
Citation: Wang, L.; Jin, D. A

Time-Sensitive Graph Neural

Network for Session-Based New Item

Recommendation. Electronics 2024, 13,

223. https://doi.org/10.3390/

electronics13010223

Academic Editor: Shinichi

Yamagiwa

Received: 29 November 2023

Revised: 24 December 2023

Accepted: 29 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Time-Sensitive Graph Neural Network for Session-Based New
Item Recommendation
Luzhi Wang * and Di Jin

Collage of Intelligence and Computing, Tianjin University, Tiainjin 300350, China; jindi@tju.edu.cn
* Correspondence: wangluzhi@tju.edu.cn

Abstract: Session-based recommendation plays an important role in daily life and exists in many sce-
narios, such as online shopping websites and streaming media platforms. Recently, some works have
focused on using graph neural networks (GNNs) to recommend new items in session-based scenarios.
However, these methods have encountered several limitations. First, existing methods typically
ignore the impact of items’ visited time in constructing session graphs, resulting in a departure from
real-world recommendation dynamics. Second, sessions are often sparse, making it challenging for
GNNs to learn valuable item embedding and user preferences. Third, the existing methods usually
overemphasize the impact of the last item on user preferences, neglecting their interest in multiple
items in a session. To address these issues, we introduce a time-sensitive graph neural network
for new item recommendation in session-based scenarios, namely, TSGNN. Specifically, TSGNN
provides a novel time-sensitive session graph constructing technique to solve the first problem. For
the second problem, TSGNN introduces graph augmentation and contrastive learning into it. To
solve the third problem, TSGNN designs a time-aware attention mechanism to accurately discern
user preferences. By evaluating the compatibility between user preferences and candidate new item
embeddings, our method recommends items with high relevance scores for users. Comparative
experiments demonstrate the superiority of TSGNN over state-of-the-art (SOTA) methods.

Keywords: graph neural networks; new item recommendation; session-based recommendation

1. Introduction

Recommender systems significantly impact people’s daily lives; they filter information
for people and recommend things that people may be interested in [1]. Recommenda-
tion systems widely exist in different fields, such as e-commerce [2], job markets [3], and
streaming media [4]. A key scenario in recommendation systems is session-based recom-
mendations. A session refers to a sequence of actions carried out by a user, such as clicking
buttons, viewing pages, or making purchases [5]. These actions occur within a short time
and are considered a single visit [6]. This type of recommender system can provide person-
alized suggestions to users within a specific session, typically without requiring long-term
user profiles or histories [7]. These systems are widely used in content streaming [8], news
websites [9], and other online platforms [10].

Numerous methods have been developed to design session-based recommender
systems. Attention-based methods are crucial in the field of deep learning [11]. It is also
crucial in session-based recommendations. For instance, in the work of Zhang et al. [12], a
vanilla attention mechanism is utilized to combine heterogeneous features for extracting
the transition patterns between items. Yuan et al. [13] provide a dual sparse attention
network to mitigate the effect of irrelevant items on user preference. Additionally, topic
models have emerged as a recent area of focus. Sottocornola et al. [14] train topic models
to track changes in users’ interest in news over time; ref. [15] is a music recommender
system where the music consists of a session. This work regards the music list as a set
of topics, helping to uncover latent user patterns. In addition to the above two types of
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methods, there are many other methods, such as collaborative filtering-based methods [16],
content-based methods [17], and matrix factorization-based methods [8].

Recently, graph neural networks (GNNs) have been the most popular methods [18–20].
Many GNN methods for session-based recommender systems have emerged, such as TMI-
GNN [21], RN-GNN [22], and SR-GNN [23]. Compared to other recommender systems,
GNN-based recommender systems can learn intricate item conversions and effectively
model user behavior within a specific session graph, which is ignored by other methods.
Specifically, GNN-based recommender systems model the input session as a graph, in
which nodes refer to various items within the session, and edges refer to transitions or
relations between items. GNNs are capable of effective feature learning for the items in
the session graph. By fully considering and modeling complex inter-relationships between
items, these GNN-based methods can understand user behaviors and preferences during
recommendations.

However, the methods mentioned above are designed for next item recommendation
and might not be effective in recommending new items. This ineffectiveness arises from the
lack of user interaction with new items, leading to new items independent of the session
graph that are hard to learn by GNNs. To tackle this issue, a GNN for the session-based
new item recommendation method (NirGNN) has been proposed recently [24]. NirGNN
incorporates a dual-intent network that mimics user decision-making processes through a
soft-attention mechanism and a β distribution mechanism. To address the challenge of new
items that are hard to learn by using GNNs, NirGNN leverages inspiration from zero-shot
learning and infers the embedding of new items based on their attributes. Consequently,
NirGNN calculates recommendation scores and prioritizes new items with higher scores
for user recommendations. Nonetheless, this method may encounter three limitations:

• Lack of Time Sensitivity: The previous research models session graphs simply as
directed graphs, failing to consider the temporal aspect of item interactions. This
omission is a critical flaw as the timing of an item’s appearance in a session can greatly
influence its relevance and importance. Without considering this temporal dimension,
the session graph falls short of mirroring the dynamic nature of actual user interactions
and preferences.

• Sparsity of Sessions: This scarcity of data within individual sessions poses a significant
challenge for accurately learning user intent in graph neural networks. The sparsity
sessions can lead to incomplete or biased interpretations of user preferences as the
graph neural network has limited interaction data to analyze and learn from.

• Flawed Attention Mechanism: Previous works usually use attention mechanisms to
learn users’ preferences. However, the existing attention mechanism disproportion-
ately increases the preference weight of the last item visited by the user. This approach
can lead to a skewed understanding of user preferences as it assumes the most recent
interaction is the most significant for users. Such a mechanism neglects the possibility
that earlier items in the session might hold equal or greater relevance to the user’s
preferences. Consequently, this results in recommendations that do not accurately
reflect the user’s overall preferences, focusing narrowly on their most recent activity.

As a remedy for the shortcomings, we introduce a time-sensitive method for a session-
based new item recommendation, called the Time-Sensitive Graph Neural Network (TS-
GNN). (1) To address the limitation on time sensitivity, we propose an innovative modeling
technique for constructing session graphs that incorporates a temporal element. Specifically,
we model the session graph according to the sequence of node visits. To fully express
the temporal relationship, we apply a time-sensitive weight to each edge. Consequently,
GNN-based models are enabled to learn the temporal information of nodes through these
edge weights. With this graph modeling technique, the model considers the temporal
sequence of item interactions, ensuring that the appearance of each item is taken into
account, and reflects user interactions and preferences over time. (2) To tackle the challenge
of sparse sessions, we incorporate a graph augmentation technique into the session graph.
This technique involves altering the original graphs, allowing the TSGNN to generate a
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multitude of augmented graphs. This improvement significantly enriches the session data
by providing a set of informative graphs for the GNN encoder. This strategy effectively mit-
igates the impact of graph sparsity, enhancing the overall performance of the model. (3) To
provide a comprehensive attention mechanism, we propose a new attention mechanism,
called the time-aware attention network. The time-aware attention mechanism emphasizes
the temporal aspects’ influence on the user’s preference learning process. By incorporating
this approach, the time-aware attention mechanism mitigates the excessive emphasis often
placed on the most recently visited item. Instead, this attention network amplifies the tem-
poral impact on attention allocation, ensuring a more accurate and nuanced interpretation
of user preferences.

By focusing on the temporal aspect, TSGNN aims to capture more accurate and
comprehensive user preferences than previous works, leading to more relevant recommen-
dations. Our work’s enhancements in session-based new items recommendation can be
encapsulated in the following key contributions:

• We highlight and address the problem of previous research that ignores the aspect of
time influence in session graph modeling. This inclusion of time sensitivity ensures a
dynamic representation of user interactions, aligning the model closely with the actual
user behavior and preference.

• We incorporate graph augmentation technology into the session-based new item
recommendation process. This innovation significantly reduces the sparsity of session
graphs, leading to a situation in which the session graph is easily learned by GNNs.

• We propose a novel attention mechanism specifically designed for learning user pref-
erence with a time-aware perspective. This method adjusts the focus of the attention
mechanism, ensuring that it accounts for the temporal aspects of user interactions.
By doing so, a more accurate understanding of user preferences over time reduces
the overemphasis on the most recent interactions, which has been a drawback of
previous models.

The structure of this paper is outlined as follows: Section 2 presents the related work
relevant to our study. In Section 3, we detail our method, TSGNN, highlighting several
innovative techniques, including the time-sensitive weight method, session graph aug-
mentation, and time-aware attention networks. Section 4 describes a series of experiments
conducted to validate the efficacy of our proposed methods. Finally, in Section 5, we
conclude this paper and offer directions for future research.

2. Related Works

In this section, we will explore the related works in the field of session-based recom-
mendation systems, with a particular focus on session-based recommendation, GNNs for
session-based recommendation, and graph augmentation methods.

2.1. Session-Based Recommendation

Session-based recommender systems are designed to provide personalized suggestions
to users during a single session [25]. Unlike traditional recommender systems that rely
heavily on long-term user profiles and historical data, the session-based recommender
system focuses on the short-term, often within the context of a single interaction or visit [26].
Some works use the Markov Chain for session-based recommendation to predict user
preferences and actions within a specific session [27]. According to the memoryless property,
Markov Chains predict the future state of a recommender system based on its previous
state [28]. Each state in a Markov Chain represents a specific user interaction, such as
viewing a product or clicking on a link. The transitions between these states, governed
by a set of probabilities, reflect the likelihood of a user moving from one action to another.
By analyzing these transitions and states, the Markov-Chain-based recommender system
can predict a user’s next likely action within a session. User interactions are captured
sequentially and temporally using this approach. However, it does face challenges, notably
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the potential limitation in capturing long-term user preferences since it focuses primarily
on short-term session data.

Recently, some researchers have designed recurrent neural network (RNN)-based
methods for session-based recommender systems to understand and predict user pref-
erences based on their current sessions [29]. In these systems, RNNs, known for their
effectiveness in handling sequential data, are utilized to analyze the sequence of actions a
user takes during a session, such as clicking on items, viewing pages, or adding products
to a cart [30]. As users interact with various items during a session, the RNN-based model
continuously updates its understanding of the user’s current interests. This is achieved
through the network’s ability to maintain a form of memory, which helps in capturing the
temporal dynamics of user behavior within a session. The model processes each action in
the sequence, updating its internal state to reflect the latest interactions, thus providing
real-time, dynamic recommendations that evolve as the session progresses [31].

However, despite their effectiveness, these systems also face challenges, such as
handling the complexity of RNN-based models and ensuring they are efficient enough to
provide real-time recommendations. Moreover, the system’s dependency on session data
means that it might not perform as well when dealing with new or infrequent users with
limited interaction history.

2.2. Graph Neural Networks for Session-Based Recommendation

Graphs are an important data structure [32–35], and GNNs are a type of method
for solving graph problems that has attracted much attention recently [36,37]. Their ap-
plications span a wide range of fields, including federated learning [38], information
security [39–41], anomaly detection [42–44], and the financial sector [45]. Owing to the
capability of GNNs to model complex relationship nodes [46], GNN session-based recom-
mender systems have recently become popular [47]. In these systems, GNNs are used to
model session data as a graph structure. In this representation, nodes represent items, and
edges signify the interactions between users and these items. This graph-based method
captures complex relationships and dependencies between items within a session [46]. The
strength of GNNs lies in their ability to propagate and aggregate information across the
graph, effectively learning representations of items based on their context within the user’s
session. For instance, if a user browses through a series of related products, the GNN can
understand the underlying pattern or theme of the session, leading to more accurate and
relevant recommendations.

GNN-based recommender systems require careful design to efficiently handle the
complexity of graph structures. For example, SR-GNN [23] combines global preferences
and current session interests using an attention network. MGU-GNN [48] integrates a
soft-attention network with a target-based interest-aware network. This model is adept at
adjusting to the evolving interests of users while effectively balancing long-term preferences
and immediate session-based interests. Its soft-attention network module is specifically de-
signed to harmonize these long-term and current session interests, enhancing the accuracy
of predictions regarding the user’s next item. BA-GNN [49] presents an application-specific
behavioral GNN tailored for session-based recommendation systems. To enhance the
quality of these representations, a sparse self-attention module is implemented, designed
to filter out noise in behavior sequences. Additionally, a gating mechanism is employed to
form comprehensive session representations.

NirGNN [24] proposes a dual-intent network to understand user preference through
two key components: analyzing historical data distribution and establishing an attention
mechanism. This network aims to mimic the user’s decision-making process when interact-
ing with new items. NirGNN infers the new item embeddings within the GNN embedding
space by utilizing item attributes. This method allows for more accurate predictions and
recommendations involving new items.



Electronics 2024, 13, 223 5 of 17

2.3. Graph Augmentation and Contrastive Learning

Graph augmentation refers to modifying and enhancing existing graphs to improve
their quality in various graph learning methods. This can involve several techniques and
methods, depending on the specific goals and the nature of the graph. Node augmentation
and edge augmentation are common methods. Node augmentation generally modifies the
attributes of nodes. This might involve updating weights, labels, or other properties based
on new data [50]. Edge augmentation introduces new edges or reduces edges between
existing nodes to create an augmented graph [51]. These methods involve changing
connections between nodes, helping to explore alternative network structures.

To optimize augmented graphs, we introduce contrastive learning. Graph contrastive
learning is an advanced machine learning technique used to learn informative represen-
tations of graph-structured data [52,53]. Graph contrastive learning is part of contrastive
learning methods [54], which focus on learning to differentiate between similar and dis-
similar pairs of data points. Graph contrastive learning specifically focuses on generating
node embeddings that bring similar nodes closer together in the representation space
while distancing dissimilar nodes. This objective is achieved through the development
of a contrastive loss function, which serves as the target for optimization by the learning
algorithm. Creating variations of input graphs through graph augmentation helps to gener-
ate positive pairs for training. In this approach, the graph data are used to capture their
intrinsic properties and relationships. Graph contrastive learning methods have diverse
applications across various domains, such as social network analysis [55], bioinformat-
ics [53], and recommendation systems [56]. In these applications, they enable the effective
learning of graph embeddings that reflect the underlying structure and relationships, which
can then be used for tasks such as node classification [57], link prediction [58], and graph
classification [59].

3. Method

This section introduces the preliminary concepts for this paper; provides an overview
of our model, TSGNN; and illustrates each component of TSGNN.

3.1. Preliminary

A user’s session consists of items they have visited, e.g., S = {v1, v2, ..., vn}. Each
vi represents one item, and n represents how many items there are. There is an order
for every two items in a session, which represents the user’s actions. The session can be
constructed as a directed graph G = (V, X, A), where V ∈ Rn denotes a set of nodes, and
X ∈ Rn×d represents the features of nodes with dimension d. A is the adjacent matrix, and
Ai,j = (vi, vj). An edge in a directed graph is the order of items in a session.

The GNN session-based new item recommendation aims to design a GNN-based
method for recommending new items to users. Specifically, the GNN-based methods for
new item recommendation often learn user preference by using session graphs. As the new
items are not directly learnable by GNNs, the GNN session-based methods often introduce
external knowledge, such as attribute to create simulated embeddings for these new items.

3.2. Overview

Figure 1 shows the overview of TSGNN. TSGNN obtains input from user sessions. In
step (a), a time-sensitive session graph is constructed from the input session. Subsequently,
in step (b), the session graph undergoes augmentation through a graph augmentation
function, resulting in two augmented graphs. In step (c), the two augmented graphs are
fed into two weights-shared GNN encoders, ensuring that all learned embeddings are
located within the same space. The encoding process generates representations for both
graphs, which are subsequently fed into a time-aware attention mechanism. This network
is tailored to comprehend and capture user preferences, taking into account the impact of
time on the session graph. In step (d), TSGNN calculates the compatibility scores between
user preferences and new items. It then identifies and recommends the most appropriate
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item for the user based on these scores. A detailed explanation of each component will be
presented in the subsequent sections.
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Figure 1. Overview of TSGNN.

3.3. Time-Sensitive Session Graph Construction

Given the limited consideration of the impact of time on session graph modeling
in previous research, we reconsider this aspect in session graph construction. A session
is a directed sequence, consisting of various items (nodes) and directed edges between
items. The order of directed edges represents the time sequence in which these nodes are
visited. The strategy utilized by SR-GNN [23] was followed, which involves transforming
a session into a directed session graph. If a node is visited multiple times, we do not create
new vertices for each visit. Instead, we directly connect the node, which has been visited
multiple times, to its subsequent node (or the preceding node). If a node in the graph is
visited multiple times, we do not create new vertices for each visit. Instead, we directly
connect the node, which has been visited multiple times, to its subsequent node (or the
preceding node). There are two adjacency matrices in a directed session graph: one for an
incoming adjacency matrix and one for an outgoing adjacency matrix [23]. Suppose we
have an edge Aij with nodes vi and vj, where vi starts the edge and vj ends it. The weight
of each edge can be defined as:

weightij =
Din(vi)

Dout(vi)
, (1)

Din(·) calculates the incoming degree of node vi, while Dout(·) calculates the outgoing
degree of node vi. Building upon the weighting method of SR-GNN, we incorporate a
temporal influence by assigning time weights to each edge and constructing a time-sensitive
adjacency matrix. Specifically, edges are sorted by their appearance timestamps, and we
assign a rank score S(Aij) as a weight for the edge Aij. Specifically, the S(·) calculates the
order in which the edge Aij appears. For example, the first edge encountered in the session
is assigned a weight of 1, the second edge is assigned a weight of 2, and so forth, with
the n-th visited edge receiving a weight of n. The item last visited may reflect the user’s
preference over the early visited items. By assigning weights in this manner, different edges
are given different degrees of importance based on their time of visit. Recently visited
edges are given a higher weight. Consequently, the rank score S(Aij) effectively captures
the temporal influence. The time-sensitive weighting method can be defined as:

weightij =
Din(vi) ∗ S(Aij)

Dout(vi)
, (2)
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where S is a ranking method. We provide an example of how to calculate an outgoing
time-sensitive adjacency matrix. As illustrated in Figure 2a, considering a session with
5 items, v1 → v2 → v3 → v4 → v1 → v5, our objective is to construct it as a time-sensitive
session graph (b), achieved by calculating outgoing and incoming adjacency matrices (c).
For edge A12, the in-degree of v1 is 1, the out-degree of v1 is 2, and the rank of A12 is 1.
Consequently, the weight assigned to this edge is 0.5. The calculation of the incoming
adjacent matrix is the same.
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Figure 2. In this figure, part (a) illustrates an input session. By connecting nodes and assigning
weights to each edge, the session graph depicted in part (b) can be constructed. Part (c) showcases
the outgoing adjacency matrices of the session graph.

3.4. Session Graph Augmentation and Embedding

Using the mechanism mentioned above, a time-sensitive session graph can be con-
structed. To address the issue of the sparsity of session graphs, we adapt two commonly
used methods for session graph augmentation, specifically for the time-sensitive graph.
Drawing on established methods [51], we implement ‘drop feature’ and ‘drop edge’ tech-
niques. For node features, we employ a random probability, denoted as R f , to selectively
drop features [60], e.g., X = R f × X. Similarly, we apply this random function Re to the
adjacency matrix, such that A = Re × A. To learn the embedding hi for the vertex vi, we
use a GNN as an encoder, such as the gated graph neural network (GGNN) [61]. In the
case of a node vi, the embedding hi takes the following form [62]:

h(1)i = [xT
i , 0]⊤

a(t)i =
[

AIn
i: (h

(t−1)
1 , . . . , h(t−1)

n )⊕ AOut
i: (h(t−1)

1 , . . . , h(t−1)
n )

]⊤
+ b,

z(t)i = σ
(

Wza(t)i + Uzh(t−1)
i

)
,

r(t)i = σ
(

Wra(t)i + Urh(t−1)
i

)
,

h̃(t)i = tanh
(

Woa(t)i + Uo

(
r(t)i ⊙ h(t−1)

i

))
,

h(t)i =
(

1 − z(t)i

)
⊙ h(t−1)

i + z(t)i ⊙ h̃(t)i ,

(3)

where AIn
i: and AOut

i: denote the incoming and outgoing adjacency matrices of the i-th row
in the matrix, respectively. The variable t symbolizes the training step, σ(·) signifies the
sigmoid function, and ⊙ indicates element-wise multiplication. Wz, Wr, Wo and Uz, Ur, Uo
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are parameters that can be adjusted during the learning process. A GGNN acquires
the embeddings of items within a session graph G by propagating information among
neighboring nodes.

3.5. Time-Aware Attention Network

This section introduces a temporal attention network for learning user preferences. It
has been found that some previous studies overemphasize users’ preferences based on the
last item they visited [23], overlooking the influence of timestamps on user preferences.
To address this limitation, we introduce a time-aware attention network to learn user
preferences under the time influence. Given that each node’s representation includes
temporal information, we utilize the cosine similarity between hi and hj to assess the time
influence of hj on hi. By splicing the similarity of the current nodes and other nodes, the
preferences of users can be tracked over time. By concatenating these time influences
from other nodes, node hi embodies the information from other items, implicitly reflecting
user preferences. The significance of each node is then determined using the attention
mechanism. Thus, the overall time-aware attention α is as follows:

α = σ(W ∗ (hi ⊕ ∑
j∈V\i

cos(hi, hj)hi)), (4)

where W represents the learnable weights of item embedding vectors, and cos(·) is the
cosine similarity function. User preference I influenced by time can be defined as:

I =
n

∑
i

α ∗ hi. (5)

Time-aware attention networks take into account the temporal order of items, recog-
nizing that the items in which users are viewed are crucial to learning preferences.

3.6. Optimization

After learning the users preference, we employ the following function to compute the
recommendation score [24]:

ẑi = softmax(I⊤ ∗ ci), (6)

where ci is the candidate new item embedding.
To optimize the entire model effectively, we integrate a variety of loss functions for

the overall loss. Particularly, since we have added graph augmentation in the model,
we employ the InfoNCE loss as a foundational component for model optimization. The
InfoNCE loss is formulated as follows [63]:

LInfoNCE = − log
exp(cos(hi, h+i ))

exp(cos(hi, h+i )) + ∑h−j
exp(cos(hi, h−j ))

. (7)

Here, cos(hi, hj) denotes the similarity between nodes hi and hj, h+i is a corresponding
node in the augmented graph for hi, and h−j represents non-corresponding nodes. The
essence of this loss is to pull corresponding nodes (those that are augmented versions of
the same node) closer together and push non-corresponding nodes apart in the embedding
space. Following the augmented method described in Section 3.4, we obtain two augmented
graphs G1 and G2. In G1, we select node hi as the anchor node and hj as the corresponding
node in G2. In both graphs G1 and G2, the node hj is treated as a positive sample of hi
whereas the other nodes (e.g., hk) are treated as negative samples [60]. Building on this, we
can express our contrastive loss function as follows:

Lc(hi, hj, hk) = − log
exp(cos(hi, hj)/τ)

exp(cos(hi, hj)/τ) + ∑N
k=1 exp(cos(hi, hk)/τ)

, (8)
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where exp(·) represents a exponential function and τ represents a temperature coefficient.
This loss optimizes the graph encoder by making the corresponding nodes more similar
and non-corresponding nodes more dissimilar.

In addition, we incorporate two essential loss functions in the recommendation system,
including a cross-entropy loss Lce to optimize the recommendation process, and a new item
learning loss Lt = θ(hi, ci) to learn new items embeddings. θ(·) is a distance function. As a
result, the final loss function can be formulated as follows:

L = Lce(zi, ẑi) + γLc(hi, hj, hk) + (1 − γ)Lt(hi, ci), (9)

where ẑ represents the ground truth item embedding, and γ is employed to balance the new
item embedding learning loss and the contrastive loss for augmented graph learning. Given
that Lce is the primary loss for recommendation, we do not assign a trade-off parameter
to it.

4. Experiments

In this section, we conduct a comparative analysis of our method, TSGNN, against
other SOTA methods and highlight the benefits and enhanced performance of our approach.
We execute our method on an NVIDIA GeForce GTX TITAN X 24G GPU. The outcomes of
our experiments, along with an ablation study and an analysis of parameter sensitivity, are
reported based on trials conducted using general datasets.

4.1. Datasets

We utilize the dataset provided by the NirGNN [24], which includes two datasets:
one dataset is Amazon Grocery and Gourmet Food (Amazon G&GF) and the other is
Yelpsmall. Both datasets encompass a comprehensive range of information, including
items, users, user–item interaction sessions, timestamps, and user reviews. This array of
datasets adequately satisfies the requirements for our experimental conditions, offering a
rich source of information to analyze user behavior, preferences, and interaction patterns
within session-based recommendation frameworks. Table 1 shows the details of datasets.
Following the setting of NirGNN, the Amazon G&GF dataset includes a total of 51,958 train
sessions and 37,813 test sessions. Meanwhile, the Yelpsmall dataset includes 19,035 train
sessions and 2311 test sessions.

Table 1. Description on datasets.

Dataset Items Description

Amazon G&GF 18,889 Including user reviews and item-to-item timestamps.
Yelpsmall 14,726 Including user data, interactions, and reviews.

4.2. Baselines

We compare our method with seven state-of-the-art methods, including SR-GNN [23],
SR-GNN-ATT, GC-SAN [64], GCE-GNN [65], DHCN [66], COTREC [67], and NirGNN [24].
Table 2 shows the details of baselines. SR-GNN, SR-GNN-ATT, GC-SAN, and GCE-GNN
are recognized as classic GNN session-based recommendation systems. Most of them
use attention mechanisms that ignore the time influence. By comparing our method with
these established approaches, we aim to demonstrate the effectiveness and superiority of
the time-aware attention mechanism that we have developed. DHCN and COTREC are
self-supervised GNN session-based recommender systems. An analysis contrasting our
method with these two highlights the advantages of our self-supervised approach. The
NirGNN is the GNN-based recommender system for new item recommendation in session
scenarios. It is the first GNN-based approach specifically tailored for session-based new
item recommendations, which use dual-intent to learn users’ preferences.
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Table 2. Description of baselines.

Baselines Description

SR-GNN The first session-based recommendation method based on GNNs.
SR-GNN-ATT An attention enhanced version of SR-GNN.
GC-SAN A multi-layer self-attention based method.
GCE-GNN A position-aware attention based method.

DHCN A self-supervised based method with hypergraphs.
COTREC A co-training self-supervised based method.

NirGNN A GNN model for session-based new item recommendaiton.

Following the previous works, we use P@k and MRR@k to measure our work’s
performance. P@k measures the accuracy of the top k items in a list of predictions. It can be
defined as [68]:

P@k =
p
k

, (10)

where p indicates how many predictions are correct. MRR@k is a metric used to evaluate
the average of the reciprocal ranks of the query items in the recommendation list. It can be
defined as:

MRR@k =
1
k

k

∑
i=1

1
qi

, (11)

where qi is the position in which vi appears in the recommendation list [68]. Following the
previous works, we select k = {10, 20} as the range in this paper.

4.3. Performance

In Tables 3 and 4, the experimental results are detailed. The results of baselines come
from NirGNN [24]. From the tables, we can find that the NirGNN is the SOTA baseline. The
experimental results demonstrate significant enhancements accomplished by the TSGNN
method when compared to existing state-of-the-art methods. For instance, in the Amazon
G&GF dataset, our method shows a 10.29% improvement at P@20 compared with the
NirGNN method. At MRR@20 metric, TSGNN achieves a 36.56% enhancement. Addition-
ally, at P@10, TSGNN outperforms a 22.81% increase compared to NirGNN. Most notably,
TSGNN demonstrates a remarkable 39.96% enhancement in MRR@10. Furthermore, in
the Yelpsmall dataset, TSGNN exhibits an 8.37% improvement on the P@20 metric and
a 0.46% increase on MRR@20. These results demonstrate the superiority of TSGNN. We
observed anomalies in DHCN’s performance in P@10 and MRR@10. This may also be
due to the short session of the Yelpsmall data set, which makes it difficult for DHNC to
accurately construct the hypergraph, thereby impacting its recommendation invalidly. Al-
though TSGNN performs poorly on the two metrics on Yelpsmall, it performs optimally on
other datasets, which proves its effectiveness. In addition, TSGNN failed on the P@10 and
MRR@10 metrics. This underperformance may be due to the fact that sessions in Yelpsmall
have a lower average session length (4.66) than sessions in Amazon G&GF (8.39). Short
sessions may limit the learning ability of graph neural networks, resulting in a decline in
various evaluation metrics. Therefore, short sessions may not provide sufficient interaction
data for the TSGNN to effectively capture complex user preferences.
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Table 3. Experiments on Amazon G&GF dataset.

Methods P@20 MRR@20 P@10 MRR@10

SR-GNN 1.438 ± 0.134 0.336 ± 0.025 0.086 ± 0.078 0.297 ± 0.021
SR-GNN-ATT 0.678 ± 0.202 0.157 ± 0.038 0.375 ± 0.144 0.136 ± 0.040
GC-SAN 2.028 ± 0.108 0.580 ± 0.093 1.288 ± 0.059 0.529 ± 0.090
GCE-GNN 1.650 ± 0.291 0.478 ± 0.082 1.053 ± 0.200 0.441 ± 0.076

DHCN 0.403 ± 0.002 0.058 ± 0.001 0.206 ± 0.001 0.047 ± 0.001
COTREC 1.681 ± 0.837 0.434 ± 0.229 1.078 ± 0.583 0.393 ± 0.213

NirGNN 2.420 ± 0.039 0.599 ± 0.017 1.578 ± 0.056 0.543 ± 0.018

TSGNN 2.669 ± 0.013 0.818 ± 0.024 1.938 ± 0.020 0.760 ± 0.031
Improve (%) 10.29% 36.56% 22.81% 39.96%

Table 4. Experiments on Yelpsmall dataset.

Methods P@20 MRR@20 P@10 MRR@10

SR-GNN 0.764 ± 0.534 0.192 ± 0.118 0.476 ± 0.346 0.180 ± 0.111
SR-GNN-ATT 1.631 ± 0.353 0.410 ± 0.089 0.989 ± 0.183 0.366 ± 0.078
GC-SAN 0.793 ± 0.115 0.174 ± 0.094 0.418 ± 0.144 0.165 ± 0.103
GCE-GNN 1.702 ± 0.462 0.789 ± 0.224 1.428 ± 0.563 0.776 ± 0.229

DHCN 0.396 ± 0.021 0.026 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
COTREC 0.833 ± 0.417 0.256 ± 0.199 1.021 ± 0.583 0.269 ± 0.222

NirGNN 1.817 ± 0.087 1.092 ± 0.017 0.779 ± 0.043 0.299 ± 0.049

TSGNN 1.969 ± 0.541 1.097 ± 0.413 0.822 ± 0.043 0.355 ± 0.068
Improve (%) 8.37% 0.46% - -

4.4. Ablation Study

To confirm the effectiveness of each component in our proposed model, we conducted
ablation experiments. The outcomes of these experiments are detailed in Tables 5 and 6.
TSGNN represents the complete time-sensitive graph neural network. ‘TSGNN w/o weight’
refers to a TSGNN version that replaces the time-sensitive session graph construction with
ordinary modeling methods. ‘TSGNN w/o attention’ denotes the TSGNN without the
time-aware attention mechanism and uses the general soft-attention mechanism. ‘TSGNN
w/o Lc’ indicates the TSGNN without graph augmentation and the optimal loss. The
results presented in both tables clearly illustrate that each component plays a vital role in
enhancing the overall performance of the TSGNN. In Table 5, TSGNN achieves optimal
effectiveness when all components are integrated. The ‘TSGNN w/o weight’ method
results in a general decline in TSGNN’s performance, underscoring the significance of the
temporal weighting modeling approach for this model. Likewise, graph augmentation and
contrastive loss hold substantial significance. However, TSGNN’s performance on P@20
is lower than that of TSGNN w/o weight. This indicates that while graph augmentation
can enhance the richness of graph data, it might also disrupt inherent structures on session
graphs. Such an alteration in the graph’s structure could lead to a degradation in the
model’s ability to accurately capture and represent the underlying patterns. Eliminating the
contrastive loss and graph augmentation results in a decline across all metrics, indicating
that this loss component effectively enhances the model’s learning capabilities. ‘TSGNN
w/o attention’ leads to a significant decrease in its performance, thereby validating the
importance of the attention method. In Table 6, although TSGNN does not secure the
top position in the P@10 metric, it attains the second-best performance. By comparing
with the model without other key components, TSGNN still has advantages, proving that
integrating each component into the model is beneficial.
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Table 5. An ablation study on Amazon G&GF.

DataSets P@20 MRR@20 P@10 MRR@10

TSGNN 2.669 ± 0.013 0.818 ± 0.024 1.938 ± 0.020 0.760 ± 0.031
TSGNN w/o weight 2.673 ± 0.063 0.762 ± 0.028 1.829 ± 0.101 0.679 ± 0.097
TSGNN w/o Lc 2.685 ± 0.109 0.784 ± 0.002 1.920 ± 0.103 0.753 ± 0.011
TSGNN w/o attention 2.508 ± 0.259 0.811 ± 0.076 1.911 ± 0.980 0.760 ± 0.039

Table 6. An ablation study on Yelpsmall.

DataSets P@20 MRR@20 P@10 MRR@10

TSGNN 1.969 ± 0.541 1.097 ± 0.413 0.822 ± 0.043 0.355 ± 0.068
TSGNN w/o weight 1.731 ± 0.606 1.010 ± 0.277 0.736 ± 0.923 0.186 ± 0.343
TSGNN w/o Lc 1.644 ± 0.476 1.077 ± 0.133 1.010 ± 0.447 0.340 ± 0.148
TSGNN w/o attention 1.774 ± 0.346 0.970 ± 0.064 0.736 ± 0.476 0.343 ± 0.031

4.5. Parameter Sensitivity Analysis
4.5.1. Analysis for Random Parameters R f and Re

We conduct sensitivity analysis for the two parameters R f and Re on the Amazon
G&GF and Yelpsmall datasets, respectively. The results of this analysis are depicted
in Figures 3 and 4. In the Amazon G&GF dataset, we observe a correlation between
increasing values of R f and improved model performance. As R f rises, indicating a
gradual reduction in features, the effect of the model becomes better. This suggests that the
performance of the model is increasingly dependent on the graph structure. Compared
to node features, the structural composition of the data plays an effective role in learning
user preferences. For Re, we observe that the influence of varying Re values on the model’s
performance is inconsistent. As Re increases, there is a noticeable improvement in the
model’s effectiveness, reaching its zenith at a value of 0.3. However, as Re continues to rise,
the model’s performance starts to fluctuate and deteriorate. This trend indicates that an
appropriate Re value can enhance the model’s performance, but exceeding this optimal
point leads to diminishing returns. In the Yelpsmall dataset, both R f and Re show optimal
performance at a value of 0.5. Different from R f in Amazon G&GF, as R f increases, the
performance of the model initially increases but then starts to decline, peaking at 0.5. This
shows that for the Yelpsmall data set, the features are as important as the structure. A
certain R f will promote the improvement of the model effect.

(a) (b)

Figure 3. Parameter analysis of R f and Re on Amazon G&GF dataset. (a) The influence of R f on
Amazon G&GF dataset. (b) The influence of Re on Amazon G&GF dataset.
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(a) (b)

Figure 4. Parameter analysis of R f and Re on Yelpsmall dataset. (a) Influence of the parameter R f .
(b) Influence of the parameter Re.

4.5.2. Analysis for Loss Parameter γ

To determine the contribution of each loss, we analyze the parameters of each loss.
Figure 5 illustrates the results. Figure 5a reveals that as the γ parameter increases, there
is a general upward trend in performance, highlighting the efficacy of our augmented
method. However, in Figure 5b, we observed fluctuating behavior in the model’s perfor-
mance. Such fluctuation suggests that the impact of loss proportions on the model is not
uniform, indicating a more intricate interplay between the loss parameters and the model’s
overall performance.

(a) (b)

Figure 5. Parameter sensitivity analysis on γ. (a) γ on Amazon G&GF dataset. (b) γ on Yelpsmall
dataset.

4.5.3. Analysis for Learning Rate Parameters

We show the learning rate (lr) sensitivity analysis experiment in Figure 6. In the
Amazon G&GF dataset, we experiment with various learning rates, including {0.05, 0.01,
0.005, 0.001, and 0.0005}. As illustrated in Figure 6a, the model demonstrates optimal
performance at a learning rate of 0.005. The effectiveness of TSGNN is reduced when the
learning rate is too high, such as 0.05, or too low, such as 0.0005. As shown in Figure 6b,
the model demonstrates its best performance in the Yelpsmall dataset at a learning rate of
0.001. This variation indicates that different datasets require different learning rates for
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optimal results, and it is essential to tailor the learning rate to the specific requirements of
each dataset.

(a) (b)

Figure 6. Parameter sensitivity analysis on learning rate. (a) Learning rate on Amazon G&GF dataset.
(b) Learning rate on Yelpsmall dataset.

5. Conclusions

In this paper, we provide a time-sensitive graph neural network (TSGNN) specifically
designed for session-based new item recommendations. By applying time-sensitive weights
to each edge, TSGNN constructs time-sensitive session graphs, which solves the problem
of ignoring user preference learning over time. The ablation experiments demonstrate
that the time-sensitive session graph construction method outperforms the approach that
does not incorporate time-sensitive weights. TSGNN incorporates graph augmentation
technology and contrastive learning into its training process, effectively reducing the
limitations on graph sparsity. Moreover, TSGNN adopts a novel strategy to mitigate the
influence of the last visited item on user preferences by time-aware attention. This ensures a
balanced assessment of each item’s impact on user preference. The results from the ablation
study affirm that the time-sensitive attention network substantially enhances the model’s
effectiveness. By integrating these three proposed methods, TSGNN surpasses existing
SOTA models in a series of experiments, achieving an impressive enhancement of 36.56%.
In the future, we aim to extend the application of time-sensitive methods across various
recommendation fields and implement our proposed techniques in real-world scenarios.

Author Contributions: Methodology, L.W.; writing—original draft, L.W.; supervision, D.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data come from public datasets.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open-access journals
TLA Three-letter acronym
LD Linear dichroism



Electronics 2024, 13, 223 15 of 17

References
1. Jin, D.; Wang, L.; Zhang, H.; Zheng, Y.; Ding, W.; Xia, F.; Pan, S. A survey on fairness-aware recommender systems. Inf. Fusion

2023, 100, 101906. [CrossRef]
2. Loukili, M.; Messaoudi, F.; El Ghazi, M. Machine learning based recommender system for e-commerce. Iaes Int. J. Artif. Intell.

2023, 12, 1803–1811. [CrossRef]
3. Kokkodis, M.; Ipeirotis, P.G. The good, the bad, and the unhirable: Recommending job applicants in online labor markets. Manag.

Sci. 2023, 69, 11. [CrossRef]
4. Gaw, F. Algorithmic logics and the construction of cultural taste of the Netflix Recommender System. Media Cult. Soc. 2022,

44, 706–725. [CrossRef]
5. Li, X.; Grahl, J.; Hinz, O. How do recommender systems lead to consumer purchases? A causal mediation analysis of a field

experiment. Inf. Syst. Res. 2022, 33, 620–637. [CrossRef]
6. Piccardi, T.; Gerlach, M.; Arora, A.; West, R. A large-scale characterization of how readers browse Wikipedia. ACM Trans. Web

2023, 17, 1–22. [CrossRef]
7. Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A survey on session-based recommender systems. ACM Comput.

Surv. (CSUR) 2021, 54, 1–38. [CrossRef]
8. Guo, L.; Yin, H.; Wang, Q.; Chen, T.; Zhou, A.; Quoc Viet Hung, N. Streaming session-based recommendation. In Proceedings of

the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 1569–1577.

9. Zihayat, M.; Ayanso, A.; Zhao, X.; Davoudi, H.; An, A. A utility-based news recommendation system. Decis. Support Syst. 2019,
117, 14–27. [CrossRef]

10. Lv, F.; Jin, T.; Yu, C.; Sun, F.; Lin, Q.; Yang, K.; Ng, W. SDM: Sequential deep matching model for online large-scale recommender
system. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China,
3–7 November 2019; pp. 2635–2643.

11. Jin, D.; Wang, L.; Zheng, Y.; Li, X.; Jiang, F.; Lin, W.; Pan, S. CGMN: A Contrastive Graph Matching Network for Self-Supervised
Graph Similarity Learning. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI,
Vienna, Austria, 23–29 July 2022.

12. Zhang, T.; Zhao, P.; Liu, Y.; Sheng, V.S.; Xu, J.; Wang, D.; Liu, G.; Zhou, X. Feature-level Deeper Self-Attention Network for
Sequential Recommendation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI,
Macao, China, 10–16 August 2019; pp. 4320–4326.

13. Yuan, J.; Song, Z.; Sun, M.; Wang, X.; Zhao, W.X. Dual sparse attention network for session-based recommendation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 4635–4643.

14. Sottocornola, G.; Symeonidis, P.; Zanker, M. Session-based news recommendations. In Proceedings of the Companion Proceedings
of the The Web Conference, Lyon, France, 23–27 April 2018; pp. 1395–1399.

15. Hariri, N.; Mobasher, B.; Burke, R. Context-aware music recommendation based on latenttopic sequential patterns. In Proceedings
of the Sixth ACM Conference on Recommender Systems, Dublin, Ireland, 9–13 September 2012; pp. 131–138.

16. Park, S.E.; Lee, S.; Lee, S.g. Session-based collaborative filtering for predicting the next song. In Proceedings of the 2011 First
ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engineering, Jeju, Korea, 23–25 May 2011;
pp. 353–358.

17. Bhaskaran, S.; Marappan, R. Analysis of collaborative, content & session based and multi-criteria recommendation systems. Educ.
Rev. USA 2022, 6, 387–390.

18. Liu, Y.; Zheng, Y.; Zhang, D.; Lee, V.C.; Pan, S. Beyond smoothing: Unsupervised graph representation learning with edge
heterophily discriminating. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14
February 2023; Volume 37, pp. 4516–4524.

19. Zhang, H.; Wu, B.; Yang, X.; Zhou, C.; Wang, S.; Yuan, X.; Pan, S. Projective Ranking: A Transferable Evasion Attack Method on
Graph Neural Networks. In Proceedings of the CIKM, Queensland, Australia, 1–5 November 2021; pp. 3617–3621.

20. Zheng, Y.; Zhang, H.; Lee, V.C.; Zheng, Y.; Wang, X.; Pan, S. Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs. In Proceedings of the ICML, Honolulu, HI, USA, 23–29 July 2023.

21. Shen, Q.; Zhu, S.; Pang, Y.; Zhang, Y.; Wei, Z. Temporal aware multi-interest graph neural network for session-based recommen-
dation. In Proceedings of the Asian Conference on Machine Learning, Hyderabad, India, 12–14 December 2023.

22. Wang, J.; Xie, H.; Wang, F.L.; Lee, L.K.; Wei, M. Jointly modeling intra-and inter-session dependencies with graph neural networks
for session-based recommendations. Inf. Process. Manag. 2023, 60, 103209. [CrossRef]

23. Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; Tan, T. Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 346–353.

24. Jin, D.; Wang, L.; Zheng, Y.; Song, G.; Jiang, F.; Li, X.; Lin, W.; Pan, S. Dual Intent Enhanced Graph Neural Network for
Session-based New Item Recommendation. In Proceedings of the ACM Web Conference, Austin, TX, USA, 30 April–4 May 2023;
pp. 684–693.

25. Wang, S.; Zhang, Q.; Hu, L.; Zhang, X.; Wang, Y.; Aggarwal, C. Sequential/Session-based Recommendations: Challenges,
Approaches, Applications and Opportunities. In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 3425–3428.

http://doi.org/10.1016/j.inffus.2023.101906
http://dx.doi.org/10.11591/ijai.v12.i4.pp1803-1811
http://dx.doi.org/10.1287/mnsc.2023.4690
http://dx.doi.org/10.1177/01634437211053767
http://dx.doi.org/10.1287/isre.2021.1074
http://dx.doi.org/10.1145/3580318
http://dx.doi.org/10.1145/3465401
http://dx.doi.org/10.1016/j.dss.2018.12.001
http://dx.doi.org/10.1016/j.ipm.2022.103209


Electronics 2024, 13, 223 16 of 17

26. Ninichuk, M.; Namiot, D. Survey On Methods For Building Session-Based Recommender Systems. Int. J. Open Inf. Technol. 2023,
11, 22–32.

27. Ludewig, M.; Jannach, D. Evaluation of session-based recommendation algorithms. User Model.-User-Adapt. Interact. 2018,
28, 331–390. [CrossRef]

28. Norris, J.R. Markov Chains; Number 2; Cambridge University Press: Cambridge, UK, 1998.
29. Quadrana, M.; Karatzoglou, A.; Hidasi, B.; Cremonesi, P. Personalizing session-based recommendations with hierarchical

recurrent neural networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31
August 2017; pp. 130–137.

30. Tan, Y.K.; Xu, X.; Liu, Y. Improved recurrent neural networks for session-based recommendations. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 17–22.

31. Wang, Z.; Chen, C.; Zhang, K.; Lei, Y.; Li, W. Variational recurrent model for session-based recommendation. In Proceedings of
the Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26
October 2018; pp. 1839–1842.

32. Wu, J.; Li, C.M.; Wang, L.; Hu, S.; Zhao, P.; Yin, M. On solving simplified diversified top-k s-plex problem. Comput. Oper. Res.
2023, 153, 106187. [CrossRef]

33. Wu, J.; Li, C.M.; Zhou, Y.; Yin, M.; Xu, X.; Niu, D. HEA-D: A Hybrid Evolutionary Algorithm for Diversified Top-k Weight Clique
Search Problem. In Proceedings of the IJCAI, Vienna, Austria, 23–29 July 2022; p. 7.

34. Wang, L.; Li, C.; Zhou, J.; Jin, B.; Yin, M. An Exact Algorithm for Minimum Weight Vertex Cover Problem in Large Graphs. arXiv
2019, arXiv:1903.05948.

35. Wang, L.; Hu, S.; Li, M.; Zhou, J. An exact algorithm for minimum vertex cover problem. Mathematics 2019, 7, 603. [CrossRef]
36. Zhang, H.; Wu, B.; Yuan, X.; Pan, S.; Tong, H.; Pei, J. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv

2022, arXiv:2205.07424.
37. Zheng, Y.; Koh, H.Y.; Ju, J.; Nguyen, A.T.; May, L.T.; Webb, G.I.; Pan, S. Large language models for scientific synthesis, inference

and explanation. arXiv 2023, arXiv:2310.07984.
38. Tan, Y.; Liu, Y.; Long, G.; Jiang, J.; Lu, Q.; Zhang, C. Federated learning on non-iid graphs via structural knowledge sharing. In

Proceedings of the AAAI, Washington, DC, USA, 7–14 February 2023.
39. Zhang, H.; Yuan, X.; Nguyen, Q.V.H.; Pan, S. On the Interaction between Node Fairness and Edge Privacy in Graph Neural

Networks. arXiv 2023, arXiv:2301.12951.
40. Zhang, H.; Wu, B.; Wang, S.; Yang, X.; Xue, M.; Pan, S.; Yuan, X. Demystifying Uneven Vulnerability of Link Stealing Attacks

against Graph Neural Networks. In Proceedings of the ICML, PMLR. Proc. Mach. Learn. Res. 2023, 202, 41737–41752.
41. Zhang, H.; Yuan, X.; Zhou, C.; Pan, S. Projective Ranking-Based GNN Evasion Attacks. IEEE Trans. Knowl. Data Eng. 2023,

35, 8402–8416. [CrossRef]
42. Liu, Y.; Ding, K.; Lu, Q.; Li, F.; Zhang, L.Y.; Pan, S. Towards Self-Interpretable Graph-Level Anomaly Detection. In Proceedings of

the NeurIPS 2023, New Orleans, LA, USA, 10–16 December 2023.
43. Liu, Y.; Ding, K.; Liu, H.; Pan, S. Good-d: On unsupervised graph out-of-distribution detection. In Proceedings of the Sixteenth

ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March 2023; pp. 339–347.
44. Wu, B.; Zhang, H.; Yang, X.; Wang, S.; Xue, M.; Pan, S.; Yuan, X. GraphGuard: Detecting and Counteracting Training Data Misuse

in Graph Neural Networks. In Proceedings of the NDSS, San Francisco, CA, USA, 26 February–1 March 2024.
45. Zheng, Y.; Lee, V.C.; Wu, Z.; Pan, S. Heterogeneous graph attention network for small and medium-sized enterprises bankruptcy

prediction. In Proceedings of the PAKDD, Virtual Event, 11–14 May 2021.
46. Liu, Y.; Ding, K.; Wang, J.; Lee, V.; Liu, H.; Pan, S. Learning Strong Graph Neural Networks with Weak Information. In

Proceedings of the KDD, Long Beach, CA, USA, 6–10 August 2023.
47. Zhu, X.; Tang, G.; Wang, P.; Li, C.; Guo, J.; Dietze, S. Dynamic global structure enhanced multi-channel graph neural network for

session-based recommendation. Inf. Sci. 2023, 624, 324–343. [CrossRef]
48. Kumar, C.; Abuzar, M.; Kumar, M. Mgu-gnn: Minimal gated unit based graph neural network for session-based recommendation.

Appl. Intell. 2023, 53, 23147–23165. [CrossRef]
49. Chen, Z.; Xiao, T.; Kuang, K. Ba-gnn: On learning bias-aware graph neural network. In Proceedings of the 2022 IEEE 38th

International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 3012–3024.
50. Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; King, I. Spectral feature augmentation for graph contrastive learning and beyond.

In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37,
pp. 11289–11297.

51. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. Adv. Neural Inf. Process.
Syst. 2020, 33, 5812–5823.

52. You, Y.; Chen, T.; Shen, Y.; Wang, Z. Graph contrastive learning automated. In Proceedings of the International Conference on
Machine Learning, Virtual Event, 18–24 July 2021; pp. 12121–12132.

53. Wang, L.; Zheng, Y.; Jin, D.; Li, F.; Qiao, Y.; Pan, S. Contrastive Graph Similarity Networks; Association for Computing Machinery:
New York, NY, USA, 2023 [CrossRef]

54. Zheng, Y.; Pan, S.; Lee, V.; Zheng, Y.; Yu, P.S. Rethinking and scaling up graph contrastive learning: An extremely efficient
approach with group discrimination. Adv. Neural Inf. Process. Syst. 2022, 35, 10809–10820.

http://dx.doi.org/10.1007/s11257-018-9209-6
http://dx.doi.org/10.1016/j.cor.2023.106187
http://dx.doi.org/10.3390/math7070603
http://dx.doi.org/10.1109/TKDE.2022.3219209
http://dx.doi.org/10.1016/j.ins.2022.10.025
http://dx.doi.org/10.1007/s10489-023-04679-1
http://dx.doi.org/10.1145/3580511


Electronics 2024, 13, 223 17 of 17

55. Ju, W.; Gu, Y.; Luo, X.; Wang, Y.; Yuan, H.; Zhong, H.; Zhang, M. Unsupervised graph-level representation learning with
hierarchical contrasts. Neural Netw. 2023, 158, 359–368. [CrossRef]

56. Chen, M.; Huang, C.; Xia, L.; Wei, W.; Xu, Y.; Luo, R. Heterogeneous graph contrastive learning for recommendation. In
Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March
2023; pp. 544–552.

57. Xu, D.; Cheng, W.; Luo, D.; Chen, H.; Zhang, X. Infogcl: Information-aware graph contrastive learning. Adv. Neural Inf. Process.
Syst. 2021, 34, 30414–30425.

58. Zhang, Z.; Sun, S.; Ma, G.; Zhong, C. Line graph contrastive learning for link prediction. Pattern Recognit. 2023, 140, 109537.
[CrossRef]

59. Luo, X.; Ju, W.; Qu, M.; Chen, C.; Deng, M.; Hua, X.S.; Zhang, M. Dualgraph: Improving semi-supervised graph classification via
dual contrastive learning. In Proceedings of the IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur,
Malaysia, 9–12 May 2022; pp. 699–712.

60. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep Graph Contrastive Representation Learning. In Proceedings of the ICML,
Virtual Event, 13–18 July 2020.

61. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R.S. Gated Graph Sequence Neural Networks. In Proceedings of the 4th International
Conference on Learning Representations, ICLR, San Juan, Puerto Rico, 2–4 May 2016.

62. Wang, J.; Xu, Q.; Lei, J.; Lin, C.; Xiao, B. PA-GGAN: Session-based recommendation with position-aware gated graph attention
network. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July
2020; pp. 1–6.

63. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
64. Xu, C.; Zhao, P.; Liu, Y.; Sheng, V.S.; Xu, J.; Zhuang, F.; Fang, J.; Zhou, X. Graph contextualized self-attention network for

session-based recommendation. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; Volume 19, pp. 3940–3946.
65. Wang, Z.; Wei, W.; Cong, G.; Li, X.L.; Mao, X.L.; Qiu, M. Global context enhanced graph neural networks for session-based

recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, 25–30 July 2020; pp. 169–178.

66. Jiu, M.; Sahbi, H. DHCN: Deep hierarchical context networks for image annotation. In Proceedings of the ICASSP 2021—2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021;
pp. 3810–3814.

67. Xia, X.; Yin, H.; Yu, J.; Shao, Y.; Cui, L. Self-supervised graph co-training for session-based recommendation. In Proceedings
of the Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5
November 2021; pp. 2180–2190.

68. Chen, Y.; Xiong, Q.; Guo, Y. Session-based recommendation: Learning multi-dimension interests via a multi-head attention graph
neural network. Appl. Soft Comput. 2022, 131, 109744. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neunet.2022.11.019
http://dx.doi.org/10.1016/j.patcog.2023.109537
http://dx.doi.org/10.1016/j.asoc.2022.109744

	Introduction
	Related Works
	Session-Based Recommendation
	Graph Neural Networks for Session-Based Recommendation
	Graph Augmentation and Contrastive Learning

	Method
	Preliminary
	Overview
	Time-Sensitive Session Graph Construction
	Session Graph Augmentation and Embedding 
	Time-Aware Attention Network
	Optimization

	Experiments
	Datasets
	Baselines
	Performance
	Ablation Study
	Parameter Sensitivity Analysis
	Analysis for Random Parameters Rf and Re
	Analysis for Loss Parameter 
	Analysis for Learning Rate Parameters


	Conclusions
	References

