
Citation: Hwang, H.; Chun, I.Y.; Shin,

J. Improved Test Input Prioritization

Using Verification Monitors with

False Prediction Cluster Centroids.

Electronics 2024, 13, 21. https://

doi.org/10.3390/electronics13010021

Academic Editor: Jian Sun

Received: 23 November 2023

Revised: 15 December 2023

Accepted: 17 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improved Test Input Prioritization Using Verification Monitors
with False Prediction Cluster Centroids
Hyekyoung Hwang , Il Yong Chun * and Jitae Shin *

Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon 16419, Republic of Korea; ristar1234@skku.edu
* Correspondence: iychun@skku.edu (I.Y.C.); jtshin@skku.edu (J.S.); Tel.: +82-031-290-7153 (J.S.)

Abstract: Deep learning (DL) systems have been remarkably successful in various applications, but
they could have critical misbehaviors. To identify the weakness of a trained model and overcome it
with new data collection(s), one needs to figure out the corner cases of a trained model. Constructing
new datasets to retrain a DL model requires extra budget and time. Test input prioritization (TIP)
techniques have been proposed to identify corner cases more effectively. The state-of-the-art TIP
approach adopts a monitoring method to TIP and prioritizes based on Gini impurity; one estimates
the similarity between a DL prediction probability and uniform distribution. This letter proposes a
new TIP method that uses a distance between false prediction cluster (FPC) centroids in a training
set and a test instance in the last-layer feature space to prioritize error-inducing instances among an
unlabeled test set. We refer to the proposed method as DeepFPC. Our numerical experiments show
that the proposed DeepFPC method achieves significantly improved TIP performance in several
image classification and active learning tasks.

Keywords: test input prioritization; deep learning; runtime monitoring; image classification;
active learning

1. Introduction

Deep learning (DL) has been demonstrating cutting-edge performance in various
applications [1,2]. Despite the great performance of the DL models, they are prone to errors
caused by different factors, including data bias, architectural limitations, and training cost
constraints [3,4]. To predict potential errors of trained models and further avoid them, it
is critical to test/debug DL models prior to deploying them in practical applications. The
most popular way to evaluate trained DL models is to measure performance with a labeled
test dataset. One may attempt to test trained models with new datasets, but annotating
new datasets is time-intensive and resource-demanding. This is particularly problematic in
applications that demand domain-specific expertise for data labeling, such as healthcare
and finance applications.

To moderate the aforementioned limitation, test input prioritization (TIP) tech-
niques [5–14] have been proposed to identify a set of “useful” test instances, i.e., ones
containing some information that is likely to trigger errors in a trained model. TIP can ef-
fectively reduce labeling endeavors by prioritizing instances that potentially exhibit higher
mis-predictions in a model. Figure 1 illustrates the general TIP-based testing process for
a trained DL model. First, unlabeled test instances are prioritized through TIP based on
a labeling budget (e.g., some pre-defined number of instances to label) to construct test
oracles. Subsequently, a bug report is generated by using a model’s response with test
oracles. This generated bug report is used to retrain a model.

Electronics 2024, 13, 21. https://doi.org/10.3390/electronics13010021 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010021
https://doi.org/10.3390/electronics13010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8291-6957
https://orcid.org/0000-0002-4226-3760
https://orcid.org/0000-0002-2599-3331
https://doi.org/10.3390/electronics13010021
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010021?type=check_update&version=2

Electronics 2024, 13, 21 2 of 12Electronics 2024, 13, x FOR PEER REVIEW 2 of 12

Figure 1. The general TIP-based testing process for a trained model.

In general, TIP for Deep Neural Networks (DNNs) can be classified into three cate-

gories: (1) Neuron Coverage (NC) [5–7] that is inspired by traditional software code cov-

erage tests; (2) Surprise Adequacy (SA) [8,9] that uses the level of surprise of an input; and

(3) intrinsic function-based methods that use the softmax output of a classifier [10,11].

Recent studies have introduced diverse approaches that fall beyond these categories.

For example, PRIMA [12] utilizes mutation analysis and TestRank [13] adopts graph rep-

resentation. Also, DeepAbstraction (DA) [14] proposed a two-stage prioritization tech-

nique that combines single metric-based TIP with a runtime verification monitor.

The runtime verification monitor proposed in [15] consists of a set of intervals ex-

tracted from correctly classified instances in a training set, where two endpoints of each

interval are estimated from each dimension of features in the last layer feature space. In

an inference, the verification monitor checks whether the values of a logit vector (i.e., pre-

softmax output) for a test instance fall within the intervals established from correct pre-

dictions above or not. Then, the authors of [16] extended the runtime verification monitor

to use a set of intervals extracted from both correctly and incorrectly classified instances

in a training set. In an inference, the monitor determines whether the values of a test in-

stance’s logit vector fall within the intervals of correct predictions or incorrect predictions.

Subsequently, a test instance is categorized into one of three groups: “accept”, “uncer-

tain”, or “reject”.

DA employs a runtime verification monitor [16] to evaluate the error-revealing prop-

erties of test instances. It uses the aforementioned runtime verification monitor as its initial

prioritization stage and prioritizes test instances based on their categorized results: “re-

ject”, “uncertain”, and “accept”. Within each group, samples are further prioritized with

the Gini impurity of each instance.

This research introduces a new scoring function for runtime verification monitor-

based TIP approaches. The proposed scoring function prioritizes the test instances based

on the similarity between the feature of a test instance and that of the centroids of the false

prediction cluster (FPC) in a training set. We propose a TIP technique that replaces the

Gini impurity in [9] with the proposed scoring function. We refer to the proposed TIP

approach as DeepFPC. The proposed DeepFPC approach does not require additional costs

to provide FPC centroids, as they are intermediate results in the monitor construction pro-

cess. To summarize, this research has the following contributions:

• We propose a new scoring function for TIP based on runtime verification monitors

that uses the distance between FPC centroids from training data and an unlabeled

test instance.

• We analyze the proposed DeepFPC method based on the intra-class feature compact-

ness and inter-class feature separability of a training set.

• The proposed DeepFPC approach shows significantly better performance than the

existing TIP methods in image classification and active learning with several datasets.

Figure 1. The general TIP-based testing process for a trained model.

In general, TIP for Deep Neural Networks (DNNs) can be classified into three cat-
egories: (1) Neuron Coverage (NC) [5–7] that is inspired by traditional software code
coverage tests; (2) Surprise Adequacy (SA) [8,9] that uses the level of surprise of an input;
and (3) intrinsic function-based methods that use the softmax output of a classifier [10,11].

Recent studies have introduced diverse approaches that fall beyond these categories.
For example, PRIMA [12] utilizes mutation analysis and TestRank [13] adopts graph
representation. Also, DeepAbstraction (DA) [14] proposed a two-stage prioritization
technique that combines single metric-based TIP with a runtime verification monitor.

The runtime verification monitor proposed in [15] consists of a set of intervals extracted
from correctly classified instances in a training set, where two endpoints of each interval are
estimated from each dimension of features in the last layer feature space. In an inference,
the verification monitor checks whether the values of a logit vector (i.e., pre-softmax output)
for a test instance fall within the intervals established from correct predictions above or
not. Then, the authors of [16] extended the runtime verification monitor to use a set of
intervals extracted from both correctly and incorrectly classified instances in a training set.
In an inference, the monitor determines whether the values of a test instance’s logit vector
fall within the intervals of correct predictions or incorrect predictions. Subsequently, a test
instance is categorized into one of three groups: “accept”, “uncertain”, or “reject”.

DA employs a runtime verification monitor [16] to evaluate the error-revealing prop-
erties of test instances. It uses the aforementioned runtime verification monitor as its initial
prioritization stage and prioritizes test instances based on their categorized results: “reject”,
“uncertain”, and “accept”. Within each group, samples are further prioritized with the Gini
impurity of each instance.

This research introduces a new scoring function for runtime verification monitor-
based TIP approaches. The proposed scoring function prioritizes the test instances based
on the similarity between the feature of a test instance and that of the centroids of the false
prediction cluster (FPC) in a training set. We propose a TIP technique that replaces the Gini
impurity in [9] with the proposed scoring function. We refer to the proposed TIP approach
as DeepFPC. The proposed DeepFPC approach does not require additional costs to provide
FPC centroids, as they are intermediate results in the monitor construction process. To
summarize, this research has the following contributions:

• We propose a new scoring function for TIP based on runtime verification monitors
that uses the distance between FPC centroids from training data and an unlabeled
test instance.

• We analyze the proposed DeepFPC method based on the intra-class feature compact-
ness and inter-class feature separability of a training set.

• The proposed DeepFPC approach shows significantly better performance than the
existing TIP methods in image classification and active learning with several datasets.

Electronics 2024, 13, 21 3 of 12

The remainder of the paper is organized as follows. Section 2 elaborates the pro-
posed method, DeepFPC. Section 3 provides experimental setups and results with related
discussion. Finally, in Section 4, we conclude the paper.

2. Methods

This section describes the proposed DeepFPC approach in detail. DeepFPC consists
of a runtime verification monitor from [16] and a proposed scoring function referred to as
DistFPC. Figure 2 depicts the overall process of the proposed DeepFPC method.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 12

Figure 2. An overall process of the proposed DeepFPC method, which contains a runtime verifica-

tion monitor and DistFPC.

The remainder of the paper is organized as follows. Section 2 elaborates the proposed

method, DeepFPC. Section 3 provides experimental setups and results with related dis-

cussion. Finally, in Section 4, we conclude the paper.

2. Methods

This section describes the proposed DeepFPC approach in detail. DeepFPC consists

of a runtime verification monitor from [16] and a proposed scoring function referred to as

DistFPC. Figure 2 depicts the overall process of the proposed DeepFPC method.

We consider the classification setup with C classes. Let 𝑋tr and 𝑋te denote the train-

ing and the test set, respectively. We have N training instances, 𝑋tr = {(𝑥1, 𝑦1), … , (𝑥𝑁 𝑦𝑁)},

and M test instances, 𝑋te = {𝑥1
′ , … , 𝑥𝑀

′ }, where 𝑥 is an input sample with the correspond-

ing label 𝑦 and 𝑥′ is an unlabeled input. 𝑋tr is partitioned into C subsets based on the

labels 𝑦 resulting in 𝑋tr = {𝑋1, 𝑋2, ⋯ , 𝑋𝐶}.

Let 𝑓 = 𝑔1 ∘ 𝑔2 ∘ ⋯ ∘ 𝑔𝑙 be a neural network (NN) such that 𝑓𝑙(𝑥) is the output at

the lth layer by taking 𝑥 as an input, where 𝑔𝑙 corresponds to the lth layer, with 𝑙 =

 1, … L and L represents the number of layers. Note that 𝑓L(𝑥) is a logit vector (i.e., pre-

softmax output) of 𝑓 when given 𝑥 as an input. For simplicity, we denote 𝑓(𝑥) as the

classification result, 𝐹 as the set of 𝑓L(𝑥), and |𝑓𝑙| as the number of neurons (i.e., the di-

mension of features) in the lth layer of 𝑓.

2.1. Runtime Verification Monitor

The runtime verification monitors proposed in [16] employ a box abstraction tech-

nique [15] to the features of the training set. The monitors aim to detect out-of-distribution

unlabeled test inputs for the classification system.

The box abstraction for class i in [15] is as follows: Given a fixed classification model

𝑓, the set of logit vector 𝐹 is collected from the training samples of class i. It is then di-

vided into two distinct groups based on the correctness of 𝑓(𝑥): 𝐹𝑖
co and 𝐹𝑖

inc. The former

includes logit vectors of samples for which both ground truth and prediction are class i,

while the latter comprises logit vectors of samples for which the ground truth class is i but

the prediction is not.

Each of these groups, 𝐹𝑖
co and 𝐹𝑖

inc , is subdivided into P and S clusters using a

clustering algorithm (e.g., K-Means). Within each cluster, the minimum and maximum

values for each feature dimension are extracted and the intervals for all feature dimen-

sions are constructed. The union of these intervals forms the box abstraction for class i:

 𝐵𝑖
co = {[𝑎𝑗 , 𝑏𝑗]| 𝑎𝑗 = min

1≤𝑘≤P
𝐹𝑖
co[𝑗, 𝑘] , 𝑏𝑗 = max

1≤𝑘≤P
𝐹𝑖
co[𝑗, 𝑘] , 𝑗 ∈ [|𝑓𝐿|]} (1)

𝐵𝑖
inc = {[𝑎𝑗, 𝑏𝑗]| 𝑎𝑗 = min

1≤𝑘≤S
𝐹𝑖
inc[𝑗, 𝑘] , 𝑏𝑗 = max

1≤𝑘≤S
𝐹𝑖
inc[𝑗, 𝑘] , 𝑗 ∈ [|𝑓𝐿|]} (2)

where 𝐹𝑖
co[𝑗, 𝑘] represents the jth feature dimension in the kth cluster of correct predic-

tions, while 𝐹𝑖
inc[𝑗, 𝑘] corresponds to the jth feature dimension in the kth false prediction

cluster. The collections of intervals 𝐵𝑖
co and 𝐵𝑖

inc where 𝑖 = 1,… , 𝐶 are called monitors.

{ }

{ L }

Figure 2. An overall process of the proposed DeepFPC method, which contains a runtime verification
monitor and DistFPC.

We consider the classification setup with C classes. Let Xtr and Xte denote the training
and the test set, respectively. We have N training instances, Xtr = {(x1, y1), . . . , (xN yN) },
and M test instances, Xte =

{
x′1, . . . , x′M

}
, where x is an input sample with the corre-

sponding label y and x′ is an unlabeled input. Xtr is partitioned into C subsets based on
the labels y resulting in Xtr = {X1, X2, · · · , XC}.

Let f = g1 ◦ g2 ◦ · · · ◦ gl be a neural network (NN) such that fl(x) is the output at the
lth layer by taking x as an input, where gl corresponds to the lth layer, with l = 1, . . . L and
L represents the number of layers. Note that fL(x) is a logit vector (i.e., pre-softmax output)
of f when given x as an input. For simplicity, we denote f (x) as the classification result, F
as the set of fL(x), and | fl | as the number of neurons (i.e., the dimension of features) in the
lth layer of f .

2.1. Runtime Verification Monitor

The runtime verification monitors proposed in [16] employ a box abstraction tech-
nique [15] to the features of the training set. The monitors aim to detect out-of-distribution
unlabeled test inputs for the classification system.

The box abstraction for class i in [15] is as follows: Given a fixed classification model
f , the set of logit vector F is collected from the training samples of class i. It is then divided
into two distinct groups based on the correctness of f (x): Fco

i and Finc
i . The former includes

logit vectors of samples for which both ground truth and prediction are class i, while
the latter comprises logit vectors of samples for which the ground truth class is i but the
prediction is not.

Each of these groups, Fco
i and Finc

i , is subdivided into P and S clusters using a clustering
algorithm (e.g., K-Means). Within each cluster, the minimum and maximum values for each
feature dimension are extracted and the intervals for all feature dimensions are constructed.
The union of these intervals forms the box abstraction for class i:

Bco
i =

{[
aj, bj

]
| aj = min

1≤k≤P
Fco

i [j, k], bj = max
1≤k≤P

Fco
i [j, k], j ∈ [| fL|]

}
(1)

Binc
i =

{[
aj, bj

]
| aj = min

1≤k≤S
Finc

i [j, k], bj = max
1≤k≤S

Finc
i [j, k], j ∈ [| fL|]

}
(2)

where Fco
i [j, k] represents the jth feature dimension in the kth cluster of correct predictions,

while Finc
i [j, k] corresponds to the jth feature dimension in the kth false prediction cluster.

The collections of intervals Bco
i and Binc

i where i = 1, . . . , C are called monitors. The former

Electronics 2024, 13, 21 4 of 12

is extracted from the logit values of correct prediction clusters and the latter is extracted
from the logit values of false prediction clusters.

Given a test instance x′ and its classification result f (x) = k, the monitors classify x′

into three groups: “accept” if all values of fL(x′) fall within the intervals Bco
k : ∀k, “reject”

if all values of fL(x′) are within the intervals Binc
k : ∀k, or “uncertain” for all other cases.

The “reject” group is expected to include most incorrect predictions, while the “accept”
group contains the fewest number of incorrect predictions.

2.2. DeepFPC

For simplicity, we suppose that given a test instance x′ and its classification result
f (x) = k, a collection of intervals Binc

k is extracted from S numbered false prediction clusters.
A set of FPC centroids of class c′ is denoted as ck =

{
c1

k , . . . cS
k
}

.
The proposed DeepFPC method is a two-stage TIP approach, similar to DA [14]. We

adopt the runtime verification monitor as our initial prioritization stage. We prioritize
unlabeled instances in the order of their monitored results: “reject”, “uncertain”, and
“accept”. Instead of prioritizing samples within each group based on Gini impurity, we
propose a new scoring function that measures the similarity of a test instance feature and
false prediction cluster centroids. This new scoring function is called DistFPC.

FPCs are intermediate results derived from the monitor’s construction, specifically
within the clustering process. We use the centroid of FPCs as an alternative representation
of false predictions within the training set. Thus, we conjecture that a sample with a smaller
DistFPC value is more erroneous than a larger one.

To quantify the similarity between fL(x′) and FPC centroids, we evaluate both distance
and angular separation between the two. We measure the Euclidean distance between
fL(x′) and each of the FPC centroids of class k. We expect that the smaller values indicate
that x′ is closer to the FPC centroids, making it more prone to errors. Figure 3 is an example
showing the positional relationship between the s-th FPC cs

k and logit vectors extracted
from different inputs x′1, x′2, and x′3 in logit space.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 12

The former is extracted from the logit values of correct prediction clusters and the latter is

extracted from the logit values of false prediction clusters.

Given a test instance 𝑥′ and its classification result 𝑓(𝑥) = 𝑘, the monitors classify

𝑥′ into three groups: “accept” if all values of 𝑓L(𝑥
′) fall within the intervals 𝐵𝑘

co ∶ ∀𝑘, “re-

ject” if all values of 𝑓L(𝑥
′) are within the intervals 𝐵𝑘

inc ∶ ∀𝑘, or “uncertain” for all other

cases. The “reject” group is expected to include most incorrect predictions, while the “ac-

cept” group contains the fewest number of incorrect predictions.

2.2. DeepFPC

For simplicity, we suppose that given a test instance 𝑥′ and its classification result

𝑓(𝑥) = 𝑘 , a collection of intervals 𝐵𝑘
inc is extracted from S numbered false prediction

clusters. A set of FPC centroids of class c’ is denoted as 𝑐𝑘 = {𝑐𝑘
1, … 𝑐𝑘

S}.

The proposed DeepFPC method is a two-stage TIP approach, similar to DA [14]. We

adopt the runtime verification monitor as our initial prioritization stage. We prioritize un-

labeled instances in the order of their monitored results: “reject”, “uncertain”, and “ac-

cept”. Instead of prioritizing samples within each group based on Gini impurity, we pro-

pose a new scoring function that measures the similarity of a test instance feature and

false prediction cluster centroids. This new scoring function is called DistFPC.

FPCs are intermediate results derived from the monitor’s construction, specifically

within the clustering process. We use the centroid of FPCs as an alternative representation

of false predictions within the training set. Thus, we conjecture that a sample with a

smaller DistFPC value is more erroneous than a larger one.

To quantify the similarity between 𝑓L(𝑥
′) and FPC centroids, we evaluate both dis-

tance and angular separation between the two. We measure the Euclidean distance be-

tween 𝑓L(𝑥
′) and each of the FPC centroids of class 𝑘. We expect that the smaller values

indicate that 𝑥′ is closer to the FPC centroids, making it more prone to errors. Figure 3 is

an example showing the positional relationship between the s-th FPC 𝑐𝑘
𝑠 and logit vectors

extracted from different inputs 𝑥1
′ , 𝑥2

′ , and 𝑥3
′ in logit space.

The purpose of TIP is to prioritize samples that are close to false predictions. There-

fore, when the similarity between a false prediction centroid and the logit vector is meas-

ured by only reflecting the Euclidean distance, 𝑥1
′ is prioritized first because it is closest

to 𝑐𝑘
𝑠. And 𝑥2

′ and 𝑥3
′ have the same priority since they have same Euclidean distance to

𝑐𝑘
𝑠. However, according to [12], the direction of a logit vector determines the final predic-

tion. Thus, from our assumption and the observations in [12], 𝑥2
′ is more likely to be a

false prediction than 𝑥3
′ since the angular difference between 𝑐𝑘

𝑠 and 𝑥2
′ is smaller than

that of 𝑐𝑘
𝑠 and 𝑥3

′ .

To measure the angular difference between 𝑓L(𝑥′) and the FPC centroids of class 𝑘,

we calculate the angle between 𝑓L(𝑥′) and each of the FPC centroids of class 𝑘. We meas-

ure the cosine similarity between 𝑓L(𝑥′) and a FPC centroid and estimate the inverse co-

sine to the cosine similarity.

 L(1
)

 L(
)

 L(
)

Figure 3. An example of the positional relationship between the s-th FPC cs
k and three different

unlabeled inputs x′1, x′2, and x′3 in logit space.

The purpose of TIP is to prioritize samples that are close to false predictions. Therefore,
when the similarity between a false prediction centroid and the logit vector is measured by
only reflecting the Euclidean distance, x′1 is prioritized first because it is closest to cs

k. And
x′2 and x′3 have the same priority since they have same Euclidean distance to cs

k. However,
according to [12], the direction of a logit vector determines the final prediction. Thus, from
our assumption and the observations in [12], x′2 is more likely to be a false prediction than
x′3 since the angular difference between cs

k and x′2 is smaller than that of cs
k and x′3.

To measure the angular difference between fL(x′) and the FPC centroids of class k, we
calculate the angle between fL(x′) and each of the FPC centroids of class k. We measure
the cosine similarity between fL(x′) and a FPC centroid and estimate the inverse cosine to
the cosine similarity.

Electronics 2024, 13, 21 5 of 12

Similar to the Euclidean distance, a smaller angular difference indicates a larger
similarity to false prediction. Thus, we multiply both the Euclidean and angular distance
metric and take the minimum of it to make the proposed DistFPC:

DistFPC
(
x′
)
= min

s∈[|S|]

(√(
fL(x′)− cs

k
)2 × arccos

fL(x′) · cs
k

‖ fL(x′)‖
∥∥cs

k

∥∥
)

(3)

We anticipate that a sample with a smaller DistFPC value is more likely to cause
errors in the DL model. Consequently, test instances within each group are prioritized in
ascending order of DistFPC values.

2.3. Intra-Class Feature Compactness and Inter-Class Feature Separability

The proposed scoring function, DistFPC, measures the similarity between a test in-
stance feature and the centroids of the FPCs. We expect that the proposed DeepFPC
approach exhibits high TIP performance when the model forms well-separable clusters
within the training set.

According to observations from [17], a trained classifier can exhibit well-separable
clusters when it meets two conditions: minimal intra-class compactness of features (i.e.,
features of the same class are close to each other) and maximal inter-class separability of
features (i.e., features of different classes fall apart from each other). We define a matrix
that represents these conditions of the trained classifier:

Dtr =

d1, 1 · · · d1, C
...

. . .
...

dC, 1 · · · dC, C

 (4)

where di, j represents the averaged cosine similarity between the logit vectors of samples
predicted as class i and class j.

When i = j, di, j indicates the similarity between the logit vectors of the same pre-
dictions, a value near 1 implies a higher compactness of the features within the same
class. Otherwise, di, j represents the similarity between the logit vectors of the different
predictions. A value near−1 suggests greater separability of features between two different
classes. Figure 4 displays the Dtr for the two experiments in Table 1. Figure 4a represents
the Dtr of experiment A and Figure 4b shows it for experiment D.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 12

Figure 4. Visualization of 𝐷tr for experiment A (a) and D (b) in Table 1.

Table 1. Experiment IDs with datasets, models, and the corresponding accuracy on train test set,

intra-class compactness (𝜇𝑑𝑖=𝑗), and inter-class separability (𝜇𝑑𝑖≠𝑗).

ID Dataset Model
Train

Acc (%)

Test

Acc (%)
𝝁𝒅𝒊=𝒋 ↑ 𝝁𝒅𝒊≠𝒋 ↓

A CIFAR10 MobilenetV2 99.51 93.38 0.99 −0.114

B CIFAR10 ResNet50 98.69 93.81 0.98 −0.105

C MNIST ResNet18 98.03 97.66 0.88 −0.061

D FMNIST WideResNet50 94.01 87.7 0.86 0.001

E CIFAR100 EfficientNet V2-S 99.52 88.2 0.84 0.002

F CIFAR10-C ResNet50 - 77.29 - -

G MNIST-C ResNet18 - 70.19 - -

H FMNIST-C WideResNet50 - 47.83 - -

3. Experimental Results

In this section, we demonstrate the effectiveness of the proposed DeepFPC approach

in image classification and active learning. We ran all the experiments using an Intel(R)

Xeon(R) Silver 4114 CPU at 2.20 GHz and an NVIDIA GeForce RTX 2080 Ti with 12 GB of

memory using PyTorch v1.12.0.

3.1. Experimental Setups

3.1.1. Datasets and Models

To evaluate the proposed method, we used four datasets (MNIST [18], Fashion-

MNIST (FMNIST) [19], CIFAR10, CIFAR100 [20]) which are widely used for image classi-

fication benchmarks. We tested different TIP methods with diverse models: ResNet18,

ResNet50 [21], MobileNetV2 [22], WideResNet50-2 [23], and EfficientNetV2-S [24].

To evaluate TIP performance in real-world applications, we used MNIST, FMNIST,

and CIFAR10 datasets with real-world corruptions [25]. We denote the corrupted datasets

by adding the ‘-C’ suffix to their names. We used 15 different types of corruption, such as

motion blur, rotation, and brightness, each of which contained five different severities.

Table 1 shows our experimental setups. Columns 𝜇𝑑𝑖=𝑗, 𝜇𝑑𝑖≠𝑗 indicate the average of

diagonal and non-diagonal elements in 𝐷tr. For experiment IDs F, G, and H, we used the

same model with B, C, and D, respectively, to check the effectiveness of TIP in a corrupted

environment. We employed experiment IDs C, D, G, and H to evaluate TIP performance

in active learning.

3.1.2. Compared Methods

We compared the proposed DeepFPC approach with the following eight existing TIP

methods that are introduced in Section 2.

Figure 4. Visualization of Dtr for experiment A (a) and D (b) in Table 1.

Electronics 2024, 13, 21 6 of 12

Table 1. Experiment IDs with datasets, models, and the corresponding accuracy on train test set,
intra-class compactness (µdi=j

), and inter-class separability (µdi 6=j
).

ID Dataset Model Train
Acc (%)

Test
Acc (%) µdi=j↑ µdi 6=j↓

A CIFAR10 MobilenetV2 99.51 93.38 0.99 −0.114
B CIFAR10 ResNet50 98.69 93.81 0.98 −0.105
C MNIST ResNet18 98.03 97.66 0.88 −0.061
D FMNIST WideResNet50 94.01 87.7 0.86 0.001

E CIFAR100 EfficientNet
V2-S 99.52 88.2 0.84 0.002

F CIFAR10-C ResNet50 - 77.29 - -
G MNIST-C ResNet18 - 70.19 - -
H FMNIST-C WideResNet50 - 47.83 - -

In experiment A, the value of diagonal elements di=j are closer to 1 than those of
experiment D. This indicates that the models in experiment A have a higher compactness
of features within the same class. In the case of the value of non-diagonal elements di 6=j,
few of them in experiment A exceed zero, while a few of them in experiment D exceed
zero, suggesting lower inter-class separability for experiment D. Thus, we expect that
the proposed method will exhibit more effective TIP performance in experiment A. Our
experiments confirm that the proposed method shows better performance when the inter-
class feature separability value is less than 0, as shown in Tables 1 and 2.

Table 2. Comparison between different TIP methods for different image classification datasets (in
ATPF (%), see task IDs in Table 1. Bold numbers indicate the top ATPF value.

ID Gini [10] DSA [8] MLSA [9] NBC [5] NLC [6] FD+ [7] DA [14] DeepFPC

A 54.53 53.85 52.3 51.835 34.818 70.37 78.88 87.26

B 52.62 47.58 48.48 56.071 40.109 35.46 71.61 78.81

C 51.8 63.79 56.94 7.51 3.13 46.58 64.36 69.06

D 59.13 55.66 41.63 9.45 11.79 35.48 70.13 68.56

E 61.65 60.11 61.39 10.62 12.26 28.81 60.4 58.18

F 66.33 29.13 31.17 52.74 25.29 57.57 78.0 83.61

G 58.68 55.82 56.96 71.23 49.32 66.83 85.41 86.08

H 73.58 71.29 73.37 71.18 70.16 49.06 92.39 95.11

average inter-class separability becomes positive, the performance of our method diminishes. Notably, in
experiment E, Gini stands out as the most effective TIP method and DA and our proposed method are not effective
in this context. This is because experiment E deals with 100 different classes in the training set, with a total of
288 false predictions observed in the training set. This leads to the performance degradation of DA and the
proposed DeepFPC method, which include the monitoring process in their algorithm. The most important part in
the monitoring process to achieve the goal of TIP is to accurately classify the “reject” group. The “reject” group is
classified by the monitor which is produced through false prediction clusters. Yet, in the case of experiment E,
the runtime verification monitor that classifies the “reject” group formed inappropriately due to the lack of false
prediction instances in the training set. Also, the proposed scoring function DistFPC is dependent on the FPC
centroids. Experiments F, G, and H demonstrate that the proposed method can be a proper option for identifying
error-inducing samples in real-world scenarios, namely those containing data corruptions.

3. Experimental Results

In this section, we demonstrate the effectiveness of the proposed DeepFPC approach
in image classification and active learning. We ran all the experiments using an Intel(R)
Xeon(R) Silver 4114 CPU at 2.20 GHz and an NVIDIA GeForce RTX 2080 Ti with 12 GB of
memory using PyTorch v1.12.0.

Electronics 2024, 13, 21 7 of 12

3.1. Experimental Setups
3.1.1. Datasets and Models

To evaluate the proposed method, we used four datasets (MNIST [18], Fashion-
MNIST (FMNIST) [19], CIFAR10, CIFAR100 [20]) which are widely used for image clas-
sification benchmarks. We tested different TIP methods with diverse models: ResNet18,
ResNet50 [21], MobileNetV2 [22], WideResNet50-2 [23], and EfficientNetV2-S [24].

To evaluate TIP performance in real-world applications, we used MNIST, FMNIST,
and CIFAR10 datasets with real-world corruptions [25]. We denote the corrupted datasets
by adding the ‘-C’ suffix to their names. We used 15 different types of corruption, such as
motion blur, rotation, and brightness, each of which contained five different severities.

Table 1 shows our experimental setups. Columns µdi=j
, µdi 6=j

indicate the average of
diagonal and non-diagonal elements in Dtr. For experiment IDs F, G, and H, we used the
same model with B, C, and D, respectively, to check the effectiveness of TIP in a corrupted
environment. We employed experiment IDs C, D, G, and H to evaluate TIP performance in
active learning.

3.1.2. Compared Methods

We compared the proposed DeepFPC approach with the following eight existing TIP
methods that are introduced in Section 2.

• NC-based methods: NBC [5], NLC [6], and FD+ [7];
• SA-based methods: DSA [8] and MLSA [9];
• Intrinsic function methods: Gini [10];
• Others: DeepAbstraction [14].

3.1.3. Evaluation Metrics

In the classification experiments, we utilized the average test percentage of fault
(ATPF) metric [13] to evaluate the error-inducing sample identification performance of TIPs.

ATPF(%) = 100× 1
Nfail

Nfail

∑
n=1

Nerr,n

n
(5)

where, Nfail represents the total number of incorrect predictions in a test set, and Nerr,n
denotes the number of detected incorrect predictions within the nth labeling budget.

In the active learning experiments, we followed the experimental setups described
in [26]. The corrupted data are referred to as out-of-distribution (OOD) data, while non-
corrupted data are called nominal. The test set was randomly divided into two equal
subsets, called the ‘active’ and ‘evaluation’ splits, each allocated 50% of the dataset. The
subset of the ‘active’ split, chosen based on TIP values, was integrated into the training set
for model retraining. For the nominal and OOD active splits, we selected 20% and 10% of
the samples, respectively. For fair comparison, we adopted standard supervised learning
with the same hyperparameter settings in all active learning experiments. We used cross
entropy loss with the SGD optimizer, where the learning rate was 1e-4 and the batch size
was 128. We completed model retraining when the output value of the loss function did
not improve for five epochs. Then, we evaluated the performance of the retrained model
on both the nominal and OOD evaluation splits. Figure 5 shows the entire active learning
experiment process.

3.2. Comparisons between Different TIP Methods with the Perspective of Identifying Test Instances
with Errors

Table 2 presents a comparison of ATPF values for various TIP methods across eight
distinct image classification experiments. A TIP approach with a higher ATPF value is
more effective in identifying instances that induce errors while remaining within the same
labeling budget. The difference in ATPF values between Gini [10] and DA [14] is attributed
to the use of the runtime verification monitor in DA. The performance variation between

Electronics 2024, 13, 21 8 of 12

DA and the proposed DeepFPC method results from substitution of the scoring function
with DistFPC.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 12

• NC-based methods: NBC [5], NLC [6], and FD+ [7];

• SA-based methods: DSA [8] and MLSA [9];

• Intrinsic function methods: Gini [10];

• Others: DeepAbstraction [14].

3.1.3. Evaluation Metrics

In the classification experiments, we utilized the average test percentage of fault

(ATPF) metric [13] to evaluate the error-inducing sample identification performance of

TIPs.

ATPF (%) = 100 ×
1

𝑁fail

 ∑
𝑁err,n

𝑛

𝑁fail

𝑛=1

 (5)

where, 𝑁fail represents the total number of incorrect predictions in a test set, and 𝑁err,n

denotes the number of detected incorrect predictions within the nth labeling budget.

In the active learning experiments, we followed the experimental setups described in

[26]. The corrupted data are referred to as out-of-distribution (OOD) data, while non-cor-

rupted data are called nominal. The test set was randomly divided into two equal subsets,

called the ‘active’ and ‘evaluation’ splits, each allocated 50% of the dataset. The subset of

the ‘active’ split, chosen based on TIP values, was integrated into the training set for model

retraining. For the nominal and OOD active splits, we selected 20% and 10% of the sam-

ples, respectively. For fair comparison, we adopted standard supervised learning with the

same hyperparameter settings in all active learning experiments. We used cross entropy

loss with the SGD optimizer, where the learning rate was 1e-4 and the batch size was 128.

We completed model retraining when the output value of the loss function did not im-

prove for five epochs. Then, we evaluated the performance of the retrained model on both

the nominal and OOD evaluation splits. Figure 5 shows the entire active learning experi-

ment process.

Figure 5. Experimental setup for TIP evaluation in active learning, described in [26].

3.2. Comparisons between Different TIP Methods with the Perspective of Identifying Test

Instances with Errors

Table 2 presents a comparison of ATPF values for various TIP methods across eight

distinct image classification experiments. A TIP approach with a higher ATPF value is

more effective in identifying instances that induce errors while remaining within the same

labeling budget. The difference in ATPF values between Gini [10] and DA [14] is attributed

to the use of the runtime verification monitor in DA. The performance variation between

DA and the proposed DeepFPC method results from substitution of the scoring function

with DistFPC.

Table 2 shows that the proposed method outperforms existing TIP methods in six of

eight different experiments. In particular, DeepFPC exhibits superior performance when

intra-class compactness approaches 1 and the inter-class separability takes on negative

values, as observed in experiments A to C. However, in experiments D and E, where the

Figure 5. Experimental setup for TIP evaluation in active learning, described in [26].

Table 2 shows that the proposed method outperforms existing TIP methods in six of
eight different experiments. In particular, DeepFPC exhibits superior performance when
intra-class compactness approaches 1 and the inter-class separability takes on negative
values, as observed in experiments A to C. However, in experiments D and E, where the

The ablation study of the proposed scoring function is shown in Table 3. Each col-
umn specifies the experiment ID. The first row shows the ATPF value when using the
angular term only, while the second row represents the case only with the Euclidean term.
According to Table 3, the tendency of ATPF values is consistent with that of DeepFPC
even when a single term is used in DistFPC. It achieves higher values when the intra-class
compactness approaches 1 and inter-class separability nears −1. Also, using the angular
term only shows higher ATPF values than using the Euclidean term only. However, using
both angular and Euclidean terms together obtains the highest ATPF values.

Table 3. Ablation study of the proposed DeepFPC method for image classification (in ATPF (%)).

A B C D E F G H

Angular term only 82.44 77.94 63.92 65.26 55.24 81.22 82.39 91.28

Euclidean term only 72.96 72.85 67.04 66.79 49.25 77.94 75.89 77.23

DeepFPC 87.26 78.81 69.06 68.56 58.18 83.61 86.08 95.11

The evaluation results for active learning setups are presented in Table 4. Each column
specifies the dataset and models that were used for active learning experiments. The
sub-columns labeled “Nominal” or “OOD” indicate which type of active split was used
to extend the training set and the split used to retrain the model. Each row corresponds
to the TIP method used for sample selection from the active split. The sub-rows labeled
“Nominal” or “OOD” indicate which type of evaluation split was used to evaluate the
retrained model.

The results in Table 4 show that the proposed DeepFPC method consistently achieves
top 3 retraining accuracy values in all active learning setups, exceeding the state-of-the-art
existing TIP method, DA. The result is consistent with that of Table 2. The monitor-based
TIP techniques show the most frequent accuracy improvement in active learning, and the
SA-based method and intrinsic function-based method follow. Also, the result demonstrates
that the NC-based method is the most ineffective in the context of active learning, which
aligns with the findings reported in [26].

Electronics 2024, 13, 21 9 of 12

Table 4. Comparisons of performance between different TIP methods for active learning experiments.
Bold numbers indicate the top 3 most accurate values in four different (active, evaluation) split
setups: (Nominal, Nominal), (Nominal, OOD), (OOD, Nominal), (OOD, OOD).

TIP Metrics
Type of

Evaluation Split

MNIST—ResNet18 FMNIST—WideResNet50

Type of Active Split Type of Active Split

Nominal OOD Nominal OOD

Random Selection
Nominal 91.18 69.26 89.46 49.26

OOD 93.48 78.72 88.42 58.52

Intrinsic
Function

Gini [10]
Nominal 93.92 74.14 90.78 49.54

OOD 93.34 80.32 89.04 66.94

Surprise
Adequacy

DSA [8]
Nominal 90.74 69.88 90.78 51.26

OOD 94.8 81.82 87.54 68.24

MLSA [9]
Nominal 91.78 69.88 91.94 51.96

OOD 93.78 73.12 88.5 62.98

Neuron
Coverage

NBC [5]
Nominal 90.28 67.48 91.12 51.04

OOD 92.98 79.56 87.64 62.94

NLC [6]
Nominal 91.94 70.38 87.70 41.38

OOD 89.5 73.54 91.04 61.44

FD+ [7]
Nominal 91.88 71.06 89.8 52.44

OOD 91.18 72.98 87.1 60.5

Monitor-Based

DA [14]
Nominal 93.92 74.36 92.32 52.34

OOD 93.6 80.6 88.34 65.18

DeepFPC
Nominal 92.2 74.16 92.48 52.44

OOD 93.8 81.60 88.65 65.39

3.3. Inference Time Comparisons with Different TIP Methods

In this section, we compare the computation complexity of TIP techniques during an
inference. It is important to remember that we have S FPCs and M test samples with C
classes. | fl | represents the number of neurons (i.e., the dimension of features) in the lth
layer of DNN model f .

The intrinsic function-based methods only require the softmax output of a sample, so
their computational cost is O(M). NC-based methods require the activation value of total
neurons for every single sample, which requires O(M ·∑| fl |) for the whole test set. DSA
compares a feature of a test sample with training set features so that the complexity cost for
the total test samples can be inferred as O(M · N).

The computational cost of the monitoring process in both DA and DeepFPC is
O(M · S). After the monitoring process is applied to the test instances, DA prioritizes
the samples within each group with the Gini impurity so that the additional cost of the
scoring function is O(M). However, DeepFPC calculates similarity between a test instance
feature and S number of FPC centroids, which requires O(M · S) computations in total.

Table 5 reports the inference time of three different TIP techniques (Gini impurity, DA,
and the proposed DeepFPC) for experiments A–H. We do not report the inference times of
other TIP methods since they took more than 8 s for all experiments. DA and DeepFPC
took a longer time than the Gini method, as it does not use the monitoring process. The
longer inference time of DeepFPC compared to DA is caused by substitution of the scoring
function from Gini Impurity with the proposed DistFPC.

Electronics 2024, 13, 21 10 of 12

Table 5. Comparison of time consumption (in sec.) for each experimental setup.

A B C D E F G H

Gini [10] 0.0011 0.0009 0.0004 0.0010 0.0007 0.0121 0.0009 0.0012

DA [14] 0.0261 0.0270 0.0189 0.0272 3.125 0.0216 0.0324 0.0273

DeepFPC 0.0354 0.0407 0.0311 0.0651 7.221 0.0482 0.0612 0.0427

3.4. Sample Visaulization

In this section, we describe the differences between the samples with different priori-
tization orders. In TIP, the lower priority sample is regarded as an easy sample that the
trained model can provide correct prediction for, while higher priority samples are hard
samples that can induce a false prediction from the model.

Figure 6 represents a sample visualization based on different prioritization orders
with different conditions. Figure 6a,b are samples without real-world data corruptions,
while Figure 6c,d are samples that contain the real-world data corruptions. Figure 6a,c
show samples with lower priority.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 12

3.4. Sample Visaulization

In this section, we describe the differences between the samples with different prior-

itization orders. In TIP, the lower priority sample is regarded as an easy sample that the

trained model can provide correct prediction for, while higher priority samples are hard

samples that can induce a false prediction from the model.

Figure 6 represents a sample visualization based on different prioritization orders

with different conditions. Figure 6a,b are samples without real-world data corruptions,

while Figure 6c,d are samples that contain the real-world data corruptions. Figure 6a,c

show samples with lower priority.

Table 5. Comparison of time consumption (in sec.) for each experimental setup.

 A B C D E F G H

Gini [10] 0.0011 0.0009 0.0004 0.0010 0.0007 0.0121 0.0009 0.0012

DA [14] 0.0261 0.0270 0.0189 0.0272 3.125 0.0216 0.0324 0.0273

DeepFPC 0.0354 0.0407 0.0311 0.0651 7.221 0.0482 0.0612 0.0427

Figure 6. Sample visualization of CIFAR10 and CIFAR10-C with ResNet50 based on different prior-

itization orders that are based on the proposed DeepFPC method: (a,b) CIFAR10, (c,d) CIFAR10-C.

The lower priority samples in both the clean and corruption domains have a center-

aligned object that is distinguishable with a background. Also, samples with less severity

corruptions are lower in the prioritization order. The model predictions on lower priority

samples are all correct.

Figure 6b,d are samples with higher priority. The higher priority samples in both the

clean and corruption domains have a non-center-aligned object or part of the object is

visible. Additionally, the objects in higher priority samples are hard to distinguish from

their backgrounds. Samples with higher severity corruptions are higher in the prioritiza-

tion order, and the model predictions upon them are all incorrect.

Figure 6. Sample visualization of CIFAR10 and CIFAR10-C with ResNet50 based on different prioriti-
zation orders that are based on the proposed DeepFPC method: (a,b) CIFAR10, (c,d) CIFAR10-C.

The lower priority samples in both the clean and corruption domains have a center-
aligned object that is distinguishable with a background. Also, samples with less severity
corruptions are lower in the prioritization order. The model predictions on lower priority
samples are all correct.

Figure 6b,d are samples with higher priority. The higher priority samples in both
the clean and corruption domains have a non-center-aligned object or part of the object is
visible. Additionally, the objects in higher priority samples are hard to distinguish from
their backgrounds. Samples with higher severity corruptions are higher in the prioritization
order, and the model predictions upon them are all incorrect.

Electronics 2024, 13, 21 11 of 12

4. Conclusions and Future Works

Testing and debugging DL models prior to deployment requires resource-intensive
test data labeling. TIP approaches can reduce labeling efforts by prioritizing instances with
greater potential for mispredictions, thereby generating bug reports for model retraining.
In this paper, we proposed a new scoring function for monitor-based TIP techniques that
prioritizes error-inducing samples based on similarity to FPC centroids in the training set.
The proposed DeepFPC method achieves significantly improved performance compared
to existing representative/state-of-the-art TIP methods, both in image classification and
active learning.

Additionally, we found that the TIP approaches can be candidates for data selection
in life-long learning due to their effectiveness in active learning and visually confirmed
that sample priority is related to image quality. When considering the purpose of TIP
techniques, one factor is that the technique should prioritize error-inducing samples within
unlabeled test instances, and we will further analyze the effectiveness of applying TIP
metrics in image quality assessment and continual learning.

Due to storage limitations, we evaluated the proposed DeepFPC method and existing
TIP techniques with image classification datasets containing relatively small input resolu-
tions. Yet, images acquired in the real world are often larger than those used. Therefore, in
future research, we will verify the real-world applicability of TIP techniques by evaluating
them with additional complex model architectures, such as vision transformers [27], and
larger datasets (e.g., ImageNet [28] and its variants [29,30]).

Author Contributions: Conceptualization, H.H.; methodology, H.H.; software, H.H.; validation,
H.H.; formal analysis, H.H. and J.S.; resources, H.H.; data curation, H.H.; writing—original draft
preparation, H.H. and I.Y.C.; writing—review and editing, I.Y.C. and J.S.; visualization, H.H.; super-
vision, I.Y.C. and J.S.; funding acquisition, J.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by a National Research Foundation of Korea (NRF) Grant
funded by the Korean Government Ministry of Science and ICT (MSIT) (NRF-2020R1F1A1065626),
in part by the MSIT under the Information Technology Research Center (ITRC) support program
(IITP-2023-2018-0-01798) supervised by the Institute for Information and Communications Technol-
ogy Planning and Evaluation (IITP).

Data Availability Statement: The data presented in this study are openly available in reference
number [18–20,25].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, W.; Hongwei, G.; Yueqiu, J.; Xin, Z. A Novel Approach to Maritime Image Dehazing Based on a Large Kernel Encoder–

Decoder Network with Multihead Pyramids. Electronics 2022, 11, 3351. [CrossRef]
2. Dhanya, V.; Subeesh, A.; Kushwaha, N.; Vishwakarma, D.K.; Kumar, T.N.; Ritika, G.; Singh, A. Deep learning based computer

vision approaches for smart agricultural applications. Artif. Intell. Agric. 2022, 6, 211–229. [CrossRef]
3. Ahmed, W.; Morerio, P.; Murino, V. Cleaning noisy labels by negative ensemble learning for source-free unsupervised domain

adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022), Waikoloa, HI,
USA, 4–8 January 2022; pp. 1616–1625.

4. Vardi, G. On the implicit bias in deep-learning algorithms. Commun. ACM 2023, 66, 86–93. [CrossRef]
5. Ma, L.; Felix, J.; Fuyuan, Z.; Jiyuan, S.; Minhui, X.; Bo, L.; Chunyang, C.; Ting, S.; Li, L.; Yang, L. Deepgauge: Multi-Granularity

Testing Criteria for Deep Learning Systems. In Proceedings of the 33rd ACM/IEEE international conference on Automated
Software Engineering (ASE 2018), Montpellier, France, 3–7 September 2018; pp. 120–131.

6. Yuan, Y.; Pang, Q.; Wang, S. Revisiting Neuron Coverage for Dnn Testing: A Layer-Wise and Distribution-Aware Criterion. In
Proceedings of the IEEE/ACM 45th International Conference on Software Engineering (ICSE 2023), Melbourne, Australia, 14–20
May 2023; pp. 1200–1212.

7. Yan, R.; Chen, Y.; Gao, H.; Yan, J. Test Case Prioritization with Neuron Valuation Based Pattern. Sci. Comput. Program. 2022,
215, 102761. [CrossRef]

8. Kim, J.; Feldt, R.; Yoo, S. Guiding Deep Learning System Testing Using Surprise Adequacy. In Proceedings of the IEEE/ACM 41st
International Conference on Software Engineering (ICSE 2019), Montreal, QC, Canada, 24–31 May 2019; pp. 1039–1049.

https://doi.org/10.3390/electronics11203351
https://doi.org/10.1016/j.aiia.2022.09.007
https://doi.org/10.1145/3571070
https://doi.org/10.1016/j.scico.2021.102761

Electronics 2024, 13, 21 12 of 12

9. Kim, S.; Yoo, S. Multimodal Surprise Adequacy Analysis of Inputs for Natural Language Processing Dnn Models. In Proceedings
of the IEEE/ACM International Conference on Automation of Software Test (AST 2021), Madrid, Spain, 20–21 May 2021;
pp. 80–89.

10. Feng, Y.; Shi, Q.; Gao, X.; Wan, J.; Fang, C.; Chen, Z. Deepgini: Prioritizing Massive Tests to Enhance the Robustness of Deep
Neural Networks. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2020), Virtual. 18–22 July 2020; pp. 177–188.

11. Ma, W.; Papadakis, M.; Tsakmalis, A.; Cordy, M.; Traon, Y.L. Test Selection for Deep Learning Systems. ACM Trans. Softw. Eng.
Methodol. TOSEM 2021, 30, 1–22. [CrossRef]

12. Wang, Z.; You, H.; Chen, J.; Zhang, Y.; Dong, X.; Zhang, W. Prioritizing Test Inputs for Deep Neural Networks Via Mutation
Analysis. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering (ICSE 2021), Virtual. 25–28
May 2021; pp. 397–409.

13. Li, Y.; Li, M.; Lai, Q.; Liu, Y.; Xu, Q. Testrank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks. In
Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual. 6–14 December 2021;
pp. 20874–20886.

14. Al-Qadasi, H.; Wu, C.; Falcone, Y.; Bensalem, S. Deepabstraction: 2-Level Prioritization for Unlabeled Test Inputs in Deep Neural
Networks. In Proceedings of the IEEE International Conference On Artificial Intelligence Testing (AITest 2022), Newark, CA,
USA, 15–18 August 2022; pp. 64–71.

15. Cheng, C.; Nührenberg, G.; Yasuoka, H. Runtime Monitoring Neuron Activation Patterns. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE 2019), Florence, Italy, 25–29 March 2019; pp. 300–303.

16. Wu, C.; Falcone, Y.; Bensalem, S. Customizable Reference Runtime Monitoring of Neural Networks Using Resolution Boxes. In
Proceedings of the 23rd International Conference on Runtime Verification (RV 2023), Thessaloniki, Greece, 3–6 October 2023;
pp. 23–41.

17. Liu, W.; Longhui, Y.; Adrian, W.; Bernhard Schölkopf. Generalizing and Decoupling Neural Collapse Via Hyperspherical
Uniformity Gap. arXiv 2023, arXiv:2303.06484.

18. Deng, L. The Mnist Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process.
Mag. 2012, 29, 141–142. [CrossRef]

19. Xiao, H.; Kashif, R.; Roland, V. Fashion-Mnist: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv
2017, arXiv:1708.07747.

20. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, University of Tront, Toronto,
ON, USA, 2009.

21. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

22. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–22
June 2018; pp. 4510–4520.

23. Zagoruyko, S.; Nikos, K. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
24. Tan, M.; Le, Q. Efficientnetv2: Smaller Models and Faster Training. In Proceedings of the International Conference on Machine

Learning (ICML 2021), Virtual. 18–24 July 2021; pp. 10096–10106.
25. Hendrycks, D.; Thomas, D. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. arXiv 2019,

arXiv:1903.12261.
26. Weiss, M.; Tonella, P. Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning

(Replicability Study). In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2022), Virtual. 18–22 July 2022; pp. 139–150.

27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th
International Conference on Learning Representations (ICLR 2021), Virtual, 3–7 May 2021.

28. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June
2009; pp. 248–255.

29. Hendrycks, D.; Zhao, K.; Basart, S.; Steinhardt, J.; Song, D. Natural adversarial examples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2021), Virtual. 19–25 June 2021; pp. 15262–15271.

30. Li, X.; Chen, Y.; Zhu, Y.; Wang, S.; Zhang, R.; Xue, H. ImageNet-E: Benchmarking Neural Network Robustness via Attribute
Editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
18–22 June 2023; pp. 20371–20381.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3417330
https://doi.org/10.1109/MSP.2012.2211477

	Introduction
	Methods
	Runtime Verification Monitor
	DeepFPC
	Intra-Class Feature Compactness and Inter-Class Feature Separability

	Experimental Results
	Experimental Setups
	Datasets and Models
	Compared Methods
	Evaluation Metrics

	Comparisons between Different TIP Methods with the Perspective of Identifying Test Instances with Errors
	Inference Time Comparisons with Different TIP Methods
	Sample Visaulization

	Conclusions and Future Works
	References

