporary cybersecurity. These methods leverage the
inherent characteristics of API calls and system calls to detect anomalies and malicious
behaviors, aligning with the evolving threat landscape and the need for robust protection
against malware, as discussed by [28].

An extensive range of machine learning methods has been employed for anomaly
detection in the domains of malware and intrusion detection. Some commonly used ma-
chine learning methods are: naive Bayes (NB), support vector machine (SVM), K-nearest
neighbor (KNN), artificial neural networks (ANN), DT, random forest (RF), hidden Markov
model (HMM). Research studies have indicated that SVM and DT are among the most
promising methods for anomaly detection. SVM and DT algorithms have been widely

Electronics 2024, 13, 206 5 of 17

used in HIDSs due to their effectiveness in detecting and classifying intrusions [29–31].
In the context of HIDSs, SVM can learn the patterns and characteristics of known attacks
and identify similar patterns in real-time system behavior, enabling the detection of un-
known or novel attacks [29]. The advantages of SVM in HIDSs include its ability to handle
high-dimensional data, its robustness against overfitting, and its effectiveness in handling
both linear and non-linear classification problems. The advantages of DT in HIDSs include
their interpretability, ease of understanding, and the ability to generate rules that can be
used for further analysis and investigation of detected intrusions [29]. In our previous re-
search, where different machine learning methods were evaluated, SVM showed promising
intrusion-detection results in combination with the lowest training and classification times.
The classification results were better than the DL LSTM model [32]. The same idea supports
DT—this ML method also produced comparable classification results [33]. Additionally,
DT showed the best results in classification time and comparable results in training-time
experiments. The aforementioned results encouraged us to experiment with SVM and DT
in the field of HIDSs, as they can provide better performance in terms of time used for the
training and classification tasks.

2.2. Analysis of Applicable Datasets for Malware Intrusion Detection

For almost two decades, researchers working in the field of intrusion detection have
been using a publicly available Linux-based KDD98 data set [34–36]. However, that
database is from 1998 and has lost its completeness and quality. Furthermore, the nature
of the data collected in the KDD98 dataset was more geared toward NIDSs than towards
HIDSs [37]. To address those issues, another Linux dataset, ADFA-LD, was developed in
2014. ADFA-LD, was created by running selected malicious programs on the Ubuntu 11.03
Linux operating system, which also ran essential services such as web, database, secure
shell (SSH) and FTP [38]. As the Windows operating system is much more popular than
Linux, subsequently, the need arose to develop the ADFA-WD. The ADFA-WD dataset was
built on a Windows XP SP2 operating system running applications such as a web-server, a
database server, an FTP server, a streaming media server, a PDF reader, etc. A total of 12
different vulnerabilities were tested using Metasploit software, and a complement to the
dataset, ADFA-WD:SAA, was created by using three different secret Windows operating
system stealth attacks [38]. ADFA-WD:SAA is a stealth attack-oriented addition to the
ADFA-WD suite [39]. Unfortunately, the ADFA-WD dataset does not provide a way to
identify exactly which method was called from the DLL files.

There are also other HIDS-related datasets worth mentioning, but they all have issues
that made them unusable in our research which is oriented towards Windows system-call
analysis. A table with those datasets and notes about the data it contains is provided below
(Table 2).

Table 2. HIDS-related datasets that are not suitable for our research.

Dataset Year Operating System Notes

FirefoxDS [40] 2013 Linux System calls of Firefox application under attack are collected.

Berlin et al. [41] 2015 Windows
Windows audit log from malware was collected. No system-call
information. System calls not mentioned directly in the research

and collected dataset is not public.

Big 2015 [42] 2015 Windows Collected static Windows PE executables information.

Kolosnjaji et al. [43] 2016 Windows
Collected system calls of malware samples. Dataset is private and

contained only system calls without additional data (e.g.,
parameters and return values)

NGIDS-DS [44] 2017 Linux Synthetically created dataset. Contains HIDS- and NIDS-related
data. HIDS data contains only Linux machine information.

Electronics 2024, 13, 206 6 of 17

Table 2. Cont.

Dataset Year Operating System Notes

CSE-CICIDS2018 [45] 2018 Linux and Windows Main scope of dataset—network-related data. Host-based data
only presented, but not used in any experiments.

Mal-API-2019 [46] 2019 Windows
Dataset contains malware-generated API calls. Collected system
calls have no information about passed parameters and return

values.

Slightly later, in 2018, a new dataset, AWSCTD, was created. This dataset provides a
better training capability for HIDSs, as it not only provides more detailed malware system-
call sequences, but also provides additional information on malware, such as modified files
and other general information about actions [47]. AWSCTD is probably one of the newest
Windows system-call datasets that is generated from the publicly available, VirusShare
malware database. As the samples in VirusShare are not necessarily malicious, therefore,
for the dataset, only samples with 15 or more positive detections by different antiviruses
were selected [47]. The dataset contains over 10,276 samples. It should also be noted
that the AWSCTD dataset has a significantly higher number of collected malware system
function sequences than the older Windows dataset ADFA-IDS (Table 3). It is therefore
expected that, due to the novelty and the size of the dataset, it will be possible to generate
malware graphically with higher accuracy.

Table 3. Comparison of the ADFA-IDS dataset with AWSCTD [47].

Dataset Number of Malware Samples
Executed

Number of Accumulated
System-Call Records

ADFA-IDS 15 6636
AWSCTD 10,276 112.56 million

The AWSCTD dataset contains up to 540 unique system functions; it also contains
115 unique system functions that have never been called in clean code. Of these, up
to 29 functions have been called more than 100 times by malicious code. There were
45 functions that were not called by the malware and only called by the clean code. Hence,
as this dataset is newer and has a vast number of system-call records, it is more suitable for
analyzing the sequences of different malware functions than the ADFA dataset. It is likely
that the use of more recent data will lead to better results for this study, and for this reason
the AWSCTD dataset will be used in this study, as it is intended to adapt the study to data
that is more contemporary.

The unconverted AWSCTD was used in our previous experiments [7,32,33]. The
results obtained were really good for the resource requiring deep-learning methods (dual-
flow deep LSTM-FCN and GRU-FCN, single-flow CNN) and the accuracy metric was equal
to 98.9, 98.8 and 99.3 percent, respectively [7]. The use of classical and relatively lightweight
machine learning methods was not as good and the accuracy for SVM and DT was equal to
TT and PP, respectively, [32,33] although it is worth mentioning that in the latter research
no system-call grouping, or other optimization methods, were used.

3. The Proposed Risk-Based System-Call Sequence Grouping Method

This section describes the proposed risk-based system-call grouping method, the
metrics used for its evaluation, as well as known method limitations and issues.

3.1. General Method Description

The method proposes a way of grouping system calls according to their riskiness. In
order to explain the proposed risk score for sequence grouping, the four basic concepts of a
risk score are defined:

Electronics 2024, 13, 206 7 of 17

• Function risk ratio (FRR);
• Database risk ratio (DRR);
• Clustering risk ratio constant (CRR);
• Average risk ratio (ARR);
• The final risk value or riskiness of a function (system call) (RV).

The FRR is obtained by applying the risk ratio Equation (1) presented below: the
number of calls made by the malware is divided by the number of calls made by the
clean code.

FRR =
k
s

, (1)

where FRR is the function risk ratio; k is the number of calls by the malware; s is the number
of calls by the clean code. Range is from 0 (zero) to any positive number and depends on
the number of unique system calls.

The DRR is the ratio between the number of malware sequences of system functions
and the clean code sequences in the database. That is, all lines are scanned, and the number
of clean and malicious code lines is counted, and finally one value is divided by the other.
Functions with a risk ratio lower than the baseline risk ratio are classified as low risk
because such functions are rarely called by malicious code.

DRR =
k
s

, (2)

where DRR is the database risk ratio; k is the number of malware sequences; s is the number
of clean code sequences. Range is from 0 (zero) to any positive number (if malware calls
dominate the dataset).

The DRR is needed because if a risk score for a system function is determined without
a baseline risk score, there is a problem if the dataset contains much more malware or clean
code data (the database is imbalanced) that this data may distort the FRR for a given system
function. For example, with a small dataset consisting of 4 malicious and 6 clean code
entries, a system function could be called 10 times by the malware, while each clean code
would call the same system function only 7 times. In this case, the malware would call the
function 40 times in total, while the clean code would call it 42 times. Hence, after applying
the risk ratio formula, at the first glance, it seems that this function is not malicious because,
clean code calls are slightly more often than malicious code calls. This is not true, since
there were simply fewer malicious code entries in the dataset.

The CRR is determined experimentally by the searching of a CRR value giving the
best machine learning results. In our experiments, the range was from 1 to 3 with a step
of 0.5.

The ARR is calculated by multiplying DRR by CRR (Equation (3)):

ARR = DRR × CRR, (3)

The RV is a final number that indicates whether the system function has low, medium,
or high risk. RV is determined according to the RV table (Table 4).

Table 4. RV table for determining the risk score for a system call.

RV Determination Margins Risk Score (Low, Medium, High) Numerical Equivalent of the Risk Score

FRR equal to or lower than the DRR Low −1

FRR more than DRR and less than or equal to
ARR. Medium 0

Risk ratio above the ARR High 1

The proposed grouping method thus consists of the following seven main steps
(Figure 1):

Electronics 2024, 13, 206 8 of 17

Electronics 2024, 13, x FOR PEER REVIEW 8 of 18

Risk ratio above the ARR High 1

The proposed grouping method thus consists of the following seven main steps (Fig-

ure 1):

Figure 1. Activity diagram of proposed system-call grouping method.

1. Reading the dataset and extracting unique system calls (functions).

2. Calculating the number of times the function has been called during the execution of

benign applications and the malware. This can be achieved because in each AWSCTD

dataset record, the last entry is the type of malware or an indication that it is not

executed in a harmful application.

3. Calculating the riskiness ratio of the function (FRR).

4. Calculating the baseline riskiness from the dataset to set low-risk thresholds (DRR).

5. Finding the best CRR value. Before determining the riskiness of the functions, it is

crucial to determine which clustering risk ratio constant should be applied to me-

dium riskiness. The clustering risk ratio constant will be determined by classifying

the dataset by applying a different value between 1.5 and 3.0, increasing the ratio by

0.5 increments (the margins were defined using empirical search; the size of the in-

crement steps could in fact be smaller (e.g., 0.1), but smaller steps did not demon-

strate the tendencies well and increased the number of experiments needed for the

search). The clustering risk ratio constant must be chosen for the highest classification

accuracy.

6. Applying clustering risk ratio constant (CRR) to the rules defined in Table 4.

7. The final risk value is determined from the RV table (system calls are replaced by

values −1, 0 or 1).

8. Writing a new grouped dataset in CSV file format for later use. A CSV file is written

in the same format as the dataset, except that at this point, each function is replaced

by the numerical equivalent of the risk score.

After these steps are executed, each risk score for a function is determined by the risk

ratio of the function relative to the number of clean and malicious records in the whole

dataset. A sample method application is presented in Figure 2. For the final clustering

result, at each location where function1 is specified in the dataset, each record is converted

to its specified risk score.

Figure 1. Activity diagram of proposed system-call grouping method.

1. Reading the dataset and extracting unique system calls (functions).
2. Calculating the number of times the function has been called during the execution of

benign applications and the malware. This can be achieved because in each AWSCTD
dataset record, the last entry is the type of malware or an indication that it is not
executed in a harmful application.

3. Calculating the riskiness ratio of the function (FRR).
4. Calculating the baseline riskiness from the dataset to set low-risk thresholds (DRR).
5. Finding the best CRR value. Before determining the riskiness of the functions, it

is crucial to determine which clustering risk ratio constant should be applied to
medium riskiness. The clustering risk ratio constant will be determined by classifying
the dataset by applying a different value between 1.5 and 3.0, increasing the ratio
by 0.5 increments (the margins were defined using empirical search; the size of
the increment steps could in fact be smaller (e.g., 0.1), but smaller steps did not
demonstrate the tendencies well and increased the number of experiments needed
for the search). The clustering risk ratio constant must be chosen for the highest
classification accuracy.

6. Applying clustering risk ratio constant (CRR) to the rules defined in Table 4.
7. The final risk value is determined from the RV table (system calls are replaced by

values −1, 0 or 1).
8. Writing a new grouped dataset in CSV file format for later use. A CSV file is written

in the same format as the dataset, except that at this point, each function is replaced
by the numerical equivalent of the risk score.

After these steps are executed, each risk score for a function is determined by the risk
ratio of the function relative to the number of clean and malicious records in the whole
dataset. A sample method application is presented in Figure 2. For the final clustering
result, at each location where function1 is specified in the dataset, each record is converted
to its specified risk score.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 18

Figure 2. Sample of method application.

3.2. Method Metrics

To ensure that the proposed way of grouping system functions is effective, it is nec-

essary to evaluate the classification data accuracy of ML methods trained on the obtained

dataset [48]. This research is mainly focused on the new system-call function grouping

proposal. For that reason, only the two most popular machine learning methods (SVM

and DT) identified in the review part are used.

The following standard metrics will be used to calculate the accuracy of these ma-

chine learning methods and corresponding proposed method efficiency: confusion ma-

trix, accuracy, precision, recall, F-score, and error rate.

The confusion matrix (CM) is a size N matrix for evaluating a classification model’s

performance, where N is the number of objects. It is a summarized table indicating the

number of correct and incorrect predictions of the classifier [49].

Accuracy is the proportion of items that the model predicts correctly [49]. Accuracy

is calculated using the following equation:

Accuracy =
TP + TN

TP + TN + FN + FP
, (4)

Precision refers to the correct proportion of items that the model returns [50]. In other

words, it refers to the probability that a model’s positive value will be correctly predicted.

Precision is calculated using Equation (5):

Precision =
TP

TP + FP
, (5)

Recall refers to how many of all items that should have been found were actually

found [47]. The recall is calculated using the following equation:

Recall =
TP

FN + TP
, (6)

The F-score refers to the overall weighted harmonic mean of precision and recall [50].

The F-score is calculated using the following equation:

F − score =
2(Precision × Recall)

Precision × Recall
, (7)

The error rate refers to the frequency with which the model makes an incorrect pre-

diction [49]. The error rate is calculated using the following formula:

Figure 2. Sample of method application.

Electronics 2024, 13, 206 9 of 17

3.2. Method Metrics

To ensure that the proposed way of grouping system functions is effective, it is neces-
sary to evaluate the classification data accuracy of ML methods trained on the obtained
dataset [48]. This research is mainly focused on the new system-call function grouping
proposal. For that reason, only the two most popular machine learning methods (SVM and
DT) identified in the review part are used.

The following standard metrics will be used to calculate the accuracy of these ma-
chine learning methods and corresponding proposed method efficiency: confusion matrix,
accuracy, precision, recall, F-score, and error rate.

The confusion matrix (CM) is a size N matrix for evaluating a classification model’s
performance, where N is the number of objects. It is a summarized table indicating the
number of correct and incorrect predictions of the classifier [49].

Accuracy is the proportion of items that the model predicts correctly [49]. Accuracy is
calculated using the following equation:

Accuracy =
TP + TN

TP + TN + FN + FP
, (4)

Precision refers to the correct proportion of items that the model returns [50]. In other
words, it refers to the probability that a model’s positive value will be correctly predicted.
Precision is calculated using Equation (5):

Precision =
TP

TP + FP
, (5)

Recall refers to how many of all items that should have been found were actually
found [47]. The recall is calculated using the following equation:

Recall =
TP

FN + TP
, (6)

The F-score refers to the overall weighted harmonic mean of precision and recall [50].
The F-score is calculated using the following equation:

F − score =
2(Precision × Recall)

Precision × Recall
, (7)

The error rate refers to the frequency with which the model makes an incorrect
prediction [49]. The error rate is calculated using the following formula:

Error rate =
FP + FN

TP + TN + FP + FN
, (8)

3.3. Method Limitations

As with any method, the method proposed has some limitations. The risk calculation
is simplified compared to classical risk calculation methods, leaving the impact untouched
due to scope limitations. The method is not suitable for every dataset: if all the functions
are called by malware and clean code a similar number of times, then each function would
be assigned only a medium risk according to this algorithm. Thus, it is important to note
that before applying this method to the chosen dataset, it is necessary to make sure that the
dataset is sufficiently large and that there is a separation between the clean code and the
number of functions called by the malware.

Another limitation of this clustering algorithm is that each feature contains more
information than a simple risk score. Applying this clustering method could result in a
significant loss of data in the dataset, as only three levels of risk scores are left from the
many different system functions.

Electronics 2024, 13, 206 10 of 17

4. Results and Discussion

This section presents the results of the newly presented system-call grouping method.
The results include the findings of the CRR value, evaluation of ML methods when the new
grouping method is used and analysis of the system calls in the AWSCTD dataset.

4.1. Results of the CRR Determination for AWSCTD Dataset

In order to evaluate the effectiveness of the proposed method, the results obtained
were compared against the initial AWSCTD dataset. Following the proposed method, the
original AWSCTD dataset was converted to include riskiness values instead of numbers,
corresponding to the system call (see Figure 3). Every dataset record has 1000 system calls.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 18

Error rate =
FP+FN

TP+TN+FP+FN
, (8)

3.3. Method Limitations

As with any method, the method proposed has some limitations. The risk calculation

is simplified compared to classical risk calculation methods, leaving the impact untouched

due to scope limitations. The method is not suitable for every dataset: if all the functions

are called by malware and clean code a similar number of times, then each function would

be assigned only a medium risk according to this algorithm. Thus, it is important to note

that before applying this method to the chosen dataset, it is necessary to make sure that

the dataset is sufficiently large and that there is a separation between the clean code and

the number of functions called by the malware.

Another limitation of this clustering algorithm is that each feature contains more in-

formation than a simple risk score. Applying this clustering method could result in a sig-

nificant loss of data in the dataset, as only three levels of risk scores are left from the many

different system functions.

4. Results and Discussion

This section presents the results of the newly presented system-call grouping

method. The results include the findings of the CRR value, evaluation of ML methods

when the new grouping method is used and analysis of the system calls in the AWSCTD

dataset.

4.1. Results of the CRR Determination for AWSCTD Dataset

In order to evaluate the effectiveness of the proposed method, the results obtained were

compared against the initial AWSCTD dataset. Following the proposed method, the original

AWSCTD dataset was converted to include riskiness values instead of numbers, corre-

sponding to the system call (see Figure 3). Every dataset record has 1000 system calls.

In Figure 3, the left side conversion demonstrates the proposed dataset conversion

according to the proposed method, while the right side uses the original dataset structure,

where every system call is given a unique number.

Figure 3. Process for converting grouped data to converted data comparison. Figure 3. Process for converting grouped data to converted data comparison.

In Figure 3, the left side conversion demonstrates the proposed dataset conversion
according to the proposed method, while the right side uses the original dataset structure,
where every system call is given a unique number.

Once the converted dataset was generated, the performance of the machine learning
classifiers using different CRR values was evaluated (a sensitivity test was conducted). This
process consisted of the following steps that were repeated for each different CRR:

1. Mixing and reading the rows of a dataset;
2. Five blocks of the dataset are created, where 80% of the data are isolated to deter-

mine the CRR, and the other isolated 20% are used to test the classification using
machine learning;

3. Determining the ratio of malicious to clean code for each system function;
4. The records in dataset are iterated, and each function is replaced by the numerical

equivalent of the risk score calculated;
5. Storing a grouped dataset in a CSV file;
6. Importing a CSV file into the Python environment and supplying data to the machine-

learning classification algorithms.

In this process, it is essential to isolate the data before the risk score is determined,
because if data isolation is not ensured at this stage, the risk score for each function would

Electronics 2024, 13, 206 11 of 17

be determined from the entire dataset. This means that even if the classification process
separates the 20% of the data tested and the other 80% trained, the result would not be
correct, as the risk score itself would be determined from the whole dataset.

The process was carried out four times with different CRR constants ranging from
1.5 to 3. For each test, five blocks of the dataset were used with separate training and
testing data. The first five steps of CRR estimation were implemented using the Java
programming language, while the sixth step is implemented in Python (version 3.10)
(training and classification). SVM and DT methods with default parameters (only gamma
parameter auto for SVM was passed when creating the model) were implemented by
using the scikit-learn (version 1.0.2) library. The results obtained are listed in the Table 4.
Experiments were executed on the computer with Windows 10 operating system, Intel(R)
Core(TM) i7-7500U CPU and 8 GB of RAM. The pseudocode depicting ML methods used
can be seen in Figure 4.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18

Once the converted dataset was generated, the performance of the machine learning

classifiers using different CRR values was evaluated (a sensitivity test was conducted).

This process consisted of the following steps that were repeated for each different CRR:

1. Mixing and reading the rows of a dataset;

2. Five blocks of the dataset are created, where 80% of the data are isolated to determine

the CRR, and the other isolated 20% are used to test the classification using machine

learning;

3. Determining the ratio of malicious to clean code for each system function;

4. The records in dataset are iterated, and each function is replaced by the numerical

equivalent of the risk score calculated;

5. Storing a grouped dataset in a CSV file;

6. Importing a CSV file into the Python environment and supplying data to the ma-

chine-learning classification algorithms.

In this process, it is essential to isolate the data before the risk score is determined,

because if data isolation is not ensured at this stage, the risk score for each function would

be determined from the entire dataset. This means that even if the classification process

separates the 20% of the data tested and the other 80% trained, the result would not be

correct, as the risk score itself would be determined from the whole dataset.

The process was carried out four times with different CRR constants ranging from

1.5 to 3. For each test, five blocks of the dataset were used with separate training and test-

ing data. The first five steps of CRR estimation were implemented using the Java program-

ming language, while the sixth step is implemented in Python (version 3.10) (training and

classification). SVM and DT methods with default parameters (only gamma parameter

auto for SVM was passed when creating the model) were implemented by using the scikit-

learn (version 1.0.2) library. The results obtained are listed in the Table 4. Experiments

were executed on the computer with Windows 10 operating system, Intel(R) Core(TM) i7-

7500U CPU and 8 GB of RAM. The pseudocode depicting ML methods used can be seen

in Figure 4.

Figure 4. Pseudocode for ML methods.

As shown in Table 5, the SVM classification algorithm was more efficient than the DT

in this case, as the majority of the tests performed showed a lag of between one and four

percent. No significant gap was observed between the same classification algorithms,

with different CRRs, as the differences in the averages of all tests are only up to 2% accu-

rate. Although the results are fairly homogeneous, the most efficient clustering method

was found to be SVM with a CRR equal to 1.5.

Figure 4. Pseudocode for ML methods.

As shown in Table 5, the SVM classification algorithm was more efficient than the DT
in this case, as the majority of the tests performed showed a lag of between one and four
percent. No significant gap was observed between the same classification algorithms, with
different CRRs, as the differences in the averages of all tests are only up to 2% accurate.
Although the results are fairly homogeneous, the most efficient clustering method was
found to be SVM with a CRR equal to 1.5.

Table 5. RV table for determining the risk score for a system call. The best results of classification are
marked by a green background (darker green represents better results).

CRR 1.5 2.0 2.5 3.0

Model SVM DT SVM DT SVM DT SVM DT

Accuracy 0.968 0.9518 0.964 0.9468 0.9652 0.956 0.9606 0.9514
Precision 0.977 0.969 0.975 0.966 0.972 0.972 0.968 0.970

Recall 0.983 0.967 0.983 0.967 0.984 0.971 0.983 0.970
F score 0.984 0.969 0.979 0.967 0.978 0.971 0.976 0.970

Error rate 0.031 0.049 0.033 0.052 0.034 0.045 0.038 0.046

Looking at the bar chart below (Figure 5), it can be seen that the classification accuracy
of SVM decreased with the increase in the CRR to above 1.5 and was likely to decrease
even further with an increase above 3.0. The tendencies for DT are not so clear, but this
algorithm demonstrates worse results compared to SVM.

Electronics 2024, 13, 206 12 of 17

Electronics 2024, 13, x FOR PEER REVIEW 12 of 18

Table 5. RV table for determining the risk score for a system call. The best results of classification

are marked by a green background (darker green represents better results).

CRR 1.5 2.0 2.5 3.0

Model SVM DT SVM DT SVM DT SVM DT

Accuracy 0.968 0.9518 0.964 0.9468 0.9652 0.956 0.9606 0.9514

Precision 0.977 0.969 0.975 0.966 0.972 0.972 0.968 0.970

Recall 0.983 0.967 0.983 0.967 0.984 0.971 0.983 0.970

F score 0.984 0.969 0.979 0.967 0.978 0.971 0.976 0.970

Error rate 0.031 0.049 0.033 0.052 0.034 0.045 0.038 0.046

Looking at the bar chart below (Figure 5), it can be seen that the classification accu-

racy of SVM decreased with the increase in the CRR to above 1.5 and was likely to decrease

even further with an increase above 3.0. The tendencies for DT are not so clear, but this

algorithm demonstrates worse results compared to SVM.

Figure 5. Accuracy of classification of different CRRs (sensitivity analysis).

By filling in the confusion matrices of the SVM method for each CRR (Figure 6), it

should be noted that the forecast errors increased with increasing CRR. For example, a

dataset grouped with a CRR of 1.5 had the highest number of correct predictions that the

sequence was clean, whereas the number of correct predictions decreased as the ratio in-

creased.

With the most efficient CRR constant known, it was possible to fill in the risk score

table according to the method proposed (see Table 6). In the completed table below, a base

risk score of 4.25 was obtained because the AWSCTD dataset contained 4.25 times more

malware than clean code function sequences. If the number of clean and malware entries

were equal, the baseline riskiness would be 1. When the DRR is known, the proposed RV

table is populated, where low-risk functions are those that are called by a clean code less

than 4.25 times than the malware. As mentioned before, the ARR is determined by multi-

plying the DRR by the most efficient CRR, i.e., 4.25 multiplied by 1.5, and finally other

system functions that are called more by malware have an FRR greater than the ARR and

therefore are assigned with the high risk ratio.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.5 2 2.5 3 1.5 2 2.5 3

SVM DT

Accuracy

Figure 5. Accuracy of classification of different CRRs (sensitivity analysis).

By filling in the confusion matrices of the SVM method for each CRR (Figure 6), it
should be noted that the forecast errors increased with increasing CRR. For example, a
dataset grouped with a CRR of 1.5 had the highest number of correct predictions that
the sequence was clean, whereas the number of correct predictions decreased as the
ratio increased.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 18

Figure 6. Confusion matrices for different risk ratios with SVM method.

Table 6. RV table for determined risk score margins.

RV Determination Margins Risk Score
Numerical Equivalent of

the Risk Score

FRR up to or equal to 4.25 Low −1

FRR more than 4.25 and less than or equal to 6.375 Medium 0

FRR more than 6.375 High 1

Once the risk score table is populated, it is possible to perform grouping, i.e., to

change the system functions according to the numerical equivalent of the risk score. The

table below (Table 7) gives an example of how the system functions look for the risk score,

calculating the required values. For example, for the system function NtQueryInfor-

mationFile.FileAllInformation, it was found that there were up to 1446 calls in the mal-

ware, but the clean code only called this system function 11 times. Therefore, dividing

1146 by 11 gives a frequency ratio of 104.18, which means that malware calls this system

function 104.18 times more often. According to the risk scoring table, this system function

has a high-risk score, as the system functions that are called 6.375 times more often by

malware than by clean code are assigned a high-risk score. Similarly, medium, and low

risk scores are determined for ratios less than 4.25 or between 4.25 and 6.375, respectively.

If a system function is never called by clean code, it is set with a ratio of 1000, if it is never

called by malicious code, the ratio is set to 0. These ratios are applied to the NtUser-

CountClipboardFormats and NtQueryDirectoryFile.FileDirectoryInformation functions,

respectively. Examples are provided in Table 6.

Table 7. Example of riskiness of system functions.

System Function

Number of

Calls in Mal-

ware

Number of Calls

in Benign

Applications

Frequency Ratio
Identified Riskiness

(High, Medium, Low)

NtUserCountClipboardFormats 1 0 1000 High

NtQueryInformationFile.FileAllInformation 1146 11 104.18 High

NtUserBeginPaint 111 18 6.16 Medium

NtClose 887,425 145,692 6.09 Medium

NtUserGetKeyboardLayoutList 757 180 4.2 Low

NtQueryDirectoryFile.FileDirectoryInformation 0 75 0 Low

Benign Malware Benign Malware

Benign 1568 168 Benign 1552 184

Malware 121 7263 Malware 123 7261

Benign Malware Benign Malware

Benign 1533 203 Benign 1501 235

Malware 112 7272 Malware 121 7263

Tr
u

e
la

b
el

Predicted label

Tr
u

e
la

b
el

Ratio 1.5 Ratio 2.0

Ratio 2.5 Ratio 3.0

Predicted label

Tr
u

e
la

b
el

Predicted label

Tr
u

e
la

b
el

Predicted label

Figure 6. Confusion matrices for different risk ratios with SVM method.

With the most efficient CRR constant known, it was possible to fill in the risk score
table according to the method proposed (see Table 6). In the completed table below, a base
risk score of 4.25 was obtained because the AWSCTD dataset contained 4.25 times more
malware than clean code function sequences. If the number of clean and malware entries
were equal, the baseline riskiness would be 1. When the DRR is known, the proposed
RV table is populated, where low-risk functions are those that are called by a clean code
less than 4.25 times than the malware. As mentioned before, the ARR is determined by
multiplying the DRR by the most efficient CRR, i.e., 4.25 multiplied by 1.5, and finally other
system functions that are called more by malware have an FRR greater than the ARR and
therefore are assigned with the high risk ratio.

Electronics 2024, 13, 206 13 of 17

Table 6. RV table for determined risk score margins.

RV Determination Margins Risk Score Numerical Equivalent of the
Risk Score

FRR up to or equal to 4.25 Low −1
FRR more than 4.25 and less than or equal

to 6.375 Medium 0

FRR more than 6.375 High 1

Once the risk score table is populated, it is possible to perform grouping, i.e., to change
the system functions according to the numerical equivalent of the risk score. The table
below (Table 7) gives an example of how the system functions look for the risk score,
calculating the required values. For example, for the system function NtQueryInformation-
File.FileAllInformation, it was found that there were up to 1446 calls in the malware, but the
clean code only called this system function 11 times. Therefore, dividing 1146 by 11 gives a
frequency ratio of 104.18, which means that malware calls this system function 104.18 times
more often. According to the risk scoring table, this system function has a high-risk score,
as the system functions that are called 6.375 times more often by malware than by clean
code are assigned a high-risk score. Similarly, medium, and low risk scores are determined
for ratios less than 4.25 or between 4.25 and 6.375, respectively. If a system function is
never called by clean code, it is set with a ratio of 1000, if it is never called by malicious
code, the ratio is set to 0. These ratios are applied to the NtUserCountClipboardFormats
and NtQueryDirectoryFile.FileDirectoryInformation functions, respectively. Examples are
provided in Table 6.

Table 7. Example of riskiness of system functions.

System Function Number of Calls in
Malware

Number of Calls in
Benign Applications

Frequency
Ratio

Identified Riskiness
(High, Medium, Low)

NtUserCountClipboardFormats 1 0 1000 High
NtQueryInformationFile.FileAllInformation 1146 11 104.18 High

NtUserBeginPaint 111 18 6.16 Medium
NtClose 887,425 145,692 6.09 Medium

NtUserGetKeyboardLayoutList 757 180 4.2 Low
NtQueryDirectoryFile.FileDirectoryInformation 0 75 0 Low

The risk score overview for different malware types is presented in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18

The risk score overview for different malware types is presented in Figure 7.

Figure 7. Distribution of risk scores for function sequence types.

As can be seen from Figure 7, DangerousObject is the malware type that calls function

sequences with the highest risk score (refer also to Table 8). It is 1.74 times more likely to

call a high-risk function or 3.24 times more likely to call a medium- or high-risk function

than a low-risk function. Trojan is the second most dangerous type of malware, and its

resulting relationships are similar to those of DangerousObject. The clean code has a low-

to-high-risk ratio of 0.17, which means that low-risk functions are 5.8 times more likely to

call low-risk functions than high-risk functions. WebToolbar results are similar to the

clean object, reflecting this malware type’s origin and relatively low impact. For more de-

tails on the resulting relationships between the indices and the total values, see the table

below (Table 7).

Table 8. Risk score ratios for function sequence types. The color grading explanation (from the-

worst to better results): dark red, light red, orange, yellow, light green, dark green.

Ratio between the Number of High and Low

Risk Score Functions

Ratio between the Number of High, Medium

and Low Risk Score Functions

 All Values Peak Values in Each Index All Values Peak Values in Each Index

Adware 1.04 1.86 2.52 3.75

Trojan 1.54 2.64 2.98 3.62

Downloader 1.04 2.57 2.23 3.22

Clean 0.17 0.03 0.62 0.03

WebToolbar 0.26 0.32 0.64 0.49

DangerousObject 1.74 2.52 3.27 3.53

4.2. Results of the Risk-Based Grouping on Malware Intrusion Detection by Machine Learning

Methods

As the CRR constant of 1.5 was found to be the most efficient, its accuracy was com-

pared to the efficiency of SVM and DT on the original dataset (Table 9). The data for the

tests were acquired by the methods depicted in Figure 3; records from the original data-

base were converted to the numerical values and converted by the method proposed with

a CRR of 1.5.

0 0.5 1 1.5 2

Adware

Trojan

Downloader

Clean

WebToolbar

DangerousObject

Millions

High Medium Low

Figure 7. Distribution of risk scores for function sequence types.

Electronics 2024, 13, 206 14 of 17

As can be seen from Figure 7, DangerousObject is the malware type that calls function
sequences with the highest risk score (refer also to Table 8). It is 1.74 times more likely to
call a high-risk function or 3.24 times more likely to call a medium- or high-risk function
than a low-risk function. Trojan is the second most dangerous type of malware, and its
resulting relationships are similar to those of DangerousObject. The clean code has a low-
to-high-risk ratio of 0.17, which means that low-risk functions are 5.8 times more likely to
call low-risk functions than high-risk functions. WebToolbar results are similar to the clean
object, reflecting this malware type’s origin and relatively low impact. For more details
on the resulting relationships between the indices and the total values, see the table below
(Table 7).

Table 8. Risk score ratios for function sequence types. The color grading explanation (from theworst
to better results): dark red, light red, orange, yellow, light green, dark green.

Ratio between the Number of High and Low Risk
Score Functions

Ratio between the Number of High, Medium and
Low Risk Score Functions

All Values Peak Values in Each Index All Values Peak Values in Each Index

Adware 1.04 1.86 2.52 3.75
Trojan 1.54 2.64 2.98 3.62

Downloader 1.04 2.57 2.23 3.22
Clean 0.17 0.03 0.62 0.03

WebToolbar 0.26 0.32 0.64 0.49
DangerousObject 1.74 2.52 3.27 3.53

4.2. Results of the Risk-Based Grouping on Malware Intrusion Detection by Machine
Learning Methods

As the CRR constant of 1.5 was found to be the most efficient, its accuracy was
compared to the efficiency of SVM and DT on the original dataset (Table 9). The data for the
tests were acquired by the methods depicted in Figure 3; records from the original database
were converted to the numerical values and converted by the method proposed with a CRR
of 1.5.

Table 9. Comparison of the accuracy of the original and grouped datasets. The color grading
explanation (from worst results to better): red, yellow, light green, dark green.

Original Dataset Grouped Dataset with 1.5 CRR

Algorithm SVM DT SVM DT

Test 1 0.729 0.873 0.974 0.956
Test 2 0.728 0.872 0.967 0.956
Test 3 0.735 0.875 0.965 0.947
Test 4 0.730 0.882 0.966 0.947
Test 5 0.751 0.879 0.968 0.953

Average 0.734 0.876 0.968 0.952

The comparison showed that the risk-based grouped dataset was classified with 23.4%
higher accuracy by the SVM method and 7.6% higher accuracy by the DT method. That
is, the dataset with risk values instead of just system-call names demonstrated drastically
better results, especially for the SVM method, compared to the original dataset (Figure 8).
The obtained values for SVM (96.8 percent) are relatively close to the DL method results
(99.3 percent) that were achieved in our previous research [7].

Thus, the proposed risk-based system-call sequences grouping method can be seen
as successful, ensuring use of lightweight machine learning methods for malware attack
detection with accuracy comparable to deep learning methods.

Electronics 2024, 13, 206 15 of 17

Electronics 2024, 13, x FOR PEER REVIEW 15 of 18

Table 9. Comparison of the accuracy of the original and grouped datasets. The color grading ex-

planation (from worst results to better): red, yellow, light green, dark green.

 Original Dataset Grouped Dataset with 1.5 CRR

Algorithm SVM DT SVM DT

Test 1 0.729 0.873 0.974 0.956

Test 2 0.728 0.872 0.967 0.956

Test 3 0.735 0.875 0.965 0.947

Test 4 0.730 0.882 0.966 0.947

Test 5 0.751 0.879 0.968 0.953

Average 0.734 0.876 0.968 0.952

The comparison showed that the risk-based grouped dataset was classified with

23.4% higher accuracy by the SVM method and 7.6% higher accuracy by the DT method.

That is, the dataset with risk values instead of just system-call names demonstrated dras-

tically better results, especially for the SVM method, compared to the original dataset (Fig-

ure 8). The obtained values for SVM (96.8 percent) are relatively close to the DL method

results (99.3 percent) that were achieved in our previous research [7].

Figure 8. Accuracy results for converted dataset and grouped dataset by 1.5 CRR.

Thus, the proposed risk-based system-call sequences grouping method can be seen

as successful, ensuring use of lightweight machine learning methods for malware attack

detection with accuracy comparable to deep learning methods.

5. Conclusions and Future Work

The analysis of the current situation in malware and intrusion detection has led to

the proposal of a novel method for system-call grouping by function risk value. The

method proposed should achieve promising results when simple ML methods are used.

The following conclusions may be drawn:

1. The analysis performed demonstrates the continued need for malware intrusion de-

tection at the host level using anomaly-based approaches, that are currently mainly

based on training machine learning methods using system-call sequences. It was also

noted that it is necessary to increase malware detection accuracy as well as to find

ways for using lightweight ML methods for practical applications. The literature re-

view showed that sequence-call grouping may be seen as a prospective method for

0.7

0.75

0.8

0.85

0.9

0.95

1

SVM DT SVM DT

Converted dataset Grouped dataset by 1.5 risk ratio

Figure 8. Accuracy results for converted dataset and grouped dataset by 1.5 CRR.

5. Conclusions and Future Work

The analysis of the current situation in malware and intrusion detection has led to
the proposal of a novel method for system-call grouping by function risk value. The
method proposed should achieve promising results when simple ML methods are used.
The following conclusions may be drawn:

1. The analysis performed demonstrates the continued need for malware intrusion
detection at the host level using anomaly-based approaches, that are currently mainly
based on training machine learning methods using system-call sequences. It was
also noted that it is necessary to increase malware detection accuracy as well as to
find ways for using lightweight ML methods for practical applications. The literature
review showed that sequence-call grouping may be seen as a prospective method
for this task. It was also decided to use AWSCTD in combination with SVM and DT
methods as the most prospective for further experiments.

2. The risk-based system-call sequence grouping method was proposed, that assigns
riskiness values from low to high to all functions, based on the function risk value
(FRR) and database risk value (DRR), calculated based on the function call statistics
for malicious and benign software. The clustering risk ratio constant (CRR) equal to
1.5 was experimentally determined.

3. Application of the proposed method to the AWSCTD dataset resulted in classification
accuracies of 96.8% (SVM) and 87.6% (DT), while the original dataset was classified
with an accuracy of 87.6% (SVM) and 73.4% (DT). Hence, the application of the newly
proposed clustering method improved the classification accuracy by 23.4% and 7.6%
of the SVM and DT methods, respectively. The results obtained recommend the use of
lightweight machine learning methods for malware attack detection with an accuracy
comparable to DL methods.

4. The findings of this research show promising results and encourage us to apply
them to even more sophisticated machine learning models. Future work will be to
combine the proposed grouping method with DL models. Furthermore, malware
image-generation methods for graphical pattern analysis could also benefit from our
findings on system-call grouping.

Author Contributions: Conceptualization, D.Č. and T.V.; methodology, D.Č.; software, T.V.; valida-
tion, D.Č., N.G. and A.Č.; formal analysis, N.G.; investigation, T.V.; resources, D.Č.; data curation,

Electronics 2024, 13, 206 16 of 17

D.Č.; writing—original draft preparation, D.Č.; writing—review and editing, N.G.; visualization, T.V.;
supervision, A.Č. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available and can be found
here: https://github.com/DjPasco/AWSCTD (accessed on 29 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Serinelli, B.M.; Collen, A.; Nijdam, N.A. Training Guidance with KDD Cup 1999 and NSL-KDD Data Sets of ANIDINR:

Anomaly-Based Network Intrusion Detection System. Procedia Comput. Sci. 2020, 175, 560–565. [CrossRef]
2. Hay, A.; Cid, D.; Bary, R.; Northcutt, S. System Integrity Check and Rootkit Detection. In OSSEC Host-Based Intrusion Detection

Guide; Elsevier: Amsterdam, The Netherlands, 2008; pp. 149–174. ISBN 9781597492409.
3. Efe, A.; Abaci, İ.N. Comparison of the Host Based Intrusion Detection Systems and Network Based Intrusion Detection Systems.

Celal Bayar Üniversitesi Fen Bilim. Derg. 2022, 18, 23–32. [CrossRef]
4. Patil, A.S.; Patil, D.R. Post-Attack Intrusion Detection Using Log Files Analysis. Int. J. Comput. Appl. 2015, 127, 19–21. [CrossRef]
5. García-Teodoro, P.; Díaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E.; Garcia-Teodoro, P.; Diaz-Verdejo, J.; Macia-Fernandez, G.;

Vazquez, E. Anomaly-Based Network Intrusion Detection: Techniques, Systems and Challenges. Comput. Secur. 2009, 28, 18–28.
[CrossRef]

6. Le, T.T.H.; Kim, Y.; Kim, H. Network Intrusion Detection Based on Novel Feature Selection Model and Various Recurrent Neural
Networks. Appl. Sci. 2019, 9, 1392. [CrossRef]

7. Čeponis, D.; Goranin, N. Investigation of Dual-Flow Deep Learning Models LSTM-FCN and GRU-FCN Efficiency against
Single-Flow CNN Models for the Host-Based Intrusion and Malware Detection Task on Univariate Times Series Data. Appl. Sci.
2020, 10, 2373. [CrossRef]

8. Pailoor, S.; Wang, X.; Shacham, H.; Dillig, I. Automated Policy Synthesis for System Call Sandboxing. Proc. ACM Program. Lang.
2020, 4, 135. [CrossRef]

9. Peddoju, S.K.; Upadhyay, H.; Soni, J.; Prabakar, N. Natural Language Processing Based Anomalous System Call Sequences
Detection with Virtual Memory Introspection. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 455–460. [CrossRef]

10. Hu, Z.; Liu, L.; Yu, H.; Yu, X. Using Graph Representation in Host-Based Intrusion Detection. Secur. Commun. Netw. 2021, 2021,
6291276. [CrossRef]

11. Van Mieghem, V. Detecting Malicious Behaviour Using System Calls. Master’s Thesis, Delft University, Delft, The Netherlands,
2016.

12. Yosifovich, P. Windows 10 System Programming, Part 1; Independently: Wroclaw, Poland, 2019; ISBN 979-8634170381.
13. Mora-Gimeno, F.J.; Mora-Mora, H.; Volckaert, B.; Atrey, A. Intrusion Detection System Based on Integrated System Calls Graph

and Neural Networks. IEEE Access 2021, 9, 9822–9833. [CrossRef]
14. Statcounter. GlobalStats Desktop Operating System Market Share Worldwide. Available online: https://gs.statcounter.com/os-

market-share (accessed on 15 September 2023).
15. Jain, J.K.; Waoo, A.A. An Artificial Neural Network Technique for Prediction of Cyber-Attack Using Intrusion Detection System.

J. Artif. Intell. Mach. Learn. Neural Netw. 2023, 3, 33–42. [CrossRef]
16. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Conditional Variational Autoencoder for Prediction and Feature

Recovery Applied to Intrusion Detection in IoT. Sensors 2017, 17, 1967. [CrossRef] [PubMed]
17. Lodhi, M.B.; Richhariya, V.; Parmar, M. A Survey on Data Mining Based Intrusion Detection Systems. Int. J. Comput. Netw.

Commun. Secur. 2014, 2, 485–490. [CrossRef]
18. Maleh, Y.; Ezzati, A.; Qasmaoui, Y.; Mbida, M. A Global Hybrid Intrusion Detection System for Wireless Sensor Networks.

Procedia Comput. Sci. 2015, 52, 1047–1052. [CrossRef]
19. Zhang, H.; Luo, S.; Zhang, Y.; Pan, L. An Efficient Android Malware Detection System Based on Method-Level Behavioral

Semantic Analysis. IEEE Access 2019, 7, 69246–69256. [CrossRef]
20. Kim, J.; Ban, Y.; Ko, E.; Cho, H.; Yi, J.H. MAPAS: A Practical Deep Learning-Based Android Malware Detection System. Int. J. Inf.

Secur. 2022, 21, 725–738. [CrossRef]
21. Demirkıran, F.; Çayır, A.; Ünal, U.; Dağ, H. An Ensemble of Pre-Trained Transformer Models for Imbalanced Multiclass Malware

Classification. Comput. Secur. 2022, 121, 102846. [CrossRef]
22. Dounavi, H.M.; Mpanti, A.; Nikolopoulos, S.D.; Polenakis, I. A Graph-Based Framework for Malicious Software Detection and

Classification Utilizing Temporal-Graphs. J. Comput. Secur. 2021, 29, 651–688. [CrossRef]
23. Amamra, A.; Robert, J.M.; Abraham, A.; Talhi, C. Generative versus Discriminative Classifiers for Android Anomaly-Based

Detection System Using System Calls Filtering and Abstraction Process. Secur. Commun. Netw. 2016, 9, 3483–3495. [CrossRef]
24. Riesco, M.; Fondón, M.D.; Álvarez, D. Using Graphviz as a Low-Cost Option to Facilitate the Understanding of Unix Process

System Calls. Electron. Notes Theor. Comput. Sci. 2009, 224, 89–95. [CrossRef]

https://github.com/DjPasco/AWSCTD
https://doi.org/10.1016/j.procs.2020.07.080
https://doi.org/10.18466/cbayarfbe.832533
https://doi.org/10.5120/ijca2015906731
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.3390/app9071392
https://doi.org/10.3390/app10072373
https://doi.org/10.1145/3428203
https://doi.org/10.14569/IJACSA.2020.0110559
https://doi.org/10.1155/2021/6291276
https://doi.org/10.1109/ACCESS.2021.3049249
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://doi.org/10.55529/jaimlnn.32.33.42
https://doi.org/10.3390/s17091967
https://www.ncbi.nlm.nih.gov/pubmed/28846608
https://doi.org/10.47277/ijcncs/2(12)9
https://doi.org/10.1016/j.procs.2015.05.108
https://doi.org/10.1109/ACCESS.2019.2919796
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1016/j.cose.2022.102846
https://doi.org/10.3233/JCS-210057
https://doi.org/10.1002/sec.1555
https://doi.org/10.1016/j.entcs.2008.12.052

Electronics 2024, 13, 206 17 of 17

25. Trinius, P.; Holz, T.; Göbel, J.; Freiling, F.C. Visual Analysis of Malware Behavior Using Treemaps and Thread Graphs. In
Proceedings of the 2009 6th International Workshop on Visualization for Cyber Security, VizSec 2009—Proceedings, Atlantic City,
NJ, USA, 11 October 2009.

26. Shaid, S.Z.M.; Maarof, M.A. Malware Behaviour Visualization. J. Teknol. 2014, 70, 25–33. [CrossRef]
27. Kishore, P.; Barisal, S.K.; Mohapatra, D.P. An Incremental Malware Detection Model for Meta-Feature API and System Call

Sequence. In Proceedings of the 2020 15th Conference on Computer Science and Information Systems, FedCSIS, Sofia, Bulgaria,
6–9 September 2020.

28. Gaurav, A.; Gupta, B.B.; Panigrahi, P.K. A Comprehensive Survey on Machine Learning Approaches for Malware Detection in
IoT-Based Enterprise Information System. Enterp. Inf. Syst. 2023, 17, 2023764. [CrossRef]

29. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. Hybrid Intrusion Detection System Based on the Stacking
Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine. Electronics 2020, 9, 173. [CrossRef]

30. Ajayi, O.; Gangopadhyay, A.; Erbacher, R.F.; Bursat, C. Developing Cross-Domain Host-Based Intrusion Detection. Electronics
2022, 11, 3631. [CrossRef]

31. Ajayi, O.; Gangopadhyay, A. DAHID: Domain Adaptive Host-Based Intrusion Detection. In Proceedings of the Proceedings of
the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021, Rhodes, Greece, 26–28 July 2021.

32. Čeponis, D.; Goranin, N. Evaluation of Deep Learning Methods Efficiency for Malicious and Benign System Calls Classification
on the AWSCTD. Secur. Commun. Netw. 2019, 2019, 2317976. [CrossRef]

33. Goranin, N.; Čeponis, D. Investigation of AWSCTD Dataset Applicability for Malware Type Classification. Int. Sci. J. Secur. Future
2018, 2, 186–189.

34. Brugger, T. KDD Cup’99 Dataset (Network Intrusion) Considered Harmful. Available online: https://www.kdnuggets.com/
news/2007/n18/4i.html (accessed on 15 September 2023).

35. Lippmann, R.P.; Fried, D.J.; Graf, I.; Haines, J.W.; Kendall, K.R.; McClung, D.; Weber, D.; Webster, S.E.; Wyschogrod, D.;
Cunningham, R.K.; et al. Evaluating Intrusion Detection Systems without Attacking Your Friends: The 1998 DARPA Intrusion
Detection Evaluation. In Proceedings of the DARPA Information Survivability Conference and Exposition. DISCEX ’00, Hilton
Head, SC, USA, 25–27 January 2000; Volume 2, pp. 12–26. [CrossRef]

36. Ajayi, O. Developing Cross-Domain Intrusion Detection Systems. Doctoral Dissertation, University of Maryland, Baltimore, MD,
USA, 2022.

37. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9,
4396. [CrossRef]

38. Creech, G.; Hu, J. A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguous and Discontiguous System
Call Patterns. IEEE Trans. Comput. 2014, 63, 807–819. [CrossRef]

39. Haider, W.; Creech, G.; Xie, Y.; Hu, J. Windows Based Data Sets for Evaluation of Robustness of Host Based Intrusion Detection
Systems (IDS) to Zero-Day and Stealth Attacks. Future Internet 2016, 8, 29. [CrossRef]

40. Murtaza, S.S.; Khreich, W.; Hamou-Lhadj, A.; Couture, M. A Host-Based Anomaly Detection Approach by Representing System
Calls as States of Kernel Modules. In Proceedings of the 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), Pasadena, CA, USA, 4–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 431–440.

41. Berlin, K.; Slater, D.; Saxe, J. Malicious Behavior Detection Using Windows Audit Logs. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security—AISec ’15, Denver, CO, USA, 16 October 2015; pp. 35–44. [CrossRef]

42. Ronen, R.; Feuerstein, C. Microsoft Malware Classification Challenge (BIG 2015)|Kaggle. Available online: https://www.kaggle.
com/c/malware-classification/overview (accessed on 4 June 2020).

43. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep Learning for Classification of Malware System Call Sequences. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); LNAI;
Springer: Cham, Switzerland, 2016; Volume 9992, pp. 137–149. ISBN 9783319501260.

44. Haider, W.; Hu, J.; Slay, J.; Turnbull, B.P.; Xie, Y. Generating Realistic Intrusion Detection System Dataset Based on Fuzzy
Qualitative Modeling. J. Netw. Comput. Appl. 2017, 87, 185–192. [CrossRef]

45. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy—ICISSP 2018,
Funchal, Portugal, 22–24 January 2018; pp. 108–116. [CrossRef]

46. Catak, F.O.; Yazı, A.F. A Benchmark API Call Dataset for Windows PE Malware Classification. arXiv 2019, arXiv:1905.01999.
47. Čeponis, D.; Goranin, N. Towards a Robust Method of Dataset Generation of Malicious Activity for Anomaly-Based HIDS

Training and Presentation of AWSCTD Dataset. Balt. J. Mod. Comput. 2018, 6, 217–234. [CrossRef]
48. Zhang, Y. New Advances in Machine Learning; IntechOpen: London, UK, 2012.
49. Fawcett, T. An Introduction to ROC Analysis. IRBM 2005, 35, 299–309. [CrossRef]
50. Derczynski, L. Complementarity, F-Score, and NLP Evaluation. In Proceedings of the 10th International Conference on Language

Resources and Evaluation, LREC 2016, Portorož, Slovenia, 1 May 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.11113/jt.v70.3512
https://doi.org/10.1080/17517575.2021.2023764
https://doi.org/10.3390/electronics9010173
https://doi.org/10.3390/electronics11213631
https://doi.org/10.1155/2019/2317976
https://www.kdnuggets.com/news/2007/n18/4i.html
https://www.kdnuggets.com/news/2007/n18/4i.html
https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.3390/app9204396
https://doi.org/10.1109/TC.2013.13
https://doi.org/10.3390/fi8030029
https://doi.org/10.1145/2808769.2808773
https://www.kaggle.com/c/malware-classification/overview
https://www.kaggle.com/c/malware-classification/overview
https://doi.org/10.1016/j.jnca.2017.03.018
https://doi.org/10.5220/0006639801080116
https://doi.org/10.22364/bjmc.2018.6.3.01
https://doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Prior and Related Work
	Overview of Research on System-Call Grouping and Machine Learning Methods
	Analysis of Applicable Datasets for Malware Intrusion Detection

	The Proposed Risk-Based System-Call Sequence Grouping Method
	General Method Description
	Method Metrics
	Method Limitations

	Results and Discussion
	Results of the CRR Determination for AWSCTD Dataset
	Results of the Risk-Based Grouping on Malware Intrusion Detection by Machine Learning Methods

	Conclusions and Future Work
	References

