Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images
Abstract
:1. Introduction
- We synthesized seismic and WGN signals to create signal images that resemble actual images with high background noise and proposed a high-performance P-wave FAP signal-processing method using STFT (short-time Fourier transform)-based spectrogram transformation techniques.
- The P-wave FAP detection model developed in this study outperformed existing CNN and U-Net series models in terms of error, yielding an MSE of 0.0031, an MAE of 0.0177, and an RMSE of 0.0195.
- Through the developed P-wave FAP detection model, this study aimed to contribute to the advancement of microseismic monitoring technology used in various industrial fields, such as coal and oil exploration, tunnel construction, hydraulic fracturing, and earthquake early warning systems.
2. Development of P-Wave FAP Detection Model for Seismic Signals
- To obtain a seismic-signal dataset, we used the SMSIM (Stochastic Model Simulation) program, considering the geological characteristics of South Korea, and generated seismic signals of various amplitudes.
- We incorporated appropriate WGN signals into the generated seismic signals and conducted a preprocessing experiment to convert the signals into spectrogram images.
- We devised a P-wave FAP detection model for seismic signals by formulating a U-Net model known for its efficacy in prior P-wave FAP detection studies, and subsequently fine-tuning the hyperparameters to enhance the model’s P-wave FAP detection performance.
- To verify the reliability of the P-wave FAP detection model developed in this study, we used various model performance metrics.
3. Experimental Details
3.1. Seismic-Signal Data
3.2. WGN
3.3. Spectrogram Transformation
3.4. U-Net Model
3.4.1. U-Net Framework
3.4.2. Hyperparameter Optimization
3.4.3. Model Evaluation Metrics
4. Experimental Results
4.1. Results of U-Net Model Training and Validation
4.2. Model Performance Evaluation and Seismic-Signal P-Wave FAP Prediction
5. Discussion and Comparison with Similar Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ge, M. Efficient mine microseismic monitoring. Int. J. Coal Geol. 2005, 64, 44–56. [Google Scholar] [CrossRef]
- Cesca, S.; Grigoli, F. Full waveform seismological advances for microseismic monitoring. Adv. Geophys. 2015, 56, 169–228. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, R.; Zhang, Y.; Gao, D.; Zhang, H.; Li, T.; Zhang, C. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment. Nat. Gas Ind. B 2017, 4, 62–67. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S. Shale gas industry sustainability assessment based on WSR methodology and fuzzy matter–element extension model: The case study of China. J. Clean. Prod. 2019, 226, 336–348. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhang, T. Shale gas investment decision–making: Green and efficient development under market, technology and environment uncertainties. Appl. Energy 2022, 306, 118002. [Google Scholar] [CrossRef]
- Ni, Y.; Yao, L.; Sui, J.; Chen, J. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback/produced water. J. Nat. Gas Geosci. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, G.; Zhang, Y.; Deng, Y. Machine–learning–based well production prediction under geological and hydraulic fracture parameters uncertainty for unconventional shale gas reservoirs. J. Nat. Gas Sci. Eng. 2022, 106, 104762. [Google Scholar] [CrossRef]
- Mou, Y.; Cui, J.; Wu, J.; Wei, F.; Tian, M.; Han, L. The mechanism of casing deformation before hydraulic fracturing and mitigation measures in shale gas horizontal wells. Processes 2022, 10, 2612. [Google Scholar] [CrossRef]
- Goebel, T.H.; Brodsky, E.E. The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science 2018, 361, 899–904. [Google Scholar] [CrossRef]
- Schultz, R.; Atkinson, G.; Eaton, D.W.; Gu, Y.J.; Kao, H. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science 2018, 359, 304–308. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Zhang, H.; Yang, W.; Tan, Y.; Zhang, F.; Meng, L.; Zang, Y.; Miao, S.; Guo, C.; et al. High seismic velocity structures control moderate to strong induced earthquake behaviors by shale gas development. Commun. Earth Environ. 2023, 4, 188. [Google Scholar] [CrossRef]
- Kim, K. Situating the Anthropocene: The Social Construction of the Pohang ‘Triggered’ Earthquake. J. Sci. Technol. Stud. 2019, 19, 51–117. [Google Scholar]
- Wang, H.; Alkhalifah, T.; bin Waheed, U.; Birnie, C. Data–driven microseismic event localization: An application to the Oklahoma Arkoma basin hydraulic fracturing data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Lee, M.; Byun, J.; Kim, D.; Choi, J.; Kim, M. Improved modified energy ratio method using a multi–window approach for accurate arrival picking. J. Appl. Geophys. 2017, 139, 117–130. [Google Scholar] [CrossRef]
- Zhou, Z.; Cheng, R.; Rui, Y.; Zhou, J.; Wang, H. An improved automatic picking method for arrival time of acoustic emission signals. IEEE Access 2019, 7, 75568–75576. [Google Scholar] [CrossRef]
- Zhou, Z.; Cheng, R.; Rui, Y.; Zhou, J.; Wang, H.; Cai, X.; Chen, W. An improved onset time picking method for low SNR acoustic emission signals. IEEE Access 2020, 8, 47756–47767. [Google Scholar] [CrossRef]
- Mborah, C.; Ge, M. Enhancing manual P–phase arrival detection and automatic onset time picking in a noisy microseismic data in underground mines. Int. J. Min. Sci. Technol. 2018, 28, 691–699. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, Z.W.; Dong, L.J. Locating single–point sources from arrival times containing large picking errors (LPEs): The virtual field optimization method (VFOM). Sci. Rep. 2016, 6, 19205. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Wang, Z.; Dong, L.; Weng, L. Identifying P–phase arrivals with noise: An improved Kurtosis method based on DWT and STA/LTA. J. Appl. Geophys. 2016, 133, 50–61. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; Li, H. STA/LTA fractal dimension algorithm of detecting the P-wave arrival. Bull. Seismol. Soc. Am. 2018, 108, 230–237. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Yan, W. An improved AIC onset–time picking method based on regression convolutional neural network. Mech. Syst. Signal Process. 2022, 171, 108867. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.Z. STA/LTA algorithm analysis and improvement of Microseismic signal automatic detection. Prog. Geophys. 2014, 29, 1708–1714. [Google Scholar] [CrossRef]
- Zhu, M.; Cheng, J.; Zhang, Z. Quality control of microseismic P–phase arrival picks in coal mine based on machine learning. Comput. Geosci. 2021, 156, 104862. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.; Hu, T.; He, C. Multi–trace joint downhole microseismic phase detection and arrival picking method based on U–Net. Chin. J. Geophys. 2021, 64, 2073–2085. [Google Scholar] [CrossRef]
- Guo, X. First–arrival picking for microseismic monitoring based on deep learning. Int. J. Geophys. 2021, 2021, 5548346. [Google Scholar] [CrossRef]
- Choi, Y.; Song, Y.; Seol, S.; Byun, J. Machine Learning–based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data. Geophys. Geophys. Explor. 2022, 25, 177–188. [Google Scholar] [CrossRef]
- Li, W.; Chakraborty, M.; Fenner, D.; Faber, J.; Zhou, K.; Ruempker, G.; Stoecker, H.; Srivastava, N. Epick: Multi–class attention–based u–shaped neural network for earthquake detection and seismic phase picking. arXiv 2021, arXiv:2109.02567. [Google Scholar] [CrossRef]
- Dang, P.; Cui, J.; Ma, W.; Li, Y. Simulation of the 2022 Mw 6.6 Luding, China, earthquake by a stochastic finite–fault model with a nonstationary phase. Soil Dyn. Earthq. Eng. 2023, 172, 108035. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Tsvetkov, I.N.; Ryashko, L.B. Stochastically-induced dynamics of earthquakes. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, B.; Liu, N.; Zhu, X.; Ren, H. Deep learning prior model for unsupervised seismic data random noise attenuation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 7502005. [Google Scholar] [CrossRef]
- Du, R.; Liu, W.; Fu, X.; Meng, L.; Liu, Z. Random noise attenuation via convolutional neural network in seismic datasets. Alex. Eng. J. 2022, 61, 9901–9909. [Google Scholar] [CrossRef]
- An, S.; Wang, H.; Sun, Y.; Lu, Z.; Yu, Q. Time domain multiplexed lora modulation waveform design for iot communication. IEEE Commun. Lett. 2022, 26, 838–842. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Ohtsuki, T.; Adachi, F. Multi–task learning for generalized automatic modulation classification under non–Gaussian noise with varying SNR conditions. IEEE Trans. Wirel. Commun. 2021, 20, 3587–3596. [Google Scholar] [CrossRef]
- Thaler, D.; Stoffel, M.; Markert, B.; Bamer, F. Machine-learning-enhanced tail end prediction of structural response statistics in earthquake engineering. Earthq. Eng. Struct. Dyn. 2021, 50, 2098–2114. [Google Scholar] [CrossRef]
- Deng, G.; Cahill, L.W. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; IEEE: New York, NY, USA; pp. 1615–1619. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C. Time series data cleaning: A survey. IEEE Access 2019, 8, 1866–1881. [Google Scholar] [CrossRef]
- Hweesa, N.L.; Zerek, A.R.; Daeri, A.M.; Zahra, M.F. Adjacent and Co–Channel Interferences Effect on AWGN and Rayleigh Channels Using 8–QAM Modulation for Data Communication. In Proceedings of the 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Monastir, Tunisia, 20–22 December 2020; IEEE: New York, NY, USA; pp. 321–327. [Google Scholar] [CrossRef]
- Lv, H.; Zeng, X.; Bao, F.; Xie, J.; Lin, R.; Song, Z.; Zhang, G. ADE–net: A deep neural network for DAS earthquake detection trained with a limited number of positive samples. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5912111. [Google Scholar] [CrossRef]
- Fromageau, J.; Liebgott, H.; Brusseau, E.; Vray, D.; Delachartre, P. Estimation of time–scaling factor for ultrasound medical images using the Hilbert transform. EURASIP J. Adv. Signal Process. 2006, 2007, 80735. [Google Scholar] [CrossRef]
- Tao, H.; Wang, P.; Chen, Y.; Stojanovic, V.; Yang, H. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J. Frankl. Inst. 2020, 357, 7286–7307. [Google Scholar] [CrossRef]
- Goodwin, M.M. Realization of arbitrary filters in the STFT domain. In Proceedings of the 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 18–21 October 2009; IEEE: New York, NY, USA; pp. 353–356. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Yao, B.; He, W. ECG arrhythmia classification using STFT–based spectrogram and convolutional neural network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Jung, H.; Choi, S.; Lee, B. Rotor Fault Diagnosis Method Using CNN–Based Transfer Learning with 2D Sound Spectrogram Analysis. Electronics 2023, 12, 480. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U–net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer–Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. Part III 18. pp. 234–241. [Google Scholar] [CrossRef]
- Li, S.; Gao, J.; Gui, J.; Wu, L.; Liu, N.; He, D.; Guo, X. Fully Connected U–Net and its application on reconstructing successively sampled seismic data. IEEE Access 2023, 11, 99693–99704. [Google Scholar] [CrossRef]
- Min, F.; Wang, L.; Pan, S.; Song, G. D2UNet: Dual Decoder U–Net for Seismic Image Super–Resolution Reconstruction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5906913. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, X.; Duan, Y.; Yan, X.; Hu, Y.; Zhang, X. First–arrival picking with a U–net convolutional network. Geophysics 2019, 84, U45–U57. [Google Scholar] [CrossRef]
- Yuan, P.; Hu, W.; Wu, X.; Chen, J.; Van Nguyen, H. First arrival picking using U–net with Lovasz loss and nearest point picking method. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019; pp. 2624–2628. [Google Scholar] [CrossRef]
- Zhang, Y.; Leng, J.; Dong, Y.; Yu, Z.; Hu, T.; He, C. Phase arrival picking for bridging multi–source downhole microseismic data using deep transfer learning. J. Geophys. Eng. 2022, 19, 178–191. [Google Scholar] [CrossRef]
- Choi, S.; Kim, S.; Jung, H. Ensemble Prediction Model for Dust Collection Efficiency of Wet Electrostatic Precipitator. Electronics 2023, 12, 2579. [Google Scholar] [CrossRef]
- Yu, J.; Yoon, D. Crossline Reconstruction of 3D Seismic Data Using 3D cWGAN: A Comparative Study on Sleipner Seismic Survey Data. Appl. Sci. 2023, 13, 5999. [Google Scholar] [CrossRef]
- Liu, P.; Dong, A.; Wang, C.; Zhang, C.; Zhang, J. Consecutively Missing Seismic Data Reconstruction Via Wavelet–Based Swin Residual Network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7502405. [Google Scholar] [CrossRef]
Models | Model Evaluation Index | Result | Reference |
---|---|---|---|
U-Net++ | MAE | MAE = 1.21 | Guo et al. [25] |
Accuracy | Accuracy = 0.987 | ||
U-Net transfer learning | Accuracy | Accuracy = 0.88 | Choi et al. [26] |
U-Net | MSE | MSE = 0.06 | Li et al. [27] |
Accuracy | Accuracy = 0.988 |
Parameter | Value |
---|---|
Stress drop | 20–200 (step: 20) |
Q (quality factor) | 100–300 (step: 50) |
Magnitude | 3–4 (step: 0.2) |
Epicentral distance | 20–400 (step: 20) |
Signal data | 10,000 (magnitude step: 5000) |
Item | Parameter | Value |
---|---|---|
Spectrogram | Window size | 2, 4, 8, 16, 32, 64, 128, 256 |
Overlap | 1, 2, 4, 8, 16, 32, 64, 128 | |
Recording rate | 200 | |
Filter | Hanning window | |
White Gaussian noise | SNRdB | −1, −5, −10 |
Scaling factor | 1, 0.1, 0.01 |
Name of Component | Parameter | Content and Value | |
---|---|---|---|
Model setting value | Optimizer | Adam | |
Learning rate | 0.01, 0.001, 0.0001, 0.00001 | ||
Mini-batch size | 64 | ||
Epoch | 100 | ||
Loss | MSE | ||
Callback | ReduceLROnPlateau | Patience | 2 |
Min learning rate | 0.001 times the learning rate | ||
Factor | 0.5 | ||
ModelCheckPoint | Best PSNR | 1 epoch |
Model | SNRdB | MSE | SSIM | PSNR | MAE | RMSE | Accuracy |
---|---|---|---|---|---|---|---|
Window size = 64 (U-Net model) | −1 | 0.0075 | 0.9182 | 24.7937 | 0.0221 | 0.0256 | 0.9843 |
−5 | 0.0031 | 0.9157 | 24.6215 | 0.0177 | 0.0195 | 0.9918 | |
−10 | 0.0074 | 0.7895 | 19.8422 | 0.0247 | 0.0279 | 0.9844 |
Models | Signal Processing | Model Evaluation Index | Result | Reference |
---|---|---|---|---|
U-Net++ | Time-series analysis of signals and WGN | MAE | MAE = 1.21 | Guo et al. [25] |
Accuracy | Accuracy = 0.987 | |||
U-Net transfer learning | Time-series analysis of signals | Accuracy | Accuracy = 0.88 | Choi et al. [26] |
U-Net | Time-series analysis of signals and WGN | MSE | MSE = 0.06 | Li et al. [27] |
Accuracy | Accuracy = 0.988 | |||
U-Net | WGN and STFT analysis | MSE | MSE = 0.0031 | Our result |
MAE | MAE = 0.0177 | |||
RMSE | RMSE = 0.0195 | |||
Accuracy | Accuracy = 0.9918 | |||
SSIM | SSIM = 0.9182 | |||
PSNR | PSNR = 24.7937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Lee, B.; Kim, J.; Jung, H. Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images. Electronics 2024, 13, 229. https://doi.org/10.3390/electronics13010229
Choi S, Lee B, Kim J, Jung H. Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images. Electronics. 2024; 13(1):229. https://doi.org/10.3390/electronics13010229
Chicago/Turabian StyleChoi, Sugi, Bohee Lee, Junkyeong Kim, and Haiyoung Jung. 2024. "Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images" Electronics 13, no. 1: 229. https://doi.org/10.3390/electronics13010229
APA StyleChoi, S., Lee, B., Kim, J., & Jung, H. (2024). Deep-Learning-Based Seismic-Signal P-Wave First-Arrival Picking Detection Using Spectrogram Images. Electronics, 13(1), 229. https://doi.org/10.3390/electronics13010229