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Abstract: In this paper, the event-triggered control problem is investigated using backstepping
techniques for nonlinear systems with dead-zone input. The external disturbance and unknown
parameters are also considered in the controller’s design. It is well known that errors in input signal
measurements are inevitable. In event-triggered control, such errors will directly affect whether the
control signal is updated. This measurement error can be seen in the form of interference to the
threshold. Therefore, unlike traditional event-triggered control, the existence of threshold disturbance
is considered in the controller’s design. The proposed controller can not only compensate for the
uncertainties caused by external disturbance and unknown parameters but can also suppress the
unknown effects caused by threshold interference. In addition, to obtain a continuous controller, a
smooth function is constructed to approximate the discontinuous sign function. In this way, Zeno
behavior is successfully avoided. The boundedness of all signals and the tracking performance of
the system can be guaranteed by the proposed control scheme. Numerical simulation and actual
system simulation demonstrate the effectiveness of the proposed control scheme. The comparative
simulation results also verify this event-triggered controller’s advantages, including better tracking
performance and fewer trigger times.

Keywords: backstepping; adaptive control; nonlinear system; event trigger; dead zone

1. Introduction

In classical sample-data control, the output of the controller is continuously applied
to the system at any time instant, although such continuous changes in the control input
signal are sometimes unnecessary. This leads to a waste of system resources, including
bandwidth and energy. In order to overcome these drawbacks, an event-triggered control
strategy is proposed. The main idea is to determine whether the signal is updated based on
system requirements and perform updates through the design of a triggering mechanism.
Obviously, in order to achieve good system performance, the triggering mechanism and
the design of the control inputs based on the triggering mechanism are the key issues. This
requires us to fully consider the practical characteristics of the system actuators and all
sorts of uncertainties when designing the event-triggered controller.

Dead zones, as nonlinear characteristics of the actuator, often exist in actual controlled
systems. Ignoring their impact will inevitably hinder system performance. Therefore,
many researchers have studied the control problem of systems with dead-zone actuators,
and many results have been obtained. An adaptive control scheme was proposed for
strict feedback systems with dead-zone input using backstepping techniques in [1]. By
constructing observers to estimate the system states, an output feedback adaptive controller
was developed in [2]. In this paper, a smooth inverse of dead-zone nonlinearity was
constructed, and the design of this output feedback adaptive control law was applied.
An output feedback learning control scheme using a neural network for nonlinear strict
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feedback systems with dead-zone input was proposed in [3]. Prescribed performance can
be achieved by this proposed learning control scheme. Finite-time control techniques have
also been implemented in the controller design for systems with dead-zone input, and
several results were proposed in [4,5]. In addition, fault-tolerant control, global practical
tracking, decentralized adaptive control, and sliding mode control have also been applied
to uncertain systems with dead-zone input [6–8].

In view of the development of event-triggered control, the results for nonlinear systems
are still very limited. In the last decade, event-triggered control for strict feedback systems
has gradually gained attention from researchers. Backstepping technology [1,9–13], as
a recursive design method, can effectively reduce the difficulty of controller design. It
has been successfully applied to the event-triggered control of nonlinear systems [14–17].
In [14], event-triggered adaptive controllers based on the fixed threshold and relative
threshold were developed. A threshold switching strategy was proposed by combining the
advantages of fixed thresholds and relative thresholds. This strategy was applied to a class
of nonlinear systems with unknown actuator failures [15]. For some or all states that cannot
be measured, an output feedback event-triggered control law was proposed in [16]. The
above results are only applicable for single nonlinear systems. For interconnected systems
composed of multiple subsystems, [17] provided a design method for a decentralized
event-triggered control scheme. In practice, dead zones [18–25] are a common non-linear
limitation of input and output signals. Therefore, considering the limitations of dead-zone
input in the design of event-triggered controller has practical significance [18–22]. An event-
triggered adaptive control scheme was developed for a class of nonstrict-feedback nonlinear
systems with dead-zone input in [18]. A fuzzy logic system was constructed to approximate
unknown nonlinear functions, and to reduce repeated differentiation, dynamic surface
control and backstepping technology were applied in the design of the input signal and
update laws of unknown parameters. In [19], the event-triggered adaptive control problem
was studied for a class of nonlinear systems with dead-zone input and external disturbance.
The linear term of the estimated variables with a time-varying factor was introduced in the
update law. Thus, a new update law was constructed. As an important issue in the field, the
finite-time control problem for nonlinear systems with a dead-zone constraint and event-
triggered input was also studied. In [21], the event-triggered finite-time control problem
was addressed for a class of nonlinear systems with unknown dead-zone input. A neural
network observer was constructed, and a tracking control scheme was proposed. In [22],
an event-triggered control scheme was developed for nonlinear multi-agent systems with
dead-zone input. The consistent tracking performance of controlled systems within a fixed
time can be achieved using this proposed controller. Looking at the above results on the
event-triggered control of nonlinear systems with dead-zone input, there are some problems
that need to be addressed. One important issue is that the inevitable measurement errors in
input signals were not taken into account. Such errors will lead to unknown interference on
the threshold [18–22]. In [19,22], the upper and lower bounds of the unknown parameters
in the dead-zone model must be known. In [18,21], the system model is relatively simple
and does not consider the existence of unknown parameters in the system. In addition,
Ref. [18], only provides results concerning semi-global uniform ultimate boundedness.

In this paper, we address event-triggered-based control design for a class of uncertain
nonlinear systems with unknown parameters, external disturbance, and unknown dead-
zone input. The key to the formation of the triggering mechanism lies in the construction
of the triggering threshold. Considering the ubiquity of external interference, unknown
interference terms were introduced in the threshold. A relatively dynamic threshold was
thus constructed. The defining characteristic of this relative dynamic threshold is its mainly
static constant values, supplemented by dynamic disturbances. In the controller design, the
dead-zone transformation of the original signal and its triggered signal was analyzed. We
proved that the error between the two signals after dead-zone transformation is bounded
and provided detailed bounds. Then, we eliminated the uncertainty caused by all unknown
disturbances by comprehensively estimating the upper bound of the system disturbance,
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threshold disturbance, and dead-zone transformation disturbance. At the same time, the
uncertain parameters of the system and the unknown constant parameters in the dead-zone
were estimated. In particular, in order to ensure the continuity of the control input signal,
an approximate function of the sign(·) function was constructed and used as a substitute
for sign(·) functions in the controller design. With the proposed controller, the stability of
the resulting closed-loop system can be ensured.

To present the contributions of this paper more clearly, the following contributions of
this paper are summarized: (1) An event-triggered adaptive control scheme is proposed
using backstepping for a class of nonlinear systems with unknown parameters, dead-zone
input, and external disturbance. Dead-zone input is essentially a non-linear transformation
of the input signal. The input signal, which is discretized by the triggering mechanism and
subjected to nonlinear dead-zone transformation, is the true control signal directly acting on
the system. Error analysis between the actual control signal and the expected control signal
is the basis for the controller design. (2) Unlike the existing results from traditional event-
triggered controller, the existence of threshold disturbance is considered in our controller
design. It is well known that errors in input signal measurement are inevitable. In event-
triggered control, such errors will directly affect whether the control signal is updated. This
measurement error can be transformed as the interference to the threshold. In this way,
the threshold becomes a time-varying term with unknown disturbances. (3) Under this
event-triggered adaptive control scheme, including a triggering mechanism with a dynamic
threshold, update laws for unknown parameters, and the input signal, the stability and
tracking performance of the closed-loop system can be ensured. (4) The smooth function
sg(·), as an approximate of sign(·), is constructed and applied to the design of the control
signal. Thus, the continuity of the control signal can be guaranteed.

There are five sections in this paper. The classes of nonlinear systems and the dead-
zone model are described in Section 2. The first part of Section 3 shows the event-triggered
control scheme, which includes the triggering mechanism, control law, and update laws.
Theorem 1 provides the main results for the stability of closed-loop systems. Simulation
studies are presented in Section 4, and conclusions are shown in Section 5.

2. Models and Problem Statement

Consider a class of nonlinear systems described by the following state–space model:

ẋ1 = x2 + f1(x1) + θTΦ1(x1)
ẋ2 = x3 + f2(x̄2) + θTΦ2(x̄2)
...
ẋn−1 = xn + fn−1(x̄n−1) + θTΦn−1(x̄n−1)
ẋn = bu + fn(x) + θTΦn(x) + de(t)
y = x1

(1)

where x̄i = (x1, . . . , xi), x = (x1, x2, . . . , xn)T are system states, u ∈ R is the input, and y is
the output. Functions fi(x) ∈ R, ϕi(x) ∈ Rr (i = 1, 2, . . . , n) are known, and parameters
b ∈ R and θ ∈ Rr are unknown parameters. The unknown de(t) is the external disturbance.
All commonly used notations can be seen in Table 1.

Consider the following dead-zone input:

u = DI(v) =


m(v − br) v ≥ br

0 bl < v < br
m(v − bl) v ≤ bl

(2)

where m, br are unknown positive constants and parameter bl < 0 is a constant. In the
dead-zone model u = DI(v), u and v represent the output signal and input signal of
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the dead zone, respectively. Considering the dead-zone input, the system model can be
written as

ẋ1 = x2 + f1(x1) + θTΦ1(x1)

ẋi = xi+1 + fi(x̄i) + θTΦi(x̄i)(i = 2, · · · , n − 1)

ẋn = bDI(v) + fn(x) + θTΦn(x) + de(t) (3)

y = x1

To proceed with the event-triggered adaptive backstepping controller, the following
assumptions are made.

Assumption 1. Unknown parameter b ̸= 0 and sign(b) is known. Without loss of generality, we
take b > 0 in this paper.

Assumption 2. Reference signal yr(t) and its i-order (i = 1, · · · , n − 1) derivatives are known
and bounded.

To make the paper easier to understand, the following list of commonly used notations
is provided.

Table 1. Commonly used notations.

Symbol Meaning Symbol Meaning

xi The state of the system y The input of the system

u The input signal de(t) The external disturbance of the system

αi The virtual control dδ(t) The threshold interference

DI(v) The dead-zone model yr The reference signal

sign(·) The sign function sg(·) The approximate function

V Lyapunov function vT , uT Signals triggered

3. Design and Analysis of Adaptive Controllers
3.1. Controller Design

Firstly, the following change in coordinates is introduced:

z1 = x1 − yr

zi = xi − αi−1 − y(i−1)
r , (i = 2, . . . , n) (4)

where αi−1 (i = 1, 2, . . . , n) denote the virtual control in the (i − 1)th step.
Step 1: From (3) and the change in coordinates (4), the derivative of z1 can be

rewritten as
ż1 = z2 + α1 + f1(x1) + θTΦ1(x1) (5)

where α1 is considered a virtual control. Consider the following Lyapunov function:

V1 =
1
2

z2
1 +

1
2

θ̃TΓ−1θ̃ (6)

where Γ is a positive definite matrix. Because Γ is a positive definite matrix, its inverse
matrix Γ−1 is also positive definite. Therefore, the term 1

2 θ̃TΓ−1θ̃ is a quadratic form and is
non-negative. So, V1 shown above satisfies the requirement as a Lyapunov function. The
variable θ̃ = θ − θ̂ represents the estimation error, and θ̂ is the estimation of θ. Based on V1
shown in (6), virtual control α1 can be chosen as

α1 = −k1z1 − f1(x1)− θ̂TΦ1(x1) (7)



Electronics 2024, 13, 210 5 of 26

where k1 > 0 is a design parameter. The derivative of V1 is

V̇1 = z1ż1 − θ̃TΓ−1 ˙̂θ

≤ z1z2 − k1z2
1 − θ̃TΓ−1( ˙̂θ − τ1) (8)

The tuning function τ1 is

τ1 = ΓΦ1z1 (9)

Next, we directly give the virtual control αi and the Lyapunov function Vi of step i.
Step i(i = 2, . . . , n − 1): The virtual control αi can be chosen as

αi = −kizi − zi−1 +
i−1

∑
j=1

(∂αi−1

∂xj
xj+1 +

∂αi−1

∂y(j−1)
r

y(j)
r

)
− fi(x̄i) +

i−1

∑
j=1

∂αi−1

∂xj
f j(x̄j)

+
∂αi−1

∂θ̂
(τi − Γlθ(θ̂ − θ0))−

(
θ̂T −

i−1

∑
k=2

zk
∂αk−1

∂θ̂
Γ
)(

Φi −
i−1

∑
k=1

∂αi−1

∂xk
Φk

)
(10)

where ki, lθ , θ0 are positive design parameters. The tuning function τi is

τi = τi−1 + Γ
(

Φi −
i−1

∑
k=1

∂αi−1

∂xk
Φk

)
zi (11)

and the Lyapunov function can be chosen as

Vi = Vi−1 +
1
2

z2
i (12)

Step n: With (3), the derivative of zn is

żn = bu + fn(x) + θTΦn(x)− y(n)r −
n−1

∑
j=1

∂αn−1

∂y(j−1)
r

y(j)
r −

n−1

∑
j=1

∂αn−1

∂xj
(xj+1 + f j(x̄j) + θTΦj(x̄j))

−∂αn−1

∂θ̂
˙̂θ + de(t) (13)

The event-triggered adaptive control scheme mainly includes an adaptive controller
and a triggering mechanism. The block diagram is shown in Figure 1. Now, the input
triggering mechanism can be designed as:
Triggering mechanism:

vT(t) = v(tk), t ∈ [tk, tk+1)

tk+1 = in f imum
{

t ∈ R : |ve| ≥ σ + dσ(t)
}

t1 = 0 (14)

where σ > 0 is a constant and dσ(t) represents the unknown disturbance. We suppose that
the unknown disturbance dσ(t) satisfies

|dσ(t)| ≤ Dσ (15)

where Dσ ≪ σ is an unknown constant. {tk}, k = 0, 1, · · · are the event-triggering instants.
The variable vT(t), t ∈ [t1, t2) is a constant, and its value is v(t1). The value of vT(t) is
updated to v(t2) when t2 is the first time instant to satisfy the condition |ve| ≥ σ + dσ(t).
ve = v − vT is the error between the input signal v and its triggered value.
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( )eDI v

( )
r
y t

( )v t( )e
v t

Figure 1. The block diagram.

Remark 1. The above threshold for the triggering event on system input is reasonable in practice.
As previously mentioned, external interference and small measurement errors are difficult to avoid
in state sampling and in the calculation of the input signal value. This inevitably leads to errors
between the true value of ve and the measured value. Such errors can be seen as external disturbances
and need to be considered in the threshold construction. In a sense, then, the designed threshold is
actually a variable threshold. This changing threshold makes controller design challenging, especially
when the laws of change cannot be known.

Unlike standard backstepping, the control law and update laws of unknown parame-
ters can be given as follows:
Control Law:

v = ĥα; α = αn1 + αn2 (16)

αn1 = −zn−1 − knzn −
4

∑
i=0

1
4εi

zn − fn(x) + y(n)r +
n−1

∑
j=1

(∂αn−1

∂xj
(xj+1 + f j(x̄j)) +

∂αn−1

∂y(j−1)
r

y(j)
r

)
+

∂αn−1

∂θ̂
(τn − Γlθ(θ̂ − θ0))−

(
θ̂T −

n−1

∑
k=2

zk
∂αk−1

∂θ̂
Γ
)(

Φn −
n−1

∑
k=1

∂αn−1

∂xk
Φk

)
αn2 = −b̂msg(zn)σ − D̂sg(zn)

τn = τn−1 + Γ(Φn −
n−1

∑
k=1

∂αn−1

∂xk
Φk)zn (17)

sg(zn) =


zn
|zn | , |zn| ≥ δ

zn(
δ2−z2

n

)2
+|zn |

, |zn| < δ

where kn, εi are positive design parameters and δ is a positive constant. The variables ĥ,
b̂m, and D̂ are the estimates of parameters h = 1

bm
, bm = bm, and D = DDI + Dσ + De,

respectively. The constants DDI and De will be explained in detail in the following stability
analysis section.

Remark 2. The function sg(zn) can be seen as an approximation of sign(zn). Because sign(zn)
is discontinuous, input signal v is also discontinuous when sign(zn) is used directly. If sg(zn) is
used instead of a symbolic function, continuous control inputs can be obtained.

Update Laws:

˙̂h = −ηhαzn − ηhlh(ĥ − h0)

˙̂θ = τn − Γlθ(θ̂ − θ0)) (18)
˙̂D = ηD|zn| − ηDlD(D̂ − D0)

˙̂bm = ηb|zn|σ − ηblb(b̂m − bm0)
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where ηh, ηD, ηb, lh, lθ , lD, lb, h0, θ0, D0, bm0 are positive constants and Γ is a positive defi-
nite matrix. The design parameters h0, θ0, D0, bm0 are pre-estimated values of parameters
h, θ, D, bm, respectively. The closer these pre-estimated values are to the true values of these
parameters, the better the tracking performance of the system will be.

Based on Figure 1 and the process of the controller design using backstepping, a block
diagram of the closed-loop feedback system is shown in Figure 2.

1 2 1 1

2 3 2 2 2 2

1 1 1 1 1

1 1( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

T

T

T

n n n n n n

T

n n n e

x x f x x

x x f x x

x x f x x

x bu f x x d t

q

q

q

q

- - - - -

= + + F

= + + F

= + + F

= + + F +

n1 2, , ...,x x x

1( )y x t=

1z

iz

nz

1

( 1)

1 ( 2,.. , ), .

d

k

k k k r

z y y

z x y k na
-

-
-

= -

= - =

1ia -

ˆ ˆˆ ˆ, , , mh D bq

( )v t

1a
( )ev t

( )eDI v

Figure 2. The block diagram about the closed-loop feedback system.

3.2. Stability Analysis

Next, we will continue to analyze the derivative of zn. Because under the event-
triggering mechanism, the actual input signal acting on the system is vT , from (13) we
can obtain

żn = bDI(vT) + fn(x) + θTΦn(x)− y(n)r −
n−1

∑
j=1

∂αn−1

∂xj

(
xj+1 + f j(x̄j) + θTΦj(x̄j)

)
−

n−1

∑
j=1

∂αn−1

∂y(j−1)
r

y(j)
r − ∂αn−1

∂θ̂
˙̂θ + de(t) (19)

Using
uT = DI(vT) = DI(v − ve)

=


m(v − br)− mve v ≥ br + ve

0 bl + ve < v < br + ve

m(v − bl)− mve v ≤ bl + ve
(20)

and (2), we can obtain the following analysis results on ue = u − uT .

Lemma 1. Signals u and uT are output signals of the nonlinear dead zone shown in (2). They are
generated by v and vT , respectively. The error ue between u and uT is bounded by an unknown
constant such that

|ue| ≤ m|ve|+ m(br − bl) (21)
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Proof. In the following, we discuss two cases:

• ve > 0
(1) bl + ve < br

ue =


mve v ≥ br + ve

m(v − br) br < v < br + ve

0 bl + ve < v ≤ br
mve − m(v − bl) bl < v ≤ br + ve

mve v ≤ bl

(22)

Because
|m(v − br)| ≤ m|ve|, ∀ br < v < br + ve,

and note that 0 < ve < br − bl , we have

|mve − m(v − bl)| ≤ m(br − bl), ∀ bl < v ≤ br + ve

Then, we have
|ue| ≤ m(br − bl) (23)

(2) bl + ve ≥ br

ue =


mve v ≥ br + ve

m(v − br) bl + ve ≤ v < br + ve

m(bl − br) + mve br ≤ v < bl + ve

mve − m(v − bl) bl ≤ v < br
mve v ≤ bl

(24)

Because
|m(v − br)| ≤ m|ve|, ∀ bl + ve < v < br + ve,

and note that 0 < br − bl < ve, we have

|mve − m(v − bl)| ≤ m|ve|, ∀ bl < v ≤ br

Then, we have
|ue| ≤ m|ve| (25)

• ve ≤ 0
(1) bl < br + ve

ue =


mve v ≥ br

mve − m(v − br) br + ve ≤ v < br
0 bl ≤ v < br + ve

m(v − bl) bl + ve ≤ v < bl
mve v ≤ bl + ve

(26)

Because
|m(v − bl)| ≤ m|ve|, ∀ bl + ve ≤ v < bl

and
|mve − m(v − br)| ≤ m|ve|, ∀ br + ve ≤ v < br

we have
|ue| ≤ m|ve| (27)
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(2) br + ve ≤ bl

ue =


mve v ≥ br

mve − m(v − br) bl ≤ v < br
mve + m(br − bl) br + ve ≤ v < bl

m(v − bl) bl + ve ≤ v < br + ve

mve v ≤ bl + ve

(28)

Because
|m(v − bl)| ≤ m|ve|+ m(br − bl), ∀ bl + ve ≤ v < br + ve

and
|mve + m(br − bl)| ≤ m|ve|+ m(br − bl), ∀ br + ve ≤ v < bl

and
|mve − m(v − br)| ≤ m|ve|+ m(br − bl), ∀ bl ≤ v < br

we have
|ue| ≤ m|ve|+ m(br − bl) (29)

With (23), (25), (27), and (29), we obtain

|ue| ≤ m|ve|+ m(br − bl) (30)

From (19), we have

żn = b[DI(vT)− DI(v)] + bDI(v) + fn(x) + θTΦn(x)−
n−1

∑
j=1

∂αn−1

∂xj

(
xj+1 + f j(x̄j) + θTΦj(x̄j)

)
−y(n)r −

n−1

∑
j=1

∂αn−1

∂y(j−1)
r

y(j)
r − ∂αn−1

∂θ̂
˙̂θ + de(t) (31)

Note that the symmetrical dead zone considered here can be linearized by using the
linear approximation DI(v) = mv + d̄DI . The unknown d̄DI is the approximation error and
bounded by an unknown constant:

żn = −bue + bmv + dDI + fn(x) + θTΦn(x)− y(n)r −
n−1

∑
j=1

∂αn−1

∂xj

(
xj+1 + f j(x̄j) + θTΦj(x̄j)

)
−

n−1

∑
j=1

∂αn−1

∂y(j−1)
r

y(j)
r − ∂αn−1

∂θ̂
˙̂θ + de(t) (32)

where bm = bm > 0 is an unknown constant and dDI = bd̄DI is a function of the time
variable t. Because b is a constant and d̄DI is bounded, dDI is bounded by an unknown
constant DDI .

Next, we can establish our main result as stated in the following theorem.

Theorem 1. Consider a closed-loop system consisting of system (1), dead-zone input (2), con-
troller (14), (16), and update laws (18). Under Assumptions 1 and 2, the following results hold:

• All signals in the closed-loop system are globally bounded, and the Zeno behavior can be
avoided.

• The tracking error satisfies

limt→∞|y(t)− yr| ≤

√
2h̄1

h̄2
Ξ (33)
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where h̄1 and h̄1 are constants and Ξ is bounded by a constant.

Proof. Note that
ĥbmv = bm(h − h̃)v = v − bm h̃v (34)

where h̃ = h − ĥ. With (34), Equation (32) can be written as

żn = −bue − bm h̃α + α + dDI + fn(x) + θTΦn(x)− y(n)r −
n−1

∑
j=1

∂αn−1

∂xj

(
xj+1 + f j(x̄j) + θTΦj(x̄j)

)
−

n−1

∑
j=1

∂αn−1

∂y(j−1)
r

y(j)
r − ∂αn−1

∂θ̂
˙̂θ + de(t) (35)

Then, with (16), we have

(
z2

n
2
)′ = zn żn

= zn

(
− bue − bm h̃α + dDI + de(t) + θTΦn(x)−

n−1

∑
j=1

∂αn−1

∂xj
θTΦj(x̄j)−

∂αn−1

∂θ̂
˙̂θ − zn−1

−knzn +
∂αn−1

∂θ̂
τn −

∂αn−1

∂θ̂
Γlθ(θ̂ − θ0)−

(
θ̂T −

n−1

∑
k=2

zk
∂αk−1

∂θ̂
Γ
)(

Φn −
n−1

∑
k=1

∂αn−1

∂xk
Φk

)
−b̂msg(zn)σ − D̂sg(zn)−

4

∑
i=0

1
4εi

zn

)
(36)

= zn

(
− bue − bm h̃α + dDI + de(t) + θTΦn(x)−

n−1

∑
j=1

∂αn−1

∂xj
θTΦj(x̄j)−

∂αn−1

∂θ̂
˙̂θ − zn−1

−knzn +
∂αn−1

∂θ̂
τn −

∂αn−1

∂θ̂
Γlθ(θ̂ − θ0)−

(
θ̂T −

n−1

∑
k=2

zk
∂αk−1

∂θ̂
Γ
)(

Φn −
n−1

∑
k=1

∂αn−1

∂xk
Φk

)
−b̂msign(zn)σ − D̂sign(zn)−

4

∑
i=0

1
4εi

zn + (b̂mσ + D̂)(sign(zn)− sg(zn))
)

Now consider the following Lyapunov function

Vn = Vn−1 +
1
2

z2
n +

bm

2ηh
h̃2 +

1
2ηD

D̃2 +
1

2ηb
b̃2

m (37)

where h̃ = h − ĥ, D̃ = D − D̂ and b̃m = bm − b̂m represent estimation errors of h, D, and bm,
respectively. With (36), the derivative of Vn is

V̇n ≤ −
n

∑
j=1

k jz2
j −

4

∑
i=0

1
4εi

z2
n − θ̃TΓ−1( ˙̂θ − τn)−

( n−1

∑
j=1

zj+1
∂αj

∂θ̂

)
( ˙̂θ − τn + Γlθ(θ̂ − θ0))

− bm

ηh
h̃( ˙̂h + ηhαzn)− bznue + zndDI + znde(t)− |zn|b̂mσ − |zn|D̂ − D̃

ηD

˙̂D − b̃m

ηb

˙̂bm

+(b̂mσ + D̂)(sign(zn)− sg(zn))zn (38)

Note that

−bznue ≤ b|zn|ue (39)

= |zn|bmσ + |zn|bm(br − bl) + |zn|bm|dσ|
≤ |zn|bmσ + |zn|bm(br − bl) + |zn|bmDσ
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and

zndDI ≤ |zn|DDI ; znde(t) ≤ |zn|De (40)

we have

V̇n ≤ −
n

∑
j=1

k jz2
j − θ̃TΓ−1( ˙̂θ − τn)−

bm

ηh
h̃( ˙̂h + ηhαzn)−

( n−1

∑
j=1

zj+1
∂αj

∂θ̂

)
( ˙̂θ − τn + Γlθ(θ̂ − θ0))

−|zn|b̂mσ + zn(DDI + De + Dσ)− |zn|D̂ + |zn|bm(br − bl)−
4

∑
i=0

1
4εi

z2
n −

D̃
ηD

˙̂D − b̃m

ηb

˙̂bm

+|zn|bmσ + (b̂mσ + D̂)(sign(zn)− sg(zn))zn (41)

Letting

D = DDI + De + Dσ (42)

we obtain

V̇n ≤ −
n

∑
j=1

k jz2
j − θ̃TΓ−1( ˙̂θ − τn)−

bm

ηh
h̃( ˙̂h + ηhαzn)−

( n−1

∑
j=1

zj+1
∂αj

∂θ̂

)
( ˙̂θ − τn + Γlθ(θ̂ − θ0))

+|zn|bmσ − |zn|b̂mσ + znD − |zn|D̂ + |zn|bm(br − bl)−
4

∑
i=0

1
4εi

z2
n −

D̃
ηD

˙̂D − b̃m

ηb

˙̂bm

+(b̂mσ + D̂)(sign(zn)− sg(zn))zn (43)

Note that

|zn|bmσ − |zn|b̂mσ − b̃m

ηb

˙̂bm = − b̃m

ηb
( ˙̂bm − ηb|zn|σ) (44)

znD − |zn|D̂ − D̃
ηD

˙̂D = − D̃
ηD

( ˙̂D − ηD|zn|) (45)

|zn|bm(br − bl)−
1

4ε0
z2

n ≤ 1
4ε0

z2
n + ε0(bm(br − bl))

2 − 1
4ε0

z2
n

= ε0(bm(br − bl))
2 (46)

we have

V̇n ≤ −
n

∑
j=1

k jz2
j − θ̃TΓ−1( ˙̂θ − τn)−

bm

ηh
h̃( ˙̂h + ηhαzn)−

( n−1

∑
j=1

zj+1
∂αj

∂θ̂

)
( ˙̂θ − τn + Γlθ(θ̂ − θ0))

− b̃m

ηb
( ˙̂bm − ηb|zn|σ)−

D̃
ηD

( ˙̂D − ηD|zn|) + ε0(bm(br − bl))
2 −

4

∑
i=1

1
4εi

z2
n

+(b̂mσ + D̂)(sign(zn)− sg(zn))zn (47)

With update laws (18) and

lh h̃(ĥ − h0) ≤ −1
2

lh h̃2 +
1
2

lh(h − h0)
2 (48)

lDD̃(D̂ − D0) ≤ −1
2

lDD̃2 +
1
2

lD(D − D0)
2 (49)
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lb b̃m(b̂m − bm0) ≤ −1
2

lb b̃2
m +

1
2

lb(bm − bm0)
2 (50)

lθ θ̃T(θ̂ − θ0) ≤ −1
2

lθ ||θ̃||22 +
1
2

lθ ||θ − θ0||2 (51)

we have

V̇n ≤ −
n

∑
j=1

k jz2
j −

1
2

lθ ||θ̃||22 −
1
2

lh h̃2 − 1
2

lDD̃2 − 1
2

lb b̃2
m + Ξ1 −

4

∑
i=1

1
4εi

z2
n

+(b̂mσ + D̂)(sign(zn)− sg(zn))zn (52)

where

Ξ1 =
1
2

lh(h − h0)
2 +

1
2

lD(D − D0)
2 +

1
2

lb(bm − bm0)
2

+
1
2

lθ ||θ − θ0||2 + ε0(bm(br − bl))
2 (53)

Note that

D̂(sign(zn)− sg(zn))zn = (D − D̃)(sign(zn)− sg(zn))zn (54)

and

D(sign(zn)− sg(zn))zn ≤ 1
4ε1

z2
n + ε1((sign(zn)− sg(zn))D)2 − D̃(sign(zn)− sg(zn))zn

≤ 1
4ε2

z2
n + ε2((sign(zn)− sg(zn))D̃)2 (55)

Similar to (54) and (55), we have

b̂mσ(sign(zn)− sg(zn))zn = (bm − b̃m)σ(sign(zn)− sg(zn))zn (56)

and

bmσ(sign(zn)− sg(zn))zn ≤ 1
4ε3

z2
n + ε3(σ(sign(zn)− sg(zn))bm)

2 − b̃mσ(sign(zn)− sg(zn))zn

≤ 1
4ε4

z2
n + ε4(σ(sign(zn)− sg(zn))b̃m)

2 (57)

we have

V̇n ≤ −
n

∑
j=1

k jz2
j −

1
2

lθ ||θ̃||22 −
1
2

lh h̃2 − 1
2

lDD̃2 − 1
2

lb b̃2
m + ε2((sign(zn)− sg(zn))D̃)2

+ε4(σ(sign(zn)− sg(zn))b̃m)
2 + Ξ (58)

where

Ξ = Ξ1 + ε1((sign(zn)− sg(zn))D)2 + ε3(σ(sign(zn)− sg(zn))bm)
2 (59)

Then, we obtain

V̇n ≤ −
n

∑
j=1

k jz2
j −

1
2

lθ ||θ̃||22 −
1
2

lh h̃2 − 1
2

l̄DD̃2 − 1
2

l̄b b̃2
m + Ξ (60)
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where

l̄D = lD − ε2(sign(zn)− sg(zn))
2

l̄b = lb − ε4(σ(sign(zn)− sg(zn)))
2 (61)

Let

V =
n

∑
i=1

z2
i + ||θ̃||22 + h̃2 + D̃2 + b̃2

m (62)

Obviously, we have
Vn ≤ h̄1V (63)

where
h̄1 = max

{1
2

,
1
2

λmax(Γ−1),
bm

2ηh
,

1
2ηD

,
1

2ηb

}
(64)

The constant λmax(Γ−1) is the maximum eigenvalue of matrix Γ−1.
From (60), we obtain

V̇n ≤ −h̄2V + Ξ (65)

where

h̄2 = min
{

k j(j = 1, · · · , n),
1
2

lθ ,
1
2

lh,
1
2

l̄D,
1
2

l̄b
}

(66)

Then, we have

V̇n ≤ −h̄2V + Ξ ≤ − h̄2

h̄1
Vn + Ξ (67)

By the direct integration of the differential inequality, we have

Vn ≤ Vn(0)e
− h̄2

h̄1
t
+

h̄1

h̄2
Σ (68)

Note that e−
h̄2
h̄1

t
is a monotonic decreasing function because of h̄2

h̄1
> 0, and Ξ is

bounded. Then, we can obtain that Vn is bounded. Thus, zi, θ̃, h̃, D̃, b̃m are bounded.
Furthermore, xi and v are also bounded. Hence, we can obtain that all the signals of the
closed-loop system are bounded. Hence, all the signals of closed-loop system are ensured
to be bounded.

Because v is differentiable, the derivative function v̇ is continuous. Due to all signals
in the closed-loop system being bounded, v̇ is bounded. Namely, there exists a constant π
such that |v̇| ≤ π. We therefore easily have

d
dt
|ve| = d

dt
(ve ∗ ve)

1
2 = sign(ve)v̇e ≤ |v̇| (69)

According to the Lagrange mean value theorem, we have

ve(tk+1)− ve(tk) = v̇e(ξ)(tk+1 − tk)

By noting that ve(tk) = 0 and limt→tk+1 ve(t) = σ + dσ(tk+1), we have

tk+1 − tk ≥
σ + dσ(tk+1)

π
≥ σ − Dσ

π
(70)

Thus, the Zeno behavior can be avoided.
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If |y(t)− yr| >
√

2h̄1
h̄2

Ξ, then from (67)

V̇n ≤ −h̄2V + Ξ ≤ − h̄2

h̄1
Vn + Ξ < 0 (71)

So, Vn will decrease until |y(t)− yr| ≤
√

2h̄1
h̄2

Ξ.

Remark 3. From the definition of function sg(·) shown in (16), we can obtain sign(zn) = sg(zn)
when |zn| is greater than or equal to δ. Similarly, we can also obtain sg(zn) =

zn(
δ2−z2

n

)2
+|zn |

≤
zn
|zn | = sign(zn) when |zn| is smaller than δ. It is also known that sign(zn) and sg(zn) have the

same positive and negative signs. So, we find that (sign(zn)− sg(zn))2 is bounded, and its bound
can be chosen as 1. Thus, the values of lD and lb can be chosen based on the inequalities lD − ε2 > 0
and lb − ε4σ2 > 0, respectively.

Remark 4. Theorem 1 provides the results on system stability. The key steps in proving Theorem
1 can be summarized as follows: (1) Firstly, a Lyapunov function is constructed. This Lyapunov
function contains all the fundamental signals of the closed-loop system. (2) We calculate the
derivative of the Lyapunov function and prove that its derivative is positive or non-positive when
the Lyapunov function increases to a certain value. (3) Finally, according to the principle of
Lyapunov stability analysis, it can be concluded that the system is stable. The transformation
between uT = DI(vT) and u = DI(v), as well as the inequality relationship between ue and ve

given by Lemma 1, is crucial in the derivation of Theorem 1.

4. Simulation Studies

(1) Firstly, we apply the proposed controllers to a second-order system described
as follows:

ẋ1 = x2 + sin(x1);

ẋ2 = (2 + cos(x1x2))θ + u (72)

where x1, x2 are system states and u is the input. The parameter θ = 2 is an unknown
parameter. The dead-zone input u = DI(v) is described by

u = DI(v) =


2(v − 1) v ≥ 1

0 −0.8 < v < 1
2(v + 0.8) v ≤ −0.8

(73)

In the simulation, the design parameters are selected as k1 = 7, k2 = 8, ηh = 0.2,
ηD = 0.4, ηb = 0.4, Γ = 0.2, lh = 0.1, lD = 0.2, lb = 1, lθ = 0.2, h0 = 1.2, θ0 = 0.2, D0 = 0.1,
bm0 = 0.8, εi = 0.1(i = 0, 1, 2, 3, 4). The reference signal is taken as yr = sin(t). The function
sg(·) is given as

sg(zn) =


zn
|zn | , |zn| ≥ 0.1

zn(
0.12−z2

n

)2
+|zn |

, |zn| < 0.1 (74)

sg(zn) is a smooth function of variable zn. This function is obtained by taking
parameter δ to o.1 in the equation above Remark 2. By using it as an approximation of
the sign(·) function in the controller design, we can obtain a continuous input signal. The
triggering mechanism is

vT(t) = v(tk), t ∈ [tk, tk+1)

tk+1 = in f imum
{

t ∈ R : |ve| ≥ 0.1 + 0.02sin(t)
}

t1 = 0 (75)
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Figures 3 and 4 show the system states x1, x2. Figures 3 and 5 show the tracking per-
formance, including the tracking error and the real-time dynamic tracking of the reference
signal. Figure 6 shows the input signal of the dead-zone transformation. It is a control
signal generated by the triggering mechanism shown in (75). Figure 7 shows the triggering
time. Figure 8 shows the estimations of the unknown parameters. It is easy to see that all
closed-loop signals are bounded.

With (64), the value of h̄1 is

h̄1 = max
{1

2
,

5
2

,
2

0.4
,

1
0.8

,
1

0.8

}
= 5

Then, from (61), we obtain 0.1 ≤ l̄D ≤ 0.2 and 0.999 ≤ l̄b ≤ 1. With (66), we have

h̄2 = min
{

7, 8, 0.1, 0.05,
1
2

l̄D,
1
2

l̄b
}
= 0.05

0 5 10 15 20

T(sec)

-2

-1

0

1

2

O
ut

pu
t s

ig
na

l

Figure 3. Output signal y = x1.

0 5 10 15 20

T(sec)

-4

-2

0

2

4

S
ta

te
 x

2

Figure 4. State x2.
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Figure 5. Tracking error.
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Figure 6. Input signal v.

Figure 7. Triggering time.
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Figure 8. Estimations of parameters.

With (53), Ξ1 can be calculated as

Ξ1 =
1
2
× 0.1 × (0.5 − 1.2)2 +

1
2
× 0.2 × (2.02 − 0.1)2 +

1
2
× (2 − 0.8)2

+
1
2
× 0.2 × (2 − 0.2)2 + 0.1 × (2(1 + 0.8))2 = 2.73314

From (59), we have

2.73314 ≤ Ξ ≤ 2.73314 + 0.41204 = 3.14518

Then, we obtain √
2h̄1

h̄2
Ξ =

√
10

0.05
2.73314 = 23.3801

Obviously, the tracking error in the simulation meets this range.
Next, we consider that the external disturbance de(t) = −6sin(t) + 0.6 exists in

nonlinear systems (72). At the same time, the value of the unknown parameter is changed
to 3. Thus, the system model can be expressed by

ẋ1 = x2 + sin(x1);

ẋ2 = 3(2 + cos(x1x2)) + u + de(t) (76)

The dead-zone input, auxiliary function sg(·), and the triggering mechanism are cho-
sen to be the same as in (73)–(75), respectively. The reference signal is taken as yr = sin(t).
In the simulation, the design parameters are taken as k1 = 7, k2 = 8, ηh = 0.2, ηD = 0.4,
ηb = 0.4, Γ = 0.2, lh = 0.1, lD = 0.2, lb = 1, lθ = 0.2, h0 = 1.2, θ0 = 0.2, D0 = 0.1,
bm0 = 0.8, εi = 0.1(i = 0, 1, 2, 3, 4).

Figures 9 and 10 show the system states x1, x2. Figures 9 and 11 show the tracking per-
formance, including the tracking error and the real-time dynamic tracking of the reference
signal. Figure 12 is the input signal of the dead-zone transformation. It is a control signal
generated by the triggering mechanism shown in (75). Figure 13 shows the triggering
time. Figure 14 shows the estimations of unknown parameters. It is easy to see that all
closed-loop signals are bounded, and the proposed control scheme has strong robustness
against changes in unknown parameters and external disturbances.
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Figure 9. Output signal y = x1.
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Figure 10. State x2.
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Figure 11. Tracking error.
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Figure 12. Input signal v.

Figure 13. Triggering time.
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Figure 14. Estimations of parameters.

(2) Secondly, we consider the following single-link rigid robot system [23]:

Jr θ̈ = −1
2

mrglrsin(θ)− Mrglrsin(θ) + DI(v) (77)

where 0 ≤ θ ≤ π
2 is the joint rotation angle. The value of the mass of the load is mr = 1.5 kg.

In addition, g = 9.8 m/s2 is a constant. The length of the robot link and the mass of the
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rigid link are taken as lr = 0.5 m and Mr = 3 kg, respectively. The moment of inertia is
Jr = Mrl2

r +
1
3 mrl2

r . DI(v) represents the dead-zone input and can be described by

DI(v) =


m(v − br) v ≥ br

0 bl < v < br
m(v − bl) v ≤ bl

(78)

where m = 2, br = 1, bl = −0.8. Letting x1 = θ and x2 = θ̇, the system model (77) can be
rewritten as

ẋ1 = x2

ẋ2 =
1
Jr
(−1

2
mrglrsin(x1)− Mrglrsin(x1) + DI(v)) (79)

In the simulation, the design parameters are selected as k1 = 7, k2 = 8, ηh = 0.1,
ηD = 0.4, ηb = 0.05, lh = 0.1, lD = 0.2, lb = 1, h0 = 1.2, D0 = 0.1, bm0 = 0.8,
εi = 0.1 (i = 0, 1, 2, 3, 4). The reference signal is taken as yr = sin(t). The auxiliary
function sg(·) is the same as in (74). The triggering mechanism is

vT(t) = v(tk), t ∈ [tk, tk+1)

tk+1 = in f imum
{

t ∈ R : |ve| ≥ 0.5 + 0.2sin(t)
}

t1 = 0 (80)

Figures 15 and 16 show the system states x1, x2. Figures 15 and 17 show the track-
ing performance, including the tracking error and the real-time dynamic tracking of the
reference signal. Figure 18 shows the input signal of dead-zone transformation. It is a
control signal generated by the triggering mechanism shown in (75). Figure 19 shows the
triggering time. Figure 20 shows the estimations of unknown parameters. It is easy to see
that all closed-loop signals are bounded.
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Figure 15. Output signal y = x1.
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Figure 16. State x2.
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Figure 17. Tracking error.
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Figure 18. Input signal v.
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Figure 19. Triggering time.
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Figure 20. Estimations of parameters.

(3) Finally, for the second-order system shown in (72), we conducted simulations using
the controller in [1] and the controller proposed in this paper, and compared and analyzed
the simulation results. For fairness, the control input signal in [1] needs to be discretized
through the same triggering mechanism before acting on the system. The system model
can be described as

ẋ1 = x2 + sin(x1);

ẋ2 = (2 + cos(x1x2))θ + u (81)

The triggering mechanism is

vT(t) = v(tk), t ∈ [tk, tk+1)

tk+1 = in f imum
{

t ∈ R : |ve| ≥ 0.06 + 0.02sin(t)
}

t1 = 0 (82)

The other design parameters and initial values are the same as those in simulation (1).
The dead-zone model, reference signal, and auxiliary function sg(zn) are also the same as
simulation (1).

Figures 21 and 22 show the input signals generated by the proposed controller in this
paper and by the controller in [1], respectively. Figures 23 and 24 show the triggering times.
The estimations of unknown parameters are given in Figures 25 and 26. The comparison of
tracking performance is shown in Figure 27, and the trigger times are shown in Figure 28.
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From the comparison of the simulation results, it can be seen that the controller proposed
in this article can achieve better tracking performance with fewer communication times.
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Figure 21. Input v (this paper).
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Figure 22. Input v (reference [1]).

Figure 23. Time (this paper).
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Figure 24. Time (reference [1]).
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5. Conclusions

An event-triggered adaptive control scheme is proposed based on backstepping tech-
niques for a class of nonlinear systems with unknown parameters, dead-zone input, and
external disturbance. We not only consider the presence of external disturbances in the
system but also introduce unknown disturbances in the design of the triggering mechanism.
Then, a dynamic threshold with external disturbance is constructed. It is shown that the
proposed adaptive control scheme can ensure all signals in the closed-loop system are
bounded, and the tracking performance is also established. Finally, simulation studies
are used to verify the effectiveness of the proposed scheme. The event-triggered control
scheme presented in this paper is mainly designed for nonlinear systems with unknown
dead-zone input. However, there are still some problems that need to be addressed. In the
design of the event-triggered controller, a more general dead-zone input model should be
considered, especially when the dead zone’s unknown parameters are time-varying. In
addition, the triggering threshold should be related to the size of the control input. When
the control input is large, the threshold should also correspondingly increase.
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