
Citation: Zhang, Z.; Lu, J.; Ren, Q.; Li,

Z.; Hu, Y.; Chen, H. An Accurate and

Invertible Sketch for Super Spread

Detection. Electronics 2024, 13, 222.

https://doi.org/10.3390/

electronics13010222

Academic Editor: Jong Wook Kim

Received: 13 November 2023

Revised: 31 December 2023

Accepted: 1 January 2024

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Accurate and Invertible Sketch for Super Spread Detection
Zheng Zhang , Jie Lu, Quan Ren, Ziyong Li, Yuxiang Hu and Hongchang Chen *

Institute of Information Technology, PLA Strategic Support Force Information Engineering University,
Zhengzhou 450001, China; zhangzhengndsc@126.com (Z.Z.); lujie_cs@zju.edu.cn (J.L.); ndscrq@163.com (Q.R.);
17629352940@163.com (Z.L.); chxachxa@126.com (Y.H.)
* Correspondence: ndscchc@139.com

Abstract: Super spread detection has been widely applied in network management, recommender
systems, and cyberspace security. It is more complicated than heavy hitter owing to the requirement
of duplicate removal. Accurately detecting a super spread in real-time with small memory demands
remains a nontrivial yet challenging issue. The previous work either had low accuracy or incurred
heavy memory overhead and could not provide a precise cardinality estimation. This paper designed
an invertible sketch for super spread detection with small memory demands and high accuracy. It
introduces a power-weakening increment strategy that creates an environment encouraging sufficient
competition at the early stages of discriminating a super spread and amplifying the comparative
dominance to maintain accuracy. Extensive experiments have been performed based on actual
Internet traffic traces and recommender system datasets. The trace-driven evaluation demonstrates
that our sketch actualizes higher accuracy in super spread detection than state-of-the-art sketches. The
super spread cardinality estimation error is 2.6–19.6 times lower than that of the previous algorithms.

Keywords: super spread detection; security; sketch; data stream

1. Introduction

Super spread detection in real-time is crucial for security monitoring, network mea-
surement, and resource alignment [1–3]. In general, flow size and cardinality are two basic
statistics of interest, from which a variety of traffic information can be extracted. The
flow size is the number of elements (e.g., bytes, packets, and contents) in a flow, and flow
cardinality is the number of distinct elements (e.g., distinct addresses and ports) in a flow.
The most significant difference between flow size and flow cardinality is that estimating a
flow spread demands the removal of duplicate elements; however, estimating the flow size
does not. A flow refers to data traffic that has the same or similar characteristics. This paper
focuses on super spread identification (super spread is a flow with high cardinality), which
can be widely used for search trend detection, recommender systems, anomaly detection,
and DDoS detection [4–7].

Many studies have been proposed to find heavy flows with large sizes and have
achieved significant progress [8–11]. However, finding super spreads is a more challenging
problem because of the difficulty of deleting duplicates. Many useful per-flow estimators
with different theoretical precisions, such as bitmap [12], Linear Counter (LC) [13], LogLog
(LL) [14], Adapt Counter (AC) [15], and HyperLogLog (HLL) [16] have been designed
for various situations and datasets. However, allocating an estimator for each flow is
impractical because the required memory always exceeds the available memory.

It is challenging to find super spreads in data streams with limited memory. It is not
possible to keep track of all flows accurately considering that a considerable amount of
memory will be wasted by the recording of large-scale data streams. One strategy uses
a sampling method to count a small part of the flow according to its actual cardinality.
M2D is one typical algorithm [17]; however, sampling strategies lose accuracy. Another
strategy used in the design of the above data structure is called estimator sharing [7,18–22],

Electronics 2024, 13, 222. https://doi.org/10.3390/electronics13010222 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010222
https://doi.org/10.3390/electronics13010222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0004-4318-8143
https://doi.org/10.3390/electronics13010222
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010222?type=check_update&version=2

Electronics 2024, 13, 222 2 of 20

which uses one cardinality estimator for multiple flows. Sketch is a type of probabilistic
data structure widely used in the field of network measurement to record the frequency
or estimate the cardinality of elements in multiple sets or streams, and sketch is usually
much smaller than the input size. Sketch-based measurement is a passive measurement,
which usually does not send any detection packets and does not cause additional network
overhead. Sketch uses profiles to effectively store and retrieve the information of interest,
thereby achieving the recording of the presence and volume information of active flows.
Then, the majority vote algorithm (MJRTY) [23] is used to find the maximum cardinality
flow from the estimator and server as a possible super spread. However, MJRTY does not
work well if the cardinality of a super spread is not significantly larger than the other flows.

To fill this gap, we present a novel sketch, called SSD-AIS, for super spread detection
that can accurately detect super spread and provide precisely estimated flow cardinality.
SSD-AIS adopts MJRTY in each bucket to find the candidate super spread while maintaining
a key, a pvote counter, and a nvote counter. The pvote counter in the bucket records the
cardinality of the candidate flow while the nvote counter records the cardinality of the
other flows, which are mapped to this bucket. SSD-AIS only keeps track of a small amount
of super spread and the vast majority of small spread flows will merely increase the value
of nvote.

To avoid small spreads from increasing too much in nvote and affecting the accuracy,
we propose a power-weakening increment strategy in SSD-AIS to increase nvote, which
creates an environment encouraging sufficient competition in the early stages of discrimi-
nating a super spread and amplifying the comparative dominance when the value of pvote
is large. The probability of an nvote value increment decreases with the power as pvote
increases. Meanwhile, various cardinality estimators can be plugged into the SSD-AIS. In
summary, the main contributions we have made are as follows:

(1) We proposed an innovative invertible sketch data structure called SSD-AIS for super
spread detection with small memory demands, which guarantees accuracy. Mean-
while, SSD-AIS can provide an exact spread estimation for the super spread.

(2) We presented a mathematical analysis of memory usage and insert time, and the
expectation of cardinality for a super spread.

(3) We implemented SSD-AIS with two standard cardinality estimators (AC and LC
estimators). Trace-driven evaluations showed that SSD-AIS with the AC estimator
and SSD-AIS with the LC estimator had higher accuracy in super spread detection
compared to the state-of-art with small memory demands. And the average relative
error of cardinality estimation of a super spread in SSD-AIS with the LC estimator
is 2.6–19.6 times lower than the previous algorithms. The source code of SSD-AIS
implementation and the related algorithms have been released at Github [24].

2. Related Works

In order to save memory, estimator sharing for multi-flow spread is widely adopted.
Estimator sharing hashes each flow to d estimators, each of which produces a spread
estimation for flow f independently. The smallest estimation carries the least error. There
are two parts for one super spread: the value of cardinality and the flow label. Targeting
the above two parts, existing approaches can be divided into two categories. Both of
them have made certain progress in super spread detection; however, they also have
deficiencies mainly in detection performance or resource expense (e.g., memory occupancy
and detection accuracy). The distinct memory consumption of single estimator is presented
in Table 1. The details are as follows.

Some approaches encode the flow label information into a sketch and then enumerate
the entire label space to recover the candidate super spread. FAST [25] proposes an efficient
data structure, namely, the fast sketch, which maintains multiple arrays of HLL sketches.
For each arriving item, it splits flow label f into two parts. One part has been hashed
to a d HLL array, and in each array records the element in one HLL. In this way, it can

Electronics 2024, 13, 222 3 of 20

not only polymerize packets into a small number of flows but also further enable ISPs to
discriminate the anomalous keys.

Table 1. Memory costs for different estimators.

Estimator Memory Remark

Bitmap m m = n, n is the real
cardinality of flow

Linear Counter m mln (m) > n
LogLog 32 m Recommended as m = 128

Adaptive Counter 32 m Recommended as m = 128
HyperLogLog 5 m Recommended as m = 128

CDS [26] proposes a new data structure for locating the hosts associated with high
connection degrees or significant variations in connection degrees based on the reversible
connection degree sketch. It constructs a compact summary of host connection degrees,
realizing an efficient and accurate analysis, and reconstructs the host addresses associated
with large fan-outs by a simple computation merely based on the characteristics of the
Chinese Remainder Theorem.

Vector Bloom Filter [27], which is a variant of the standard bloom filter, improves the
update efficiency significantly via bit-extraction hashing. It can extract bits directly from
the source ID and obtain the information of super spreads by using the overlapping of hash
bit strings.

The approaches given above can find and derive super spreads; however, the compu-
tational cost is too high to afford the recovery of the flow label because the enormous flow
label space and inaccuracy as an estimator have to be shared by many flows.

Some other approaches separate the cardinality and the flow label using existing
frequency-based sketches to return high-frequency keys and use another data structure
to store the flow label of the candidate super spread. cSkt [28] extended the Count-Min
sketch [29] with an external heap for tracking super spreads and associated each bucket
with a distinct cardinality estimator, which is simple and easy to implement.

OpenSketch [30], which offloads part of the measurement function to the data plane
from the control plane, combined reversible sketch [31] with bitmap algorithms. In the data
plane, it provides a simple three-stage pipeline involving hashing, filtering, and counting
to implement measurement tasks of cardinality and flow labels. In the control plane, it
provides a measurement library to realize automatic configurations of the pipeline and
resource allocation for different measurement tasks.

And Liu [7] et al. combined Fast Sketch [25] with an optimal distinct counter for super
spread detection. It designs a reversible and mergeable data structure for a distributed
network monitoring system, which means implementing network traffic measurements at
each local monitor and reporting high-cardinality hosts productively based on compressed
information, thus avoiding querying every single host in the network.

The approaches above can find and derive the super spreads; however, existing invert-
ible frequency-based sketches, as proposed above, have heavy processing overhead: either
incurring high memory access overhead for heap updates or inducing an unaffordable
update overhead that grows linearly with the key size.

Among them, gmf [26], and SpreadSketch [20] are two of the state-of-the-art implemen-
tations. The core technologies introduced by gmf are a generalized geometric counter, a
generalized geometric hash function, and an innovative geometric minimum filter that
can eliminate duplication and block the vast majority of mice or small streams. Therefore,
after the original flow passes through the filter, only a small number of flows are tracked
using the hash table. In this way, gmf separates a super spread from the vast majority of
small flows. This method greatly reduces memory usage, but cannot accurately measure
the cardinality of super spread.

Electronics 2024, 13, 222 4 of 20

SpreadSketch can simultaneously measure the diffusion of a lot of traffic and distinguish
the super spreads among them. It extends the Count-Min [29] while replacing each counter
with multi-resolution bitmaps, a label field, and a register [22]. The label field is used to
record a flow label. However, if the cardinality of streams mapped to the same bucket is
very close, especially when memory is small, its detection is not accurate enough.

In conclusion, although the above methods have made some progress in super spread
detection, they cannot meet the requirements of accuracy and performance for super
spread detection at the same time, especially when the cardinality of a super spread is not
significantly larger than other spreads and the available memory is small (less than 100 KB).
Besides, the cardinality they provide is not accurate enough.

3. Overview

In this section, we introduce the core idea behind SSD-AIS in the first place. We then
present the data structure and basic operations of SSD-AIS. The notations frequently used
in subsequent paragraphs of this paper and their meanings are listed in Table 2.

Table 2. Notations.

Notations Meanings

S A data stream
M The number of flows in S
N 32 m
L 32 m
fi 5 m
Fi The fingerprint of flow fi
ni Real spread of flow fi.
ni Estimated spread of flow fi
d Array number
w The bucket number in an array
α Predefined parameter
β Predefined parameter

3.1. Subsection

In the estimator-sharing method, multiple flows are hashed into the same estimator
because the number of estimators is far less than the number of flows. Intuitively, we
can adopt the majority vote algorithm (MJRTY) [23] to search the candidate super spread.
MJRTY maintains a vote key and a vote counter in one bucket. When processing an element
e, if e is equal to the vote key, then the estimator is increased or decreased. By comparing
with the vote key, the estimator can accurately find the element that repeatedly occurs
for more than half of the elements of the input. In today’s network environment, online
processing has become an important performance requirement. To provide an online spread
estimation of a super spread, we use two estimators in one bucket: a pvote estimator and
an nvote estimator. The pvote estimator counts and records the number of distinct elements
of the candidate flow, and the nvote estimator counts and records the number of distinct
elements of the other flows.

To find a super spread, there are two main problems we need to overcome when using
MJRTY. First, the assumption of the application scenarios that the spread of a flow exceeding
half of the spread of all flows hashed in this bucket is not always satisfied. Second, if two
super spreads are mapped to one bucket, at least one of them will be underreported owing
to the collision. However, this probability cannot be ignored when the number of buckets
is small.

To address the first problem, we designed a power-weakening increment strategy for
the nvote estimator inspired by the positive feedback of cybernetics. When an incoming el-
ement does not match the candidate key, we increase the nvote estimator with probabilities
based on the value of the pvote estimator. For example, if the pvote value is 100 and the
power is 2, the probability of an increment for nvote is (1/100)2. The power-weakening

Electronics 2024, 13, 222 5 of 20

increment strategy creates an environment encouraging sufficient competition in the early
stages of discriminating a candidate super spread and the decay nvote estimator increases
when the pvote estimator is large enough to ensure accuracy.

To address the second problem, we adopted the classical count-min sketch, which
consists of multiple arrays. Count-Min sketch will hash any incoming item into a bucket in
each array and increase the corresponding bucket. Finally, it returns the minimum values
of all corresponding buckets as the estimated value of this item. In our design, we return
the value of the corresponding buckets after checking whether the key in the bucket and
item match. Assuming that the probability of two super spreads colliding in an array is p
and that the sketch is composed of d arrays, then the probability that a super spread will
eventually be stored in Sketch is greater than 1− pd. The probability of underreporting has
been greatly reduced through a combination of sketches and MJRTY.

3.2. Data Structure

The data structure of SSD-AIS is composed of d arrays, and each array has w buckets,
as shown in Figure 1. Each bucket has five fields: (1) an FP field storing the fingerprint
of the candidate super spread in the bucket, (2) a PEst estimator storing the element of
the candidate flow, (3) an NEst estimator counting the number of elements that have a
different fingerprint from the candidate super spread in the bucket, (4) a pvote count record
of the value of the PEs estimator, and (5) a nvote count record of the value of the NEst
estimator. In addition, SSD-AIS has d pairwise-independent hash functions, represented
by h1, h2, ..., hd. And each hash function hi (1 ≤ i ≤ d) hashes the flow label f of each
incoming item ⟨ f , e⟩ to one of the buckets in row i.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 21

To address the first problem, we designed a power-weakening increment strategy for
the nvote estimator inspired by the positive feedback of cybernetics. When an incoming
element does not match the candidate key, we increase the nvote estimator with probabil-
ities based on the value of the pvote estimator. For example, if the pvote value is 100 and
the power is 2, the probability of an increment for nvote is (1/100)2. The power-weaken-
ing increment strategy creates an environment encouraging sufficient competition in the
early stages of discriminating a candidate super spread and the decay nvote estimator
increases when the pvote estimator is large enough to ensure accuracy.

To address the second problem, we adopted the classical count-min sketch, which
consists of multiple arrays. Count-Min sketch will hash any incoming item into a bucket
in each array and increase the corresponding bucket. Finally, it returns the minimum val-
ues of all corresponding buckets as the estimated value of this item. In our design, we
return the value of the corresponding buckets after checking whether the key in the bucket
and item match. Assuming that the probability of two super spreads colliding in an array
is 𝑝𝑝 and that the sketch is composed of 𝑑𝑑 arrays, then the probability that a super spread
will eventually be stored in Sketch is greater than 1 − 𝑝𝑝𝑑𝑑. The probability of underreport-
ing has been greatly reduced through a combination of sketches and MJRTY.

3.2. Data Structure
The data structure of SSD-AIS is composed of 𝑑𝑑 arrays, and each array has 𝑤𝑤 buck-

ets, as shown in Figure 1. Each bucket has five fields: (1) an FP field storing the fingerprint
of the candidate super spread in the bucket, (2) a PEst estimator storing the element of the
candidate flow, (3) an NEst estimator counting the number of elements that have a differ-
ent fingerprint from the candidate super spread in the bucket, (4) a pvote count record of
the value of the PEs estimator, and (5) a nvote count record of the value of the NEst esti-
mator. In addition, SSD-AIS has 𝑑𝑑 pairwise-independent hash functions, represented by
h1, h2, . . . , hd. And each hash function ℎ𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑑𝑑) hashes the flow label 𝑓𝑓 of each in-
coming item 〈𝑓𝑓, 𝑒𝑒〉 to one of the buckets in row 𝑖𝑖.

Note that many efficient spread estimators are suitable for different data and require-
ments, such as bitmap, LC, FM, LL, AC, and HLL. These estimators can be efficiently and
simply combined with SSD-AIS as a plug-in. In other words, we generalize and combine
the structure of SSD-AIS to a family of sketches, called saSketch, and provide a plug-in
component method for a different estimator.

For convenience, we use 𝐴𝐴[𝑢𝑢][𝑣𝑣](0 ≤ 𝑢𝑢 < 𝑑𝑑, 0 ≤ 𝑣𝑣 < 𝑤𝑤) to represent the v-th bucket
in the u-th array. Then we use 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹, 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
and 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 to denote the FP field, pvote count, nvote count, PEst estimator, and
NEst estimator in the bucket A[𝑢𝑢][𝑣𝑣], respectively. We use the action descriptions Increase
(PEst) or Increase (NEst) to uniformly represent the item insertion into the estimator. For
different estimators, the insertion methods are different. For example, the LC estimator is
implemented as a bitmap and hash incoming item to a bit in the LC estimator and we set
the bit to one.

Figure 1. The data structure of SSD-AIS.

...

.

.

.

...

...

.

.

.

.

.

.

.

.

.

.

.

.

PvoteFP Nvote NEstPEst

P45

h1(f4)

h2(f4)

hd(f4)

w buckets

d arrays

Figure 1. The data structure of SSD-AIS.

Note that many efficient spread estimators are suitable for different data and require-
ments, such as bitmap, LC, FM, LL, AC, and HLL. These estimators can be efficiently and
simply combined with SSD-AIS as a plug-in. In other words, we generalize and combine
the structure of SSD-AIS to a family of sketches, called saSketch, and provide a plug-in
component method for a different estimator.

For convenience, we use A[u][v](0 ≤ u < d, 0 ≤ v < w) to represent the v-th bucket
in the u-th array. Then we use A[u][v].FP, A[u][v].Pvote, A[u][v].Nvote, A[u][v].PEst, and
A[u][v].NEst to denote the FP field, pvote count, nvote count, PEst estimator, and NEst
estimator in the bucket A[u][v], respectively. We use the action descriptions Increase
(PEst) or Increase (NEst) to uniformly represent the item insertion into the estimator. For
different estimators, the insertion methods are different. For example, the LC estimator is
implemented as a bitmap and hash incoming item to a bit in the LC estimator and we set
the bit to one.

3.3. Basic Operations

Initialization: All valuations of the fields in SSD-AIS are initially set as null or 0.
Insertion: The step-by-step pseudocode of the insertion operation is presented as

Algorithm 1. For each incoming item
〈

fi, ej
〉
, the flow label is fi and the element label

is ej. In general, SSD-AIS computes d hash functions and maps flow fi to d bucket. For
each row u, we first compute the hash function hu(fi) to obtain the bucket position v in the

Electronics 2024, 13, 222 6 of 20

corresponding row. Based on the values of the corresponding fields in A[u][v], as shown in
Figure 2, there are three different cases, as follows:

Electronics 2024, 13, x FOR PEER REVIEW 6 of 21

3.3. Basic Operations
Initialization: All valuations of the fields in SSD-AIS are initially set as null or 0.
Insertion: The step-by-step pseudocode of the insertion operation is presented as Al-

gorithm 1. For each incoming item 〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗〉, the flow label is 𝑓𝑓𝑖𝑖 and the element label is 𝑒𝑒𝑗𝑗.
In general, SSD-AIS computes 𝑑𝑑 hash functions and maps flow 𝑓𝑓𝑖𝑖 to 𝑑𝑑 bucket. For each
row 𝑢𝑢, we first compute the hash function ℎ𝑢𝑢(𝑓𝑓𝑖𝑖) to obtain the bucket position 𝑣𝑣 in the
corresponding row. Based on the values of the corresponding fields in 𝐴𝐴[𝑢𝑢][𝑣𝑣], as shown
in Figure 2, there are three different cases, as follows:

Figure 2. The main three insertion cases of SSD-AIS.

Case 1: When 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0. This means bucket 𝐴𝐴[𝑢𝑢][𝑣𝑣] is null, then SSD-AIS
sets 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑖𝑖 and increases 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.

Case 2: When 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 > 0 and 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑖𝑖. This means that the flow 𝑓𝑓𝑖𝑖
is the candidate super spread, then SSD-AIS increases 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.

Case 3: When 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 > 0 and 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹 ≠ 𝐹𝐹𝑖𝑖. This means that the flow 𝑓𝑓𝑖𝑖
is not the candidate super spread, and SSD-AIS increases 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 with a probability
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . After increasing 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and updating 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , if 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is
greater than or equal to 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, SSD-AIS clears bucket 𝐴𝐴[𝑢𝑢][𝑣𝑣].

Algorithm 1: Insertion
 Input: A data item 〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗〉

Output: update SSD-AIS
1 for 𝑢𝑢 ←1 to d do
2 𝑣𝑣 ← ℎ𝑢𝑢(𝑓𝑓𝑖𝑖) mod w;
3 if 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 then
4 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹 ← 𝐹𝐹𝑖𝑖;
5 Increase(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃);
6 Update(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃);
7 else if 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑖𝑖 then
8 Increase(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃);
9 Update(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃);
10 else
11 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝛽𝛽

𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
)𝛼𝛼;

12 if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1) < 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then
13 Increase(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁);
14 Update(𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁);
15 if 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≥ 𝐴𝐴[𝑢𝑢][𝑣𝑣].𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 then
16 clear bucket 𝐴𝐴[𝑢𝑢][𝑣𝑣];

Note that probability is a very important parameter in the power-weakening incre-
ment strategy. Probability is defined as follows:

PvoteFP Nvote NEstPEst

<f2,e7>

A[u][v]

Case1: if Pvote=0
FP←F3, Increase(PEst)

Case2: if Pvote≠0 && FP=f2
Increase(PEst)

Case3: if Pvote≠0 && FP≠f2
Increase(NEst) with a probability Ppower

Figure 2. The main three insertion cases of SSD-AIS.

Case 1: When A[u][v].Pvote = 0. This means bucket A[u][v] is null, then SSD-AIS sets
A[u][v].FP = Fi and increases A[u][v].PEst.

Case 2: When A[u][v].Pvote > 0 and A[u][v].FP = Fi. This means that the flow fi is
the candidate super spread, then SSD-AIS increases A[u][v].Pvote.

Case 3: When A[u][v].Pvote > 0 and A[u][v].FP ̸= Fi. This means that the flow fi is not
the candidate super spread, and SSD-AIS increases A[u][v].NEst with a probability Ppower.
After increasing A[u][v].NEst and updating A[u][v].Nvote, if A[u][v].Nvote is greater than
or equal to A[u][v].Pvote, SSD-AIS clears bucket A[u][v].

Algorithm 1: Insertion

Input: A data item
〈

fi, ej

〉
Output: update SSD-AIS

1 for u←1 to d do
2 v← hu(fi) mod w;
3 if A[u][v].Pvote = 0 then
4 A[u][v].FP← Fi ;
5 Increase(A[u][v].Pvote);
6 Update(A[u][v].PEst);
7 else if A[u][v].FP = Fi then
8 Increase(A[u][v].Pvote);
9 Update(A[u][v].PEst);
10 else
11 Ppower =

(
β

A[u][v].Pvote

)α
;

12 if rand(1) < Ppower then
13 Increase(A[u][v].Nvote);
14 Update(A[u][v].NEst);
15 if A[u][v].Nvote ≥ A[u][v].Pvote then
16 clear bucket A[u][v];

Note that probability is a very important parameter in the power-weakening increment
strategy. Probability is defined as follows:

Ppower =

(
β

A[u][v].Pvote

)α

(1)

where α and β are predefined constant parameters (e.g., α = 0.4, β = 1). It can be observed
that Ppower decreases as A[u][v].Pvote increases. For a super spread, the corresponding
pvote estimator in the bucket is incremented regularly, whereas the nvote estimator in-
creases with a dynamic decrease probability. Therefore, SSD-AIS magnifies the relative
advantage of the candidate super spread, and the accuracy of super spread detection
is high.

Query: Given a threshold Φ, SSD-AIS returns super spread and the value of the spread
whose spread exceeds Φ. The pseudocode of the operation in query process is presented

Electronics 2024, 13, 222 7 of 20

in Algorithm 2. First, SSD-AIS traverses all buckets; if the pvote of a bucket is greater
than the threshold Φ, add the FP to the unique set S. Then, SSD-AIS traverses the set S
using PointQuery (see Algorithm 3) to obtain the cardinality value of flow f (f ∈ S). If the
estimated spread s exceeds threshold Φ, add ⟨ f , s⟩ to the super spread list R. Then, we get
the potential super spreads.

Algorithm 2: Query process

Input : threshold Φ
Output: A set S and super spread list R

1 for u←1 to d do
2 for v←1 to d do;
3 if A[u][v].Pvote ≥ Φ then
4 add A[u][v].FP to set S
5 for each f ∈ S do
6 s← PointQuery(f) ;
7 if s ≥ Φ then
8 add < f , s > into R;

Algorithm 3: PointQuery

Input : flow f
Output : the estimated spread s of flow f

1 for u←1 to d do
2 v← hu(fi) mod w;
3 f lag← Flase ;
4 initial s to a big value;
5 if A[u][v].FP = f then
6 s← min(s, A[u][v].Pvote) ;
7 f lag← True ;
8 if f lag = True then
9 return s;
10 else
11 return 0;

4. Theoretical Analysis
4.1. Space and Time Complexities

Assume that the estimator in SSD-AIS is m-bit and that the time estimator update
required is te. SSD-AIS has dw buckets, each of which contains a log L-bit candidate flow
label, two loglog L-bit level counters, and two m-bit estimators. Thus, the memory space
occupied is O(dw(log L + 2loglogL + 2m)).

Each packet accesses d bucket to update the estimator. Then, we use the returned result
of the estimator to update Vote (pvote or nvote). Thus, the insertion time is O(d · (te + 1)).

4.2. Error Analysis

There are two main processes from real cardinality to the final estimated cardinality for
a super spread. The first part is the transformation of real cardinality ni into the candidate
super spread’s real cardinality ni through the Majority Vote algorithm in SSD-AIS, and the
second part is the transformation of the candidate super spread’s real cardinality ni into
the final estimated cardinality

.
ni by the estimator. The second part of the transformation

depends on the estimator type, including its mean and standard deviation. In this paper,
we mainly focus on the first part of the transformation.

There are two cases in the first part of the transformation as shown in Figure 3. In
the first case, there are no waste items for the final candidate super spread. In other
words, when the first item belonging to this super spread arrives at SSD-AIS, it becomes a

Electronics 2024, 13, 222 8 of 20

candidate. In the second case, some thriftless items are wasted before the corresponding
spread becomes a candidate super spread.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 21

Each packet accesses 𝑑𝑑 bucket to update the estimator. Then, we use the returned
result of the estimator to update Vote (pvote or nvote). Thus, the insertion time is O(𝑑𝑑 ⋅
(𝑡𝑡𝑒𝑒 + 1)).

4.2. Error Analysis
There are two main processes from real cardinality to the final estimated cardinality

for a super spread. The first part is the transformation of real cardinality 𝑛𝑛𝑖𝑖 into the can-
didate super spread’s real cardinality 𝑛𝑛𝑖𝑖 through the Majority Vote algorithm in SSD-AIS,
and the second part is the transformation of the candidate super spread’s real cardinality
𝑛𝑛𝑖𝑖 into the final estimated cardinality 𝑛𝑛𝚤𝚤̇ by the estimator. The second part of the trans-
formation depends on the estimator type, including its mean and standard deviation. In
this paper, we mainly focus on the first part of the transformation.

There are two cases in the first part of the transformation as shown in Figure 3. In the
first case, there are no waste items for the final candidate super spread. In other words,
when the first item belonging to this super spread arrives at SSD-AIS, it becomes a candi-
date. In the second case, some thriftless items are wasted before the corresponding spread
becomes a candidate super spread.

Figure 3. Two cases in the first part of transformation.

Theorem 1. Assume that a candidate super spread is held at its mapped bucket all the time, which
is described as case 1. Without a loss of generality, let us focus on one single array of SSD-AIS.
Given a small positive value 𝜀𝜀 and a candidate super spread with flow label 𝑓𝑓𝑖𝑖,

1ˆPr()
1i in n N

w

α
βε

ε β
 

− ≥ < ⋅ + 
 (2)

Proof of Theorem 1. We respectively prove case 1 and case 2.
Case 1: Firstly, we introduce indicator variable 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑘𝑘, defined as:

, ,

0 if () (() ()
1 if () (() ())

i k j i j k
i j k

i k j i j k

f f h f h f
I

f f h f h f
= ∨ ≠=  ≠ ∧ =

 (3)

When 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑘𝑘 = 1, it means two different flows 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑘𝑘 are mapped into the same
bucket in the 𝑗𝑗th array. Suppose that each flow is uniformly mapped to one of the 𝑤𝑤
counters randomly using the hash functions. The probabilities of the collision between
two distinct flows are 1

𝑤𝑤
, so the expectation of 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑘𝑘 is as follows:

, ,
1 1() Pr[() ()]

range()i j k j i j k
j

E I h f h f
h w

= = = = (4)

Then, we define the random variable 𝑋𝑋𝑖𝑖,𝑗𝑗 as:

fi
Flow Label

(a) no waste item

fi
Flow Label

(b) thriftless item

fc

wasted item

Figure 3. Two cases in the first part of transformation.

Theorem 1. Assume that a candidate super spread is held at its mapped bucket all the time, which
is described as case 1. Without a loss of generality, let us focus on one single array of SSD-AIS.
Given a small positive value ε and a candidate super spread with flow label fi,

Pr(ni − n̂i ≥ εN) <
1

εw
·
(

β

β + 1

)α

(2)

Proof of Theorem 1. We respectively prove case 1 and case 2.
Case 1: Firstly, we introduce indicator variable Ii, j, k, defined as:

Ii,j,k =

{
0 if(fi = fk) ∨ (hj(fi) ̸= hj(fk)
1 if(fi ̸= fk) ∧ (hj(fi) = hj(fk))

(3)

When Ii, j, k = 1, it means two different flows fi and fk are mapped into the same
bucket in the jth array. Suppose that each flow is uniformly mapped to one of the w counters
randomly using the hash functions. The probabilities of the collision between two distinct
flows are 1

w , so the expectation of Ii, j, k is as follows:

E(Ii,j,k) = Pr[hj(fi) = hj(fk)] =
1

range(hj)
=

1
w

(4)

Then, we define the random variable Xi, j as:

Xi,j =
M

∑
k=1

Ii,j,knk (5)

Xi, j refers to the summation of the sizes of other distinct flows mapped to the same
bucket in row j, except for the flow fi itself. Then, the expectation of Xi, j is:

E(Xi,j) = E

(
M

∑
k=1

Ii,j,knk

)
=

M

∑
k=1

(
E(Ii,j,k) · nk

)
=

N − ni
w

(6)

For each incoming packet, the value change depends on whether it belongs to the
flow fi: if so, the pvote is increased; if not, nvote increases with a certain probability. One
extreme situation is that all packets that do not belong to the candidate flow increment the
nvote, and then we have ni = ni − Xi, j. Another extreme case is that all packets that do not
belong to the candidate flow do not increase the nvote; then, we have ni = ni. Therefore,
we have:

ni − Xi,j ≤ ni ≤ ni (7)

Electronics 2024, 13, 222 9 of 20

Next, a random variable Pi, j, l is defined, representing the probability of the l-th
packet in Xi, j, which increases the nvote. The incremental probability of nvote Pi, j, l in the
power-weakening strategy is defined as Formula (8):

Pi,j,l =

{
1 if Cl < β(
β
Cl

)α
if Cl ≥ β

(8)

where Cl represents the value of pvote when the l-th packet in Xi, j arrives. We have:

ni = ni −
Xi,j

∑
l=1

Pi,j,l (9)

By the Markov inequality, the following formula holds:

Pr(ni − ni ≥ εN) = Pr(
Xi,j

∑
l=1

Pi.j.l ≥ εN) ≤
E(∑

Xi,j
l=1 Pi,j,l)

εN
(10)

Then we focus on E
(

∑
Xi, j
l=1 Pi, j, l

)
. It is assumed that all packets are uniformly dis-

tributed. From Equation (8), we can obtain Pi, j, l = 1 when 1 ≤ Cl ≤ β; thus, we have:

Pr
{

Pi,j,l = 1
}
=

β

γ
(11)

For convenience, let γ present ni − ∑
Xi,j
l=1 Pi,j,l . When β < Cl ≤ ni − E

(
∑

Xi,j
l=1 Pi,j,l

)
,

we have:

Pr
{

Pi,j,l =

(
β

Cl

)α}
=

1

ni − E(∑
Xi,j
l=1 Pi,j,l)

=
1
γ

(12)

As a result, the expectation of variable Pi, j, l can be represented as:

E(
Xi,j

∑
l=1

Pi,j,l)=

E(Xi,j)

∑
l=1

E(Pi,j,l)

= E(Xi,j)

(
β

γ
+

1
γ

γ

∑
Cl=β+1

(
β

Cl

)α)

because
β

Cl
≤ β

β + 1
, when Cl ∈ [β + 1, γ]

≤ E(Xi,j)

(
β

γ
+

(γ− β)

γ

(
β

β + 1

)α)
(13)

Focusing on the latter part, we have:

β
γ + (γ−β)

γ

(
β

β+1

)α

= 1
γ

{
β ·
(

1−
(

β
β+1

)α
+
(

β
β+1

)α)
+(γ− β

)
·
(

β
β+1

)α}
= 1

γ

{
γ ·
(

β
β+1

)α
+ β ·

(
1−

(
β

β+1

)α)}
because β

β+1 < 1

< 1
γ

{
γ ·
(

β
β+1

)α}
=
(

β
β+1

)α

(14)

Electronics 2024, 13, 222 10 of 20

Based on Equation (6), we get:

E(
Xi,j

∑
l=1

Pi,j,l) <
N − ni

w
·
(

β

β + 1

)α

(15)

Then combined with Equation (10), we have:

Pr(ni − ni ≥ εN)= Pr(
Xi,j

∑
l=1

Pi.j.l ≥ εN)

≤
E(∑

Xi,j
l=1 Pi,j,l)

εN

<
1

εw
·
(

β

β + 1

)α

(16)

Case 2: We divided the real value of the super spread into two parts n1
i and n2

i , where
n1

i represents the wasted items before fi becomes the candidate flow, and n2
i represents

the items after fi becomes the candidate flow. When fi becomes the candidate flow, the
analysis is the same as in case 1. For the same reason, the number of all items N is divided
into two parts: N1 and N2. Then, we have:

Pr(n2
i − n2

i ≥ εN2) <
1

εw
·
(

β

β + 1

)α

(17)

Because ni
2 is the final candidate super spread’s real value,

n2
i = ni (18)

Combining Equations (17) and (18), we have:

Pr(ni ≤ n2
i − εN2) <

1
εw
·
(

β

β + 1

)α

(19)

Then,
Pr(ni ≤ ni − εN)= Pr(ni ≤ n1

i + n2
i − ε(N1 + N2))

< Pr(ni ≤ n2
i − εN2)

<
1

εw
·
(

β

β + 1

)α
(20)

Combining Case 1 and Case 2, Theorem 1 holds.
Next, we consider the second part of the transformation. The LC estimator and AC

estimators are both unbiased [13,15] and the expectation of the estimator is equal to the
true value of the parameter being estimated, which is denoted as:

E(n̂i) = ni (21)

Therefore, the expectation of the estimated value has the following properties:

Pr{E(n̂i) ≤ ni − εN} < 1
εw
·
(

β

β + 1

)α

(22)

□

Electronics 2024, 13, 222 11 of 20

5. Evaluation

In this section, three main performances that SSD-AIS achieved via trace-driven
evaluation are shown as follows: (1) high accuracy in super spread detection, (2) low error
in cardinality estimation, and (3) high processing speed with a small and static space.

5.1. Setup

Platform: The experiments we conducted were run on a server with four 18-core Intel
Xeon Gold 5318Hs @2.5 GHz CPU and 256 GB DDR4 memory. The CPU has 1152 KB of L1
cache per core, and 24.75 MB of shared L3 cache.

Dataset:

(1) Recommender System Dataset: The dataset used in the experiment was collected from
a real-world e-commerce website [32] and we used the visitor behavior data. We took
the item ID as the flow label and visitor ID as the element identifier. Then, there were
approximately 2.7 M items and 200 k flows. The flow cardinality in this dataset is
defined as the number of distinct visitors viewing the item, reflecting the popularity
of the corresponding product.

(2) CAIDA Dataset: This dataset contains anonymized IP traces collected in 2016 by
CAIDA [33]. In this experiment, we considered the destination IP address as the
flow label and all packets toward the same destination constituted a flow. The source
IP address was used as the element identifier. The first 4 M packets of this dataset
belonging to approximately 50 K flows were used in the experiment. The flow spread
in this dataset is the number of distinct source IP addresses communicating with the
same destination IP address, which may reflect the victims of the DDoS attack.

Implementation: We have implemented Geometric-Min Filter (gmf) [19], cSkt [28],
SpreadSketch (SS) [20], SSD-AIS with an LC estimator (saSketch-lc), and SSD-AIS with an
AC estimator (saSketch-ac).

gmf and saSketch-lc both use the LC estimator and an estimator with 200 bits. The
length of the filter array in the gmf was 2000. saSketch-ac and cSkt both use the AC
estimator, where the number of registers in each estimator is 128 and each register is 4 bits.
The estimator in SpreadSketch is a multi-resolution bitmap, and the estimator is 438 bits
according to [20]. All algorithms were implemented in C++. The hash functions we utilized
in the above sketches are murmurhash32 Hash (obtained from the website [34]).

5.2. Metrics

• Throughput: All packets are inserted and the corresponding throughput is calculated.
The throughput is defined as N/T, where T represents the total processing time. The
measuring method is inserting millions of packets per second and the unit of the
throughput is Mps. We repeated the experiments 10 times and recorded and reported
the average value of the throughput.

• Detection time: Time spent reporting all super spreads. The experiments were repeated
10 times, and the average detection time was recorded and reported.

• Precision: Fraction of true super spreads reported over all reported spreads.
• Recall: Fraction of true super spreads reported over all true super spreads.
• F1 Score: The F1 score is the harmonic mean of the precision and recall, which is

defined as 2·Precision·Recall
Precision+Recall .

• Average Absolute Error (AAE): AAE is defined as 1
|Ψ|∑ fi∈Ψ|ni − n̂i|, where Ψ is the

true super spreads reported.
• Average Relative Error (ARE): ARE is defined as 1

|Ψ|∑ fi∈Ψ
|ni−n̂i|

ni
.

The throughput and detection time were used to measure the insert speed and query
speed, reflecting the performance. And the Precision, Recall, and F1 Score were used to
measure the accuracy of super spread detection. AAE and ARE were devoted to measuring
the error of the cardinality estimation.

Electronics 2024, 13, 222 12 of 20

5.3. Experiments on Parameters α and β

In this section, we conducted several experiments to evaluate the effects of the pa-
rameters α and β on SSD-AIS. In particular, we took saSketch-lc as a representation of
SSD-AIS in the e-commerce dataset. Here, we hope to find suitable α and β, rather than the
optimal α and β, for a certain dataset or sketch of the saSketch family. In fact, the following
experiments have proven that suitable α and β have excellent performance for different
datasets and sketches in the saSketch family.

In this experiment, we set d to 1, threshold Φ to 150, and memory to 40 KB. Figure 4
shows the impact of α and β on the F1 score of the super spread detection. The F1 score
of different βs increases with an increase of α and then stabilizes. And the F1 Score with
β = 1 is always the highest. Figure 5 shows the impact of α and β on the throughput of
super spread detection. When α = 1 and α = 2, there is a sudden increase in throughput
for all β, because the exponent calculation is faster for integers.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 21

estimator in SpreadSketch is a multi-resolution bitmap, and the estimator is 438 bits accord-
ing to [20]. All algorithms were implemented in C++. The hash functions we utilized in the
above sketches are murmurhash32 Hash (obtained from the website [34]).

5.2. Metrics
• Throughput: All packets are inserted and the corresponding throughput is calcu-

lated. The throughput is defined as N/T , where T represents the total processing
time. The measuring method is inserting millions of packets per second and the unit
of the throughput is Mps. We repeated the experiments 10 times and recorded and
reported the average value of the throughput.

• Detection time: Time spent reporting all super spreads. The experiments were re-
peated 10 times, and the average detection time was recorded and reported.

• Precision: Fraction of true super spreads reported over all reported spreads.
• Recall: Fraction of true super spreads reported over all true super spreads.
• F1 Score: The F1 score is the harmonic mean of the precision and recall, which is

defined as 2⋅Precision⋅Recall
Precision+Recall

.

• Average Absolute Error (AAE): AAE is defined as 1
|Ψ|

∑ |𝑛𝑛𝑖𝑖 − 𝑛𝑛𝚤𝚤� |𝑓𝑓𝑖𝑖∈Ψ , where Ψ is

the true super spreads reported.
• Average Relative Error (ARE): ARE is defined as 1

|Ψ|
∑ |𝑛𝑛𝑖𝑖−𝑛𝑛ı�|

𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖∈Ψ .

The throughput and detection time were used to measure the insert speed and query
speed, reflecting the performance. And the Precision, Recall, and F1 Score were used to
measure the accuracy of super spread detection. AAE and ARE were devoted to measur-
ing the error of the cardinality estimation.

5.3. Experiments on Parameters 𝛼𝛼 and 𝛽𝛽
In this section, we conducted several experiments to evaluate the effects of the pa-

rameters α and β on SSD-AIS. In particular, we took saSketch-lc as a representation of
SSD-AIS in the e-commerce dataset. Here, we hope to find suitable α and β, rather than
the optimal α and β, for a certain dataset or sketch of the saSketch family. In fact, the
following experiments have proven that suitable α and β have excellent performance for
different datasets and sketches in the saSketch family.

In this experiment, we set 𝑑𝑑 to 1, threshold Φ to 150, and memory to 40 KB. Figure
4 shows the impact of α and β on the F1 score of the super spread detection. The F1 score
of different βs increases with an increase of α and then stabilizes. And the F1 Score with
β = 1 is always the highest. Figure 5 shows the impact of α and β on the throughput of
super spread detection. When α = 1 and α = 2, there is a sudden increase in throughput
for all β, because the exponent calculation is faster for integers.

In the following experiment, we set α to 2 and β to 1.

Figure 4. Effects of α and β on the F1 score (e-commerce).Figure 4. Effects of α and β on the F1 score (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21

Figure 5. Effects of α and β on throughput (e-commerce).

5.4. Experiments on Accuracy
This section used the same array number, memory size, and threshold for each algo-

rithm to obtain a head-to-head comparison for super spread detection. We conducted ex-
periments with various array numbers 𝑑𝑑, memory size, and threshold on the e-commerce
datasets and the CAIDA datasets and analyzed the effects of the array number, memory
size, and threshold in the above two datasets.
(1) Effects of 𝑑𝑑

In this experiment, the memory size was equally set to 100 KB for both datasets. We
took 5% of the maximum super spread as the threshold, and the thresholds in the e-com-
merce datasets and CAIDA dataset were about 250 and 100, respectively. The array num-
ber 𝑑𝑑 varied from 1 to 4.

Figures 6 and 7 show the impact of 𝑑𝑑 on the F1 score in the e-commerce dataset and
CAIDA dataset, respectively. The F1 scores of saSketch-ac and saSketch-lc are always
higher than other algorithms for different 𝑑𝑑𝑑𝑑. In e-commerce, the F1 scores of saSketch-ac
and saSketch-lc are both about 0.73, and 0.12, 0.14, and 0.13 for cSkt, gmf, and SS. Based on
the results of the experiments above, we set 𝑑𝑑 to 2 for all algorithms in the following ex-
periment.

Figure 6. F1 Score vs. d (e-commerce).

Figure 7. F1 score vs. d (CAIDA).

(2) Effect of memory
In this experiment, we took 5% of the maximum super spread as the threshold, then

the thresholds in the Recommender System dataset and CAIDA dataset are about 250 and
100, respectively. We set the array number 𝑑𝑑 to 2. In many scenarios, the memory availa-

Figure 5. Effects of α and β on throughput (e-commerce).

In the following experiment, we set α to 2 and β to 1.

5.4. Experiments on Accuracy

This section used the same array number, memory size, and threshold for each al-
gorithm to obtain a head-to-head comparison for super spread detection. We conducted
experiments with various array numbers d, memory size, and threshold on the e-commerce
datasets and the CAIDA datasets and analyzed the effects of the array number, memory
size, and threshold in the above two datasets.

(1) Effects of d

In this experiment, the memory size was equally set to 100 KB for both datasets.
We took 5% of the maximum super spread as the threshold, and the thresholds in the
e-commerce datasets and CAIDA dataset were about 250 and 100, respectively. The array
number d varied from 1 to 4.

Figures 6 and 7 show the impact of d on the F1 score in the e-commerce dataset and
CAIDA dataset, respectively. The F1 scores of saSketch-ac and saSketch-lc are always higher
than other algorithms for different ds. In e-commerce, the F1 scores of saSketch-ac and
saSketch-lc are both about 0.73, and 0.12, 0.14, and 0.13 for cSkt, gmf, and SS. Based on the
results of the experiments above, we set d to 2 for all algorithms in the following experiment.

Electronics 2024, 13, 222 13 of 20

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21

Figure 5. Effects of α and β on throughput (e-commerce).

5.4. Experiments on Accuracy
This section used the same array number, memory size, and threshold for each algo-

rithm to obtain a head-to-head comparison for super spread detection. We conducted ex-
periments with various array numbers 𝑑𝑑, memory size, and threshold on the e-commerce
datasets and the CAIDA datasets and analyzed the effects of the array number, memory
size, and threshold in the above two datasets.
(1) Effects of 𝑑𝑑

In this experiment, the memory size was equally set to 100 KB for both datasets. We
took 5% of the maximum super spread as the threshold, and the thresholds in the e-com-
merce datasets and CAIDA dataset were about 250 and 100, respectively. The array num-
ber 𝑑𝑑 varied from 1 to 4.

Figures 6 and 7 show the impact of 𝑑𝑑 on the F1 score in the e-commerce dataset and
CAIDA dataset, respectively. The F1 scores of saSketch-ac and saSketch-lc are always
higher than other algorithms for different 𝑑𝑑𝑑𝑑. In e-commerce, the F1 scores of saSketch-ac
and saSketch-lc are both about 0.73, and 0.12, 0.14, and 0.13 for cSkt, gmf, and SS. Based on
the results of the experiments above, we set 𝑑𝑑 to 2 for all algorithms in the following ex-
periment.

Figure 6. F1 Score vs. d (e-commerce).

Figure 7. F1 score vs. d (CAIDA).

(2) Effect of memory
In this experiment, we took 5% of the maximum super spread as the threshold, then

the thresholds in the Recommender System dataset and CAIDA dataset are about 250 and
100, respectively. We set the array number 𝑑𝑑 to 2. In many scenarios, the memory availa-

Figure 6. F1 Score vs. d (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21

Figure 5. Effects of α and β on throughput (e-commerce).

5.4. Experiments on Accuracy
This section used the same array number, memory size, and threshold for each algo-

rithm to obtain a head-to-head comparison for super spread detection. We conducted ex-
periments with various array numbers 𝑑𝑑, memory size, and threshold on the e-commerce
datasets and the CAIDA datasets and analyzed the effects of the array number, memory
size, and threshold in the above two datasets.
(1) Effects of 𝑑𝑑

In this experiment, the memory size was equally set to 100 KB for both datasets. We
took 5% of the maximum super spread as the threshold, and the thresholds in the e-com-
merce datasets and CAIDA dataset were about 250 and 100, respectively. The array num-
ber 𝑑𝑑 varied from 1 to 4.

Figures 6 and 7 show the impact of 𝑑𝑑 on the F1 score in the e-commerce dataset and
CAIDA dataset, respectively. The F1 scores of saSketch-ac and saSketch-lc are always
higher than other algorithms for different 𝑑𝑑𝑑𝑑. In e-commerce, the F1 scores of saSketch-ac
and saSketch-lc are both about 0.73, and 0.12, 0.14, and 0.13 for cSkt, gmf, and SS. Based on
the results of the experiments above, we set 𝑑𝑑 to 2 for all algorithms in the following ex-
periment.

Figure 6. F1 Score vs. d (e-commerce).

Figure 7. F1 score vs. d (CAIDA).

(2) Effect of memory
In this experiment, we took 5% of the maximum super spread as the threshold, then

the thresholds in the Recommender System dataset and CAIDA dataset are about 250 and
100, respectively. We set the array number 𝑑𝑑 to 2. In many scenarios, the memory availa-

Figure 7. F1 score vs. d (CAIDA).

(2) Effect of memory

In this experiment, we took 5% of the maximum super spread as the threshold, then
the thresholds in the Recommender System dataset and CAIDA dataset are about 250 and
100, respectively. We set the array number d to 2. In many scenarios, the memory available
for flow measurement is very small. For example, the main function of network forwarding
equipment is network packet forwarding, so the resources allocated for flow measurement
are very small. Thus, the memory size varies from 10 KB to 100 KB.

Figures 8–10 show the accuracy of super spread detection in the e-commerce dataset.
Figure 8 shows the impact of memory on precision. Changes in memory have little effect
on precision. The precision of saSketch-lc and saSketch-ac are significantly higher than
the other algorithms. When the memory is set to 50 KB, the precision of saSketch-ac,
saSketch-lc, cSkt, SS, and gmf is 0.93, 0.97, 0.06, 0.07, and 0.06, respectively. Note that SS
performs well when the memory is large, for example, the precision of SS would reach
0.95 when memory is 5 MB. However, under a small memory, SS cannot contain sufficient
nodes, resulting in low precision.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 21

ble for flow measurement is very small. For example, the main function of network for-
warding equipment is network packet forwarding, so the resources allocated for flow
measurement are very small. Thus, the memory size varies from 10 KB to 100 KB.

Figures 8–10 show the accuracy of super spread detection in the e-commerce dataset.
Figure 8 shows the impact of memory on precision. Changes in memory have little effect
on precision. The precision of saSketch-lc and saSketch-ac are significantly higher than the
other algorithms. When the memory is set to 50 KB, the precision of saSketch-ac, saSketch-
lc, cSkt, SS, and gmf is 0.93, 0.97, 0.06, 0.07, and 0.06, respectively. Note that SS performs
well when the memory is large, for example, the precision of SS would reach 0.95 when
memory is 5 MB. However, under a small memory, SS cannot contain sufficient nodes,
resulting in low precision.

Figure 9 shows the effect of memory on recall. The recall of all algorithms increases
as the memory increases. The recall of saSketch-lc and saSketch-ac are both higher than
those of the other algorithms when memory is set to larger than 20 KB. When memory is
set to 50 KB, the recall of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 0.44, 0.46, 0.22, 0.12,
and 0.15, respectively.

Figure 10 shows the impact of memory on the F1 score. The F1 score of all algorithms
increases as memory increases. The F1 scores of saSketch-lc and saSketch-ac are both
higher than those of other algorithms with different memories. The F1 score of saSketch-
ac, saSketch-lc, cSkt, SS, and gmf is 0.60, 0.63, 0.10, 0.09, and 0.09, respectively, when
memory is 50 KB.

Figures 11–13 show the accuracy of super spread detection in the CAIDA dataset.
The results in the CAIDA dataset are similar to that of the e-commerce dataset except for
recall. A small difference in the recall is that cSkt surpasses saSketch-lc and saSketch-ac at
70 KB (Figure 12) and is approximately the same when the memory is larger. The F1 scores
of saSketch-lc and saSketch-ac are both higher than those of other algorithms with differ-
ent memories. The F1 score of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 0.83, 0.78, 0.18,
0.26, and 0.11, respectively, when the memory is set to 50 KB.

Figure 14 shows the effect of the threshold on the F1 score for the e-commerce dataset.
The F1 score of saSketch-lc and saSketch-ac increase as the threshold increases while those
of the other algorithms decrease. Figure 15 shows the impact of threshold on the F1 score
in the CAIDA dataset. The F1 score of saSketch-lc and saSketch-ac have little change as
threshold increases. In conclusion, the F1 score of saSketch-lc and saSketch-ac are both
higher than those of the other algorithms with different thresholds.

In conclusion, the F1 scores of saSketch-lc and saSketch-ac are higher than those of
the other algorithms with different memories.

Figure 8. Precision vs. Memory (e-commerce). Figure 8. Precision vs. Memory (e-commerce).

Figure 9 shows the effect of memory on recall. The recall of all algorithms increases as
the memory increases. The recall of saSketch-lc and saSketch-ac are both higher than those
of the other algorithms when memory is set to larger than 20 KB. When memory is set to
50 KB, the recall of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 0.44, 0.46, 0.22, 0.12, and
0.15, respectively.

Electronics 2024, 13, 222 14 of 20Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Recall vs. Memory (e-commerce).

Figure 10. F1 vs. Memory (e-commerce).

Figure 11. Precision vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Figure 13. F1 Score vs. Memory (CAIDA).

Figure 9. Recall vs. Memory (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Recall vs. Memory (e-commerce).

Figure 10. F1 vs. Memory (e-commerce).

Figure 11. Precision vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Figure 13. F1 Score vs. Memory (CAIDA).

Figure 10. F1 vs. Memory (e-commerce).

Figure 10 shows the impact of memory on the F1 score. The F1 score of all algorithms
increases as memory increases. The F1 scores of saSketch-lc and saSketch-ac are both
higher than those of other algorithms with different memories. The F1 score of saSketch-ac,
saSketch-lc, cSkt, SS, and gmf is 0.60, 0.63, 0.10, 0.09, and 0.09, respectively, when memory
is 50 KB.

Figures 11–13 show the accuracy of super spread detection in the CAIDA dataset. The
results in the CAIDA dataset are similar to that of the e-commerce dataset except for recall.
A small difference in the recall is that cSkt surpasses saSketch-lc and saSketch-ac at 70 KB
(Figure 12) and is approximately the same when the memory is larger. The F1 scores of
saSketch-lc and saSketch-ac are both higher than those of other algorithms with different
memories. The F1 score of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 0.83, 0.78, 0.18, 0.26,
and 0.11, respectively, when the memory is set to 50 KB.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Recall vs. Memory (e-commerce).

Figure 10. F1 vs. Memory (e-commerce).

Figure 11. Precision vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Figure 13. F1 Score vs. Memory (CAIDA).

Figure 11. Precision vs. Memory (CAIDA).

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Recall vs. Memory (e-commerce).

Figure 10. F1 vs. Memory (e-commerce).

Figure 11. Precision vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Figure 13. F1 Score vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Electronics 2024, 13, 222 15 of 20

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Recall vs. Memory (e-commerce).

Figure 10. F1 vs. Memory (e-commerce).

Figure 11. Precision vs. Memory (CAIDA).

Figure 12. Recall vs. Memory (CAIDA).

Figure 13. F1 Score vs. Memory (CAIDA). Figure 13. F1 Score vs. Memory (CAIDA).

Figure 14 shows the effect of the threshold on the F1 score for the e-commerce dataset.
The F1 score of saSketch-lc and saSketch-ac increase as the threshold increases while those
of the other algorithms decrease. Figure 15 shows the impact of threshold on the F1 score
in the CAIDA dataset. The F1 score of saSketch-lc and saSketch-ac have little change as
threshold increases. In conclusion, the F1 score of saSketch-lc and saSketch-ac are both
higher than those of the other algorithms with different thresholds.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 21

Figure 14. F1 Score vs. Threshold (e-commerce).

Figure 15. F1 Score vs. Threshold (CAIDA).

5.5. Experiments on AAE and ARE
In this section, we pay attention to the AAE and ARE of the estimated spread of the

reported super spread. We conducted experiments with various memory sizes and thresh-
olds for both datasets. We set the array number 𝑑𝑑 to 2 for all algorithms. Then, we under-
took the corresponding analysis.
(1) Effect of memory

In this experiment, we took 5% of the maximum super spread as the threshold, and
the thresholds in the Recommender System dataset and CAIDA dataset are approximately
250 and 100, respectively. The memory size varies from 10 KB to 100 KB.

Figures 16 and 17 show the error of the estimated cardinality of the super spread in
the e-commerce dataset. When the memory increases, the AAE and ARE of most algo-
rithms decrease. This is because the number of detected super spreads changes when
memory changes.

When memory is 50 KB, the AAE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 77,
42, 2163, 4052, and 302 respectively. The ARE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf
is 0.15, 0.08, 5.5, 10.5, and 0.41, respectively.

Figures 18 and 19 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 5.7 times lower than that of cSkt, 4.7 times
lower than that of SS, and 23.4 times lower than that of cSkt. The ARE of saSketch-lc is 5.6
times lower than that of cSkt, 7.9 times lower than that of SS, and 68.8 times lower than
that of cSkt when the memory is 50 KB.
(2) Effect of threshold

In this experiment, the memory size was set to 100 KB. The threshold varied from
0.01 to 0.1 of the maximum super spread. In particular, the threshold in the Recommender
System dataset varies from 100 to 500 and the threshold in the CAIDA dataset varies from
20 to 200.

Figures 20 and 21 show the error of the estimated cardinality of the super spread in
the e-commerce dataset. When the threshold increases, the AAEs of most algorithms in-
crease slightly. When the threshold is 250, the AAE of saSketch-ac, saSketch-lc, cSkt, SS,
and gmf is 71, 36, 1012, 1714, and 300 respectively. The ARE of saSketch-ac, saSketch-lc,
cSkt, SS, and gmf is 0.15, 0.07, 2.65, 10.5, and 0.41, respectively.

Figures 22 and 23 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 3.9 times lower than that of cSkt, 2.6 times

Figure 14. F1 Score vs. Threshold (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 16 of 21

Figure 14. F1 Score vs. Threshold (e-commerce).

Figure 15. F1 Score vs. Threshold (CAIDA).

5.5. Experiments on AAE and ARE
In this section, we pay attention to the AAE and ARE of the estimated spread of the

reported super spread. We conducted experiments with various memory sizes and thresh-
olds for both datasets. We set the array number 𝑑𝑑 to 2 for all algorithms. Then, we under-
took the corresponding analysis.
(1) Effect of memory

In this experiment, we took 5% of the maximum super spread as the threshold, and
the thresholds in the Recommender System dataset and CAIDA dataset are approximately
250 and 100, respectively. The memory size varies from 10 KB to 100 KB.

Figures 16 and 17 show the error of the estimated cardinality of the super spread in
the e-commerce dataset. When the memory increases, the AAE and ARE of most algo-
rithms decrease. This is because the number of detected super spreads changes when
memory changes.

When memory is 50 KB, the AAE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 77,
42, 2163, 4052, and 302 respectively. The ARE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf
is 0.15, 0.08, 5.5, 10.5, and 0.41, respectively.

Figures 18 and 19 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 5.7 times lower than that of cSkt, 4.7 times
lower than that of SS, and 23.4 times lower than that of cSkt. The ARE of saSketch-lc is 5.6
times lower than that of cSkt, 7.9 times lower than that of SS, and 68.8 times lower than
that of cSkt when the memory is 50 KB.
(2) Effect of threshold

In this experiment, the memory size was set to 100 KB. The threshold varied from
0.01 to 0.1 of the maximum super spread. In particular, the threshold in the Recommender
System dataset varies from 100 to 500 and the threshold in the CAIDA dataset varies from
20 to 200.

Figures 20 and 21 show the error of the estimated cardinality of the super spread in
the e-commerce dataset. When the threshold increases, the AAEs of most algorithms in-
crease slightly. When the threshold is 250, the AAE of saSketch-ac, saSketch-lc, cSkt, SS,
and gmf is 71, 36, 1012, 1714, and 300 respectively. The ARE of saSketch-ac, saSketch-lc,
cSkt, SS, and gmf is 0.15, 0.07, 2.65, 10.5, and 0.41, respectively.

Figures 22 and 23 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 3.9 times lower than that of cSkt, 2.6 times

Figure 15. F1 Score vs. Threshold (CAIDA).

In conclusion, the F1 scores of saSketch-lc and saSketch-ac are higher than those of the
other algorithms with different memories.

5.5. Experiments on AAE and ARE

In this section, we pay attention to the AAE and ARE of the estimated spread of
the reported super spread. We conducted experiments with various memory sizes and
thresholds for both datasets. We set the array number d to 2 for all algorithms. Then, we
undertook the corresponding analysis.

(1) Effect of memory

In this experiment, we took 5% of the maximum super spread as the threshold, and
the thresholds in the Recommender System dataset and CAIDA dataset are approximately
250 and 100, respectively. The memory size varies from 10 KB to 100 KB.

Figures 16 and 17 show the error of the estimated cardinality of the super spread
in the e-commerce dataset. When the memory increases, the AAE and ARE of most
algorithms decrease. This is because the number of detected super spreads changes when
memory changes.

Electronics 2024, 13, 222 16 of 20

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21

lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is 4.0
times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than that
of cSkt when the threshold is 100.

Figure 16. AAE vs. Memory (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Figure 19. ARE vs. Memory (CAIDA).

Figure 20. AAE vs. Threshold (e-commerce).

Figure 16. AAE vs. Memory (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21

lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is 4.0
times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than that
of cSkt when the threshold is 100.

Figure 16. AAE vs. Memory (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Figure 19. ARE vs. Memory (CAIDA).

Figure 20. AAE vs. Threshold (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

When memory is 50 KB, the AAE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf is 77,
42, 2163, 4052, and 302 respectively. The ARE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf
is 0.15, 0.08, 5.5, 10.5, and 0.41, respectively.

Figures 18 and 19 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 5.7 times lower than that of cSkt, 4.7 times
lower than that of SS, and 23.4 times lower than that of cSkt. The ARE of saSketch-lc is
5.6 times lower than that of cSkt, 7.9 times lower than that of SS, and 68.8 times lower than
that of cSkt when the memory is 50 KB.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21

lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is 4.0
times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than that
of cSkt when the threshold is 100.

Figure 16. AAE vs. Memory (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Figure 19. ARE vs. Memory (CAIDA).

Figure 20. AAE vs. Threshold (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21

lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is 4.0
times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than that
of cSkt when the threshold is 100.

Figure 16. AAE vs. Memory (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Figure 19. ARE vs. Memory (CAIDA).

Figure 20. AAE vs. Threshold (e-commerce).

Figure 19. ARE vs. Memory (CAIDA).

(2) Effect of threshold

In this experiment, the memory size was set to 100 KB. The threshold varied from
0.01 to 0.1 of the maximum super spread. In particular, the threshold in the Recommender
System dataset varies from 100 to 500 and the threshold in the CAIDA dataset varies from
20 to 200.

Electronics 2024, 13, 222 17 of 20

Figures 20 and 21 show the error of the estimated cardinality of the super spread in the
e-commerce dataset. When the threshold increases, the AAEs of most algorithms increase
slightly. When the threshold is 250, the AAE of saSketch-ac, saSketch-lc, cSkt, SS, and gmf
is 71, 36, 1012, 1714, and 300 respectively. The ARE of saSketch-ac, saSketch-lc, cSkt, SS, and
gmf is 0.15, 0.07, 2.65, 10.5, and 0.41, respectively.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21

lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is 4.0
times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than that
of cSkt when the threshold is 100.

Figure 16. AAE vs. Memory (e-commerce).

Figure 17. ARE vs. Memory (e-commerce).

Figure 18. AAE vs. Memory (CAIDA).

Figure 19. ARE vs. Memory (CAIDA).

Figure 20. AAE vs. Threshold (e-commerce). Figure 20. AAE vs. Threshold (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 18 of 21

Figure 21. ARE vs. Threshold (e-commerce).

Figure 22. AAE vs. Threshold (CAIDA).

Figure 23. ARE vs. Threshold (CAIDA).

5.6. Experiments on Performance
In this section, we focus on the performance of super spread detection. We conducted

experiments with varying memory sizes and thresholds on two datasets. We set the array
number 𝑑𝑑 to 2 for all algorithms.

Figures 24 and 25 show the insert throughput of adding a flow-element pair of a data
stream to a sketch. gmf has the lowest insert throughput because it requires non-negligible
time to traverse the flow store structure. SS has the highest throughput as it calculates the
length of the longest 0 bit through the hash of the key to update the count value of the
bucket, and cSkt, saSketch-ac, and saSketch-lc need to calculate the cardinality estimator
after inserting the incoming item into this estimator. saSketch-ac and saSketch-lc are faster
than cSkt because the bucket of cSkt has only one cardinality estimator, and each item
needs to be inserted into the cardinality estimator to calculate the corresponding value,
whereas saSketch-ac and saSketch-lc have two cardinality estimators PEst and NEst per
bucket. If the flow label of the incoming item is differentiated from the key of the corre-
sponding bucket, there is a high probability that insertion into the NEst cardinality esti-
mator does not need to be performed. The probability depends on the current pvote value,
and the larger the pvote, the higher the probability of ignoring.

Figures 26 and 27 show the detection time of returning all reported super spreads in
the e-commerce dataset and CAIDA dataset, respectively. The detection of gmf is 0 be-
cause gmf has a structure to store super spreads all the time. SS has the highest detection
time because it needs to calculate the spread for traversing each bucket. saSketch-lc and
saSketch-ac both return super spreads in a few microseconds.

Figure 21. ARE vs. Threshold (e-commerce).

Figures 22 and 23 show the error of the estimated cardinality of the super spread in
the CAIDA dataset. The AAE of saSketch-lc is 3.9 times lower than that of cSkt, 2.6 times
lower than that of SS, and 19.6 times lower than that of cSkt. The ARE of saSketch-lc is
4.0 times lower than that of cSkt, 3.8 times lower than that of SS, and 8.3 times lower than
that of cSkt when the threshold is 100.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 21

Figure 21. ARE vs. Threshold (e-commerce).

Figure 22. AAE vs. Threshold (CAIDA).

Figure 23. ARE vs. Threshold (CAIDA).

5.6. Experiments on Performance
In this section, we focus on the performance of super spread detection. We conducted

experiments with varying memory sizes and thresholds on two datasets. We set the array
number 𝑑𝑑 to 2 for all algorithms.

Figures 24 and 25 show the insert throughput of adding a flow-element pair of a data
stream to a sketch. gmf has the lowest insert throughput because it requires non-negligible
time to traverse the flow store structure. SS has the highest throughput as it calculates the
length of the longest 0 bit through the hash of the key to update the count value of the
bucket, and cSkt, saSketch-ac, and saSketch-lc need to calculate the cardinality estimator
after inserting the incoming item into this estimator. saSketch-ac and saSketch-lc are faster
than cSkt because the bucket of cSkt has only one cardinality estimator, and each item
needs to be inserted into the cardinality estimator to calculate the corresponding value,
whereas saSketch-ac and saSketch-lc have two cardinality estimators PEst and NEst per
bucket. If the flow label of the incoming item is differentiated from the key of the corre-
sponding bucket, there is a high probability that insertion into the NEst cardinality esti-
mator does not need to be performed. The probability depends on the current pvote value,
and the larger the pvote, the higher the probability of ignoring.

Figures 26 and 27 show the detection time of returning all reported super spreads in
the e-commerce dataset and CAIDA dataset, respectively. The detection of gmf is 0 be-
cause gmf has a structure to store super spreads all the time. SS has the highest detection
time because it needs to calculate the spread for traversing each bucket. saSketch-lc and
saSketch-ac both return super spreads in a few microseconds.

Figure 22. AAE vs. Threshold (CAIDA).

Electronics 2024, 13, x FOR PEER REVIEW 18 of 21

Figure 21. ARE vs. Threshold (e-commerce).

Figure 22. AAE vs. Threshold (CAIDA).

Figure 23. ARE vs. Threshold (CAIDA).

5.6. Experiments on Performance
In this section, we focus on the performance of super spread detection. We conducted

experiments with varying memory sizes and thresholds on two datasets. We set the array
number 𝑑𝑑 to 2 for all algorithms.

Figures 24 and 25 show the insert throughput of adding a flow-element pair of a data
stream to a sketch. gmf has the lowest insert throughput because it requires non-negligible
time to traverse the flow store structure. SS has the highest throughput as it calculates the
length of the longest 0 bit through the hash of the key to update the count value of the
bucket, and cSkt, saSketch-ac, and saSketch-lc need to calculate the cardinality estimator
after inserting the incoming item into this estimator. saSketch-ac and saSketch-lc are faster
than cSkt because the bucket of cSkt has only one cardinality estimator, and each item
needs to be inserted into the cardinality estimator to calculate the corresponding value,
whereas saSketch-ac and saSketch-lc have two cardinality estimators PEst and NEst per
bucket. If the flow label of the incoming item is differentiated from the key of the corre-
sponding bucket, there is a high probability that insertion into the NEst cardinality esti-
mator does not need to be performed. The probability depends on the current pvote value,
and the larger the pvote, the higher the probability of ignoring.

Figures 26 and 27 show the detection time of returning all reported super spreads in
the e-commerce dataset and CAIDA dataset, respectively. The detection of gmf is 0 be-
cause gmf has a structure to store super spreads all the time. SS has the highest detection
time because it needs to calculate the spread for traversing each bucket. saSketch-lc and
saSketch-ac both return super spreads in a few microseconds.

Figure 23. ARE vs. Threshold (CAIDA).

Electronics 2024, 13, 222 18 of 20

5.6. Experiments on Performance

In this section, we focus on the performance of super spread detection. We conducted
experiments with varying memory sizes and thresholds on two datasets. We set the array
number d to 2 for all algorithms.

Figures 24 and 25 show the insert throughput of adding a flow-element pair of a data
stream to a sketch. gmf has the lowest insert throughput because it requires non-negligible
time to traverse the flow store structure. SS has the highest throughput as it calculates the
length of the longest 0 bit through the hash of the key to update the count value of the
bucket, and cSkt, saSketch-ac, and saSketch-lc need to calculate the cardinality estimator
after inserting the incoming item into this estimator. saSketch-ac and saSketch-lc are faster
than cSkt because the bucket of cSkt has only one cardinality estimator, and each item needs
to be inserted into the cardinality estimator to calculate the corresponding value, whereas
saSketch-ac and saSketch-lc have two cardinality estimators PEst and NEst per bucket. If
the flow label of the incoming item is differentiated from the key of the corresponding
bucket, there is a high probability that insertion into the NEst cardinality estimator does
not need to be performed. The probability depends on the current pvote value, and the
larger the pvote, the higher the probability of ignoring.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 21

Figure 24. Insert throughput (e-commerce).

Figure 25. Insert throughput (CAIDA).

Figure 26. Detection time (e-commerce).

Figure 27. Detection time (CAIDA).

6. Conclusions
Owing to the limited memory availability, accurately detecting a super spread in

heavy data streams faces challenges. Prior algorithms focused more on the accuracy of
super spread detection, but could not provide the precise cardinality of a super spread.
This paper proposes an innovative sketch called SSD-AIS for super spread detection and
corresponding cardinality estimation. Compared with the state-of-the-art work such as
SpreadSketch and gmf, the solution we proposed has a higher accuracy in super spread
identification under different memory allocations and traffic traces. All related source
codes in our work have been released at Github [24].

Author Contributions: Z.Z. designed the research, performed the research, analyzed the data, and
wrote the paper. J.L. analyzed the data and wrote the paper. Q.R. designed the research and per-
formed the research. Z.L. discussed the results and revised the manuscript. Y.H. discussed the re-
sults and revised the manuscript. H.C. discussed the results and revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Figure 24. Insert throughput (e-commerce).

Electronics 2024, 13, x FOR PEER REVIEW 19 of 21

Figure 24. Insert throughput (e-commerce).

Figure 25. Insert throughput (CAIDA).

Figure 26. Detection time (e-commerce).

Figure 27. Detection time (CAIDA).

6. Conclusions
Owing to the limited memory availability, accurately detecting a super spread in

heavy data streams faces challenges. Prior algorithms focused more on the accuracy of
super spread detection, but could not provide the precise cardinality of a super spread.
This paper proposes an innovative sketch called SSD-AIS for super spread detection and
corresponding cardinality estimation. Compared with the state-of-the-art work such as
SpreadSketch and gmf, the solution we proposed has a higher accuracy in super spread
identification under different memory allocations and traffic traces. All related source
codes in our work have been released at Github [24].

Author Contributions: Z.Z. designed the research, performed the research, analyzed the data, and
wrote the paper. J.L. analyzed the data and wrote the paper. Q.R. designed the research and per-
formed the research. Z.L. discussed the results and revised the manuscript. Y.H. discussed the re-
sults and revised the manuscript. H.C. discussed the results and revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Figure 25. Insert throughput (CAIDA).

Figures 26 and 27 show the detection time of returning all reported super spreads in the
e-commerce dataset and CAIDA dataset, respectively. The detection of gmf is 0 because gmf
has a structure to store super spreads all the time. SS has the highest detection time because
it needs to calculate the spread for traversing each bucket. saSketch-lc and saSketch-ac both
return super spreads in a few microseconds.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 21

Figure 24. Insert throughput (e-commerce).

Figure 25. Insert throughput (CAIDA).

Figure 26. Detection time (e-commerce).

Figure 27. Detection time (CAIDA).

6. Conclusions
Owing to the limited memory availability, accurately detecting a super spread in

heavy data streams faces challenges. Prior algorithms focused more on the accuracy of
super spread detection, but could not provide the precise cardinality of a super spread.
This paper proposes an innovative sketch called SSD-AIS for super spread detection and
corresponding cardinality estimation. Compared with the state-of-the-art work such as
SpreadSketch and gmf, the solution we proposed has a higher accuracy in super spread
identification under different memory allocations and traffic traces. All related source
codes in our work have been released at Github [24].

Author Contributions: Z.Z. designed the research, performed the research, analyzed the data, and
wrote the paper. J.L. analyzed the data and wrote the paper. Q.R. designed the research and per-
formed the research. Z.L. discussed the results and revised the manuscript. Y.H. discussed the re-
sults and revised the manuscript. H.C. discussed the results and revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Figure 26. Detection time (e-commerce).

Electronics 2024, 13, 222 19 of 20

Electronics 2024, 13, x FOR PEER REVIEW 19 of 21

Figure 24. Insert throughput (e-commerce).

Figure 25. Insert throughput (CAIDA).

Figure 26. Detection time (e-commerce).

Figure 27. Detection time (CAIDA).

6. Conclusions
Owing to the limited memory availability, accurately detecting a super spread in

heavy data streams faces challenges. Prior algorithms focused more on the accuracy of
super spread detection, but could not provide the precise cardinality of a super spread.
This paper proposes an innovative sketch called SSD-AIS for super spread detection and
corresponding cardinality estimation. Compared with the state-of-the-art work such as
SpreadSketch and gmf, the solution we proposed has a higher accuracy in super spread
identification under different memory allocations and traffic traces. All related source
codes in our work have been released at Github [24].

Author Contributions: Z.Z. designed the research, performed the research, analyzed the data, and
wrote the paper. J.L. analyzed the data and wrote the paper. Q.R. designed the research and per-
formed the research. Z.L. discussed the results and revised the manuscript. Y.H. discussed the re-
sults and revised the manuscript. H.C. discussed the results and revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Figure 27. Detection time (CAIDA).

6. Conclusions

Owing to the limited memory availability, accurately detecting a super spread in
heavy data streams faces challenges. Prior algorithms focused more on the accuracy of
super spread detection, but could not provide the precise cardinality of a super spread.
This paper proposes an innovative sketch called SSD-AIS for super spread detection and
corresponding cardinality estimation. Compared with the state-of-the-art work such as
SpreadSketch and gmf, the solution we proposed has a higher accuracy in super spread
identification under different memory allocations and traffic traces. All related source
codes in our work have been released at Github [24].

Author Contributions: Z.Z. designed the research, performed the research, analyzed the data, and
wrote the paper. J.L. analyzed the data and wrote the paper. Q.R. designed the research and performed
the research. Z.L. discussed the results and revised the manuscript. Y.H. discussed the results and
revised the manuscript. H.C. discussed the results and revised the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by The National Key Research and Development Program of
China (Grant No. 2022YFB2901304).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study.

References
1. Tan, L.-Z.; Su, W.; Zhang, W.; Lv, J.; Zhang, Z.; Miao, J.; Liu, X.; Li, N. In-band network telemetry: A survey. Comput. Netw. 2021,

186, 107763. [CrossRef]
2. Li, S.; Luo, L.; Guo, D. Sketch for Traffic Measurement: Design Optimization Application and Implementation. arXiv 2020,

arXiv:2012.07214. Available online: https://arxiv.org/abs/2012.07214 (accessed on 5 January 2021).
3. Pendleton, M.; Garcia-Lebron, R.; Cho, J.-H.; Xu, S. A survey on systems security metrics. ACM Comput. Surv. 2017, 49, 62.

[CrossRef]
4. Cao, J.; Jin, Y.; Chen, A.; Bu, T.; Zhang, Z.-L. Identifying high cardinality internet hosts. In Proceedings of the IEEE International

Conference on Computer Communications, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 810–818. [CrossRef]
5. Durumeric, Z.; Bailey, M.; Halderman, J.A. An Internet-Wide View of Internet-Wide Scanning. In Proceedings of the 23rd USENIX

Security Symposium, San Diego, CA, USA, 20–22 August 2014; pp. 65–78. Available online: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/durumeric (accessed on 10 May 2021).

6. Fayaz, S.K.; Tobioka, Y.; Sekar, V.; Bailey, M. Bohatei: Flexible and Elastic Ddos Defense. In Proceedings of the 24th USENIX
Security Symposium, Washington, DC, USA, 12–14 August 2015; pp. 817–832. Available online: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/fayaz (accessed on 20 January 2021).

7. Liu, Y.; Chen, W.; Guan, Y. Identifying high-cardinality hosts from network-wide traffic measurements. IEEE Trans. Dependable
Secur. Comput. 2016, 13, 547–558. [CrossRef]

8. Qun, H.; Lee, P.P.C.; Bao, Y. Sketchlearn: Relieving user burdens in approximate measurement with automated statistical inference.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25
August 2018; pp. 576–590. [CrossRef]

9. Lu, J.; Chen, H.; Sun, P.; Hu, T.; Zhang, Z. OrderSketch: An unbiased and fast sketch for frequency estimation of data streams.
Comput. Netw. 2021, 201, 108563. [CrossRef]

10. Liu, Z.; Manousis, A.; Vorsanger, G.; Sekar, V.; Braverman, V. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the Annual Conference of the ACM Special Interest Group, Florianopolis, Brazil, 22–26 August
2016; pp. 101–114. [CrossRef]

https://doi.org/10.1016/j.comnet.2020.107763
https://arxiv.org/abs/2012.07214
https://doi.org/10.1145/3005714
https://doi.org/10.1109/INFCOM.2009.5061990
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/fayaz
https://doi.org/10.1109/TDSC.2015.2423675
https://doi.org/10.1145/3230543.3230559
https://doi.org/10.1016/j.comnet.2021.108563
https://doi.org/10.1145/2934872.2934906

Electronics 2024, 13, 222 20 of 20

11. Yang, T.; Jiang, J.; Liu, P.; Huang, Q.; Gong, J.; Zhou, Y.; Miao, R.; Li, X.; Uhlig, S. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest,
Hungary, 20–25 August 2018; pp. 561–575. [CrossRef]

12. Wu, K.; Otoo, E.J.; Shoshani, A. Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 2006, 31, 1–38.
[CrossRef]

13. Whang, K.-Y.; Vander-Zanden, B.T.; Taylor, H.M. A linear-time probabilistic counting algorithm for database applications. ACM
Trans. Database Syst. 1990, 15, 208–229. [CrossRef]

14. Durand, M.; Flajolet, P. Loglog counting of large cardinalities. In Proceedings of the Algorithms-ESA 2003: 11th Annual European
Symposium, Budapest, Hungary, 16–19 September 2003; pp. 16–19.

15. Cai, M.; Pan, J.; Kwok, Y.-K.; Hwang, K. Fast and accurate traffic matrix measurement using adaptive cardinality counting.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication Workshop on Mining
NETWORK Data, Philadelphia, PA, USA, 26 August 2005; pp. 205–206. [CrossRef]

16. Flajolet, P.; Fusy, É.; Gandouet, O.; Meunier, F. Hyperloglog: The Analysis of a Near-Optimal Cardinality Estimation Algorithm.
In Proceedings of the Discrete Mathematics and Theoretical Computer Science, Nancy, France, 1 January 2007; pp. 127–146.
Available online: https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf (accessed on 5 December 2020).

17. Zhang, Z.; Hsu, C.; Au, M.H.; Harn, L.; Cui, J.; Xia, Z.; Zhao, Z. PRLAP-IoD: A PUF-based Robust and Lightweight Authentication
Protocol for Internet of Drones. Comput. Netw. 2024, 238, 110118. [CrossRef]

18. Cormode, G.; Muthukrishnan, S. Space efficient mining of multigraph streams. In Proceedings of the Twenty-Fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Baltimore, MD, USA, 13–15 June 2005; pp. 271–282.
[CrossRef]

19. Ma, C.; Chen, S.; Zhang, Y.; Xiao, Q.; Odegbile, O.O. Super spreader identification using geometric-min filter. IEEE/ACM Trans.
Netw. 2022, 30, 299–312. [CrossRef]

20. Tang, L.; Huang, Q.; Lee, P.P.C. SpreadSketch: Toward Invertible and Network-Wide Detection of Superspreaders. In Proceedings
of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1608–1617.
[CrossRef]

21. Venkataraman, S.; Song, D.X.; Gibbons, P.B.; Blum, A. New Streaming Algorithms for Fast Detection of Superspreaders. In
Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 2 February 2005; Available
online: https://www.ndss-symposium.org/ndss2005/new-streaming-algorithms-fast-detection-superspreaders/ (accessed
on 17 March 2021).

22. Estan, C.; Varghese, G.; Fisk, M. Bitmap algorithms for counting active flows on high speed links. IEEE/ACM Trans. Netw. 2003,
14, 925–937.

23. Boyer, R.S.; Moore, J.S. MJRTY: A Fast Majority Vote Algorithm. Autom. Reason. Essays Honor. Woody Bledsoe 1991, 1, 105–118.
24. SuperKeeper. Available online: https://anonymous.4open.science/r/SuperKeeper-B004/README.md (accessed on 15

March 2021).
25. Liu, Y.; Chen, W.; Guan, Y. A fast sketch for aggregate queries over high-speed network traffic. In Proceedings of the IEEE

International Conference on Computer Communications, Orlando, FL, USA, 25–30 March 2012; pp. 2741–2745. [CrossRef]
26. Wang, P.; Guan, X.; Qin, T.; Huang, Q. A data streaming method for monitoring host connection degrees of high-speed links.

IEEE Trans. Inf. Forensics Secur. 2011, 6, 1086–1098. [CrossRef]
27. Liu, W.; Qu, W.; Gong, J.; Li, K. Detection of superpoints using a vector bloom filter. IEEE Trans. Inf. Forensics Secur. 2016, 11,

514–527. [CrossRef]
28. Zhou, Y.; Zhang, Y.; Ma, C.; Chen, S.; Odegbile, O. Generalized sketch families for network traffic measurement. ACM Meas. Anal.

Comput. Syst. 2019, 3, 1–34. [CrossRef]
29. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms

2005, 55, 58–75. [CrossRef]
30. Yu, M.; Jose, L.; Miao, R. Software Defined Traffic Measurement with OpenSketch. In Proceedings of the 10th USENIX

Symposium on Networked Systems Design and Implementation, Lombard, IL, USA, 2–5 April 2013; pp. 29–42. Available online:
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu (accessed on 15 January 2021).

31. Schweller, R.T.; Li, Z.; Chen, Y.; Gao, Y.; Gupta, A.; Zhang, Y.; Dinda, P.A.; Kao, M.-Y.; Memik, G. Reversible sketches: Enabling
monitoring and analysis over high-speed data streams. IEEE/ACM Trans. Netw. 2007, 15, 1059–1072.

32. Ecommerce Dataset. Available online: https://www.kaggle.com/retailrocket/ecommerce-dataset?select=events.csv (accessed on
15 January 2021).

33. The Caida Anonymized Internet Traces. 2016. Available online: http://www.caida.org/data/overview/ (accessed on 17
March 2021).

34. Murmurhash. Available online: https://github.com/aappleby/smhasher/tree/master/src (accessed on 15 June 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/1132863.1132864
https://doi.org/10.1145/78922.78925
https://doi.org/10.1145/1080173.1080185
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
https://doi.org/10.1016/j.comnet.2023.110118
https://doi.org/10.1145/1065167.1065201
https://doi.org/10.1109/TNET.2021.3108033
https://doi.org/10.1109/INFOCOM41043.2020.9155541
https://www.ndss-symposium.org/ndss2005/new-streaming-algorithms-fast-detection-superspreaders/
https://anonymous.4open.science/r/SuperKeeper-B004/README.md
https://doi.org/10.1109/INFCOM.2012.6195691
https://doi.org/10.1109/TIFS.2011.2123094
https://doi.org/10.1109/TIFS.2015.2503269
https://doi.org/10.1145/3366699
https://doi.org/10.1016/j.jalgor.2003.12.001
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.kaggle.com/retailrocket/ecommerce-dataset?select=events.csv
http://www.caida.org/data/overview/
https://github.com/aappleby/smhasher/tree/master/src

	Introduction
	Related Works
	Overview
	Subsection
	Data Structure
	Basic Operations

	Theoretical Analysis
	Space and Time Complexities
	Error Analysis

	Evaluation
	Setup
	Metrics
	Experiments on Parameters and
	Experiments on Accuracy
	Experiments on AAE and ARE
	Experiments on Performance

	Conclusions
	References

