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Abstract: The Internet of Everything is leading to an increasingly connected intelligent digital
world. Envisaged sixth-generation wireless networks require new solutions and technologies due
to stringent network requirements. The benefits of cell-free massive MIMO (CF-mMIMO) and
non-orthogonal multiple access (NOMA) have brought substantial attention to these approaches
as potential technologies for future networks. In CF-mMIMO, numerous distributed access points
are linked to a central processing unit, which allocates the same time-frequency resources to a
smaller group of users. On the other hand, NOMA can support more users than its orthogonal
counterparts by utilizing non-orthogonal resource allocation. This paper provides a comprehensive
review and survey of NOMA-aided CF-mMIMO (CF-mMIMO-NOMA). Specifically, we present a
comprehensive review of massive MIMO, CF-mMIMO, and NOMA. We then present a state-of-the-art
research review of CF-mMIMO-NOMA. Finally, we discuss the challenges and potential of combining
CF-mMIMO-NOMA with other enabling technologies to enhance performance.

Keywords: artificial intelligence; cell-free massive MIMO; mMIMO; NOMA; NOMA-aided
CF-mMIMO; 6G

1. Introduction

The envisaged sixth generation of mobile telecommunications technology (6G) is
predicted to cause a significant increase in the number of online devices. Moreover, the
rise of Internet of Everything (IoE) applications will produce huge demand for data traffic,
accompanied by growing demands for diverse services, extensive coverage, and extremely
high-speed, exceptionally reliable, and remarkably low-latency wireless communications.
The use cases driving 6G networks may include holographic telepresence, digital twinning,
autonomous robotics, vehicles, the Internet of Things, distributed and large-scale data, and
the blockchain.

To support these use cases, 6G networks are expected to display improved network
performance by increasing the peak data rate to 1 Tbps, increasing the data transfer speed
for high mobility users to 1 Gbps, increasing connection density to 107 devices/km2,
decreasing air latency to 0.1 ms, and improving network reliability by supporting packet
failure probability of 10−7 [1,2]. These requirements can only be met by using novel
intelligent communication techniques. For instance, reconfigurable intelligent surfaces
(RISs), extra-large MIMO, novel spectrum utilization, holographic radio communications,
advanced multiple access schemes, and modulation techniques are all key methods to
optimize data transmission rates [3]. Cell-free massive MIMO (CF-mMIMO) systems
and the integration of terrestrial and non-terrestrial communications are both impactful
methods for improving connectivity and providing comprehensive coverage. The CF-
mMIMO solution is well suited for the future generation of indoor and outdoor scenarios.
In cell-free (CF) systems, users are surrounded by access points (APs), which eliminates
the concept of cell edges and the traditional problem of edge users suffering the worst
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performance. Crucially, CF-mMIMO systems benefit from all the advantages of network
MIMO solutions, and essential qualities of massive MIMO could be exploited to support
scalable solutions. Additionally, system performance can further be bettered by combining
CF-mMIMO systems with other technologies like NOMA, RISs, radio stripes, and machine
learning (ML). These improvements include increased data rates, reliability, and security,
which ultimately will help ensure that the target requirements of 6G networks are met.

NOMA is an emerging technology that offers promise for the forthcoming generation
of wireless communications. The capacity of orthogonal multiple-access approaches to
service users is often constrained by the availability of orthogonal resources. NOMA
enables more users to be served than the available resources would usually allow but
with greater complexity of the receivers as a trade-off. The benefits of NOMA include
massive connectivity, low latency, improved spectral performance, and relaxed channel
feedback [4–7].

Such benefits make the integration of NOMA with CF-mMIMO highly important to the
future of wireless communication networks. Independently, NOMA and CF-mMIMO have
attracted substantial research interest. However, little research concerns the integration
of the two. The papers most closely related to this review are those that review cell-free
massive MIMO technology. These include [8–15].

Motivated by the above discussion, we present a comprehensive study of NOMA with
CF-mMIMO wireless communications systems. To our knowledge, this is the first paper to
offer a full review of combining NOMA and cell-free massive MIMO.

For readability, Table 1 defines the acronyms used throughout this paper. Figure 1
describes the organization of work within the paper. In Section 2, the paper provides a brief
introduction to the fundamentals of massive MIMO (mMIMO), CF-mMIMO, and NOMA.
In Section 3, we present a focused literature review of NOMA with CF-mMIMO. We present
a simple NOMA-aided CF-mMIMO system model that considers single-antenna APs and
single-antenna user equipment (UE) with a time-division duplex (TDD) transmission
protocol. We further analyze the various works that concern NOMA with CF-mMIMO,
to highlight the challenges and objectives of different studies. Section 4 summarizes the
challenges of NOMA with CF-mMIMO and its potential integration with other enabling
technologies in the current area of research. Finally, Section 5 concludes the paper and
discusses key findings and possible future research directions.

Figure 1. Organization of this paper.
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Table 1. Main Acronyms Used.

Acronym Definition

5G Fifth generation of mobile telecommunications technology

6G Envisaged sixth generation of mobile telecommunications technology

AI Artificial intelligence

AP Access points

B5G Beyond fifth generation of mobile telecommunications technology

BE Bandwidth efficiency

BS Base station

CBSM Correlation-based stochastic model

CDMA Code division multiplexing access

CF Cell-free

CF-mMIMO Cell-free massive MIMO

CF-mMIMO-NOMA NOMA-based Cell-free massive MIMO system

CF-mMIMO-OMA OMA-based Cell-free massive MIMO system

CPU Central processing unit

CSI Channel state information

DL Downlink

FDD Frequency Division Duplex

FL Federated learning

GBSM Geometry-based stochastic channel model

GF Grant free

GP Geometric programming

i.i.d Independent and identically distributed

IoE Internet of Everything

IoT Internet of Things

LDPC Low-density parity check

LTE Long term evolution

MEC Multi-access edge computing

MIMO Multiple input multiple output

mMIMO Massive multiple input multiple output

ML Machine learning

MMSE Minimum mean square error

MSE Mean-squared errors

MRT Maximum ratio transmission

MUD Multi-user detection

MU-MIMO Multi-user multiple input multiple output

NOMA Non-orthogonal multiple access

OFDMA Orthogonal frequency division multiple access

OMA Orthogonal multiple access

OTFS Orthogonal time frequency and space
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Table 1. Cont.

Acronym Definition

PA Power Allocation

PAPR Peak-to-average power ratio

PD-NOMA Power domain NOMA

RIS Reconfigurable intelligent surface

rZF Regularized zero-forcing

SC Superposition coding

SCA Sequential convex approximation

SDP Semi-definite programming

SE Spectral efficiency

SIC Successive interference cancellation

SINR Signal-to-interference noise ratio

SOCP Second-order cone programming

TDD Time division duplex

UC User Clustering

UE User equipment

UL Upper link

ZF Zero-forcing

2. Theoretical Review

To understand NOMA-aided CF-mMIMO, we revisit some basics of mMIMO, CF-
mMIMO, and NOMA in this section. This will help the reader to better understand the
potential benefits of combining these technologies in NOMA-aided CF-mMIMO systems.

2.1. mMIMO Fundamentals

MIMO technology has gained significant attention in wireless communications as it
allows the utilization of many antennas at the transmitter, the receiver, or both, to boost
link performance. MIMO offers increased data throughput and extended communication
range without requiring more bandwidth. MIMO accomplishes this by exploiting spatial
dimension encoding and decoding.

Multi-user MIMO (MU-MIMO) is a critical technique in 4G communication systems
that is utilized to boost network capacity by categorizing users depending on their spatial
location. This approach provides a stronger guarantee for spatial multiplexing, although
it acquires challenging issues such as near–far power control and time and frequency
synchronization from point-to-point systems [16].

A sizeable new antenna array technique massive MIMO (mMIMO), often referred to
as large-scale MIMO, further scales the gains of MU-MIMO. These systems have many
times more antennas at the base station (BS) than traditional MIMO systems, allowing them
to serve dozens of UEs simultaneously [16,17].

As shown in [16–26], mMIMO provides significant improvements in spectral efficiency
(SE), reducing energy consumption, and minimizing network interference via channel hard-
ening, favorable propagation, and low complexity signal processing. Such improvements
are crucial to addressing the demands of data-centric systems with the increasingly precious
spectrum and energy resources.

Figure 2 shows the basic concept of mMIMO, where a BS with M antennas connects
with K single-antenna UEs and K << M.
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Figure 2. Simplified model of a multi-user massive MIMO system, using time-division duplexing
and channel reciprocity.

To successfully multiplex uplinks and downlinks spatially, BS must first understand
the propagation channel in both directions. This knowledge is essential for designing
efficient downlink precoders and uplink decoders.

Because acquiring channel state information (CSI) in the downlink is challenging,
mMIMO primarily relies on uplink channel estimation, channel reciprocity, and TDD.
As such, Marzeta et al. [19] define an authorized mMIMO network as a multicarrier
cellular network having L cells operating synchronously using TDD protocol. The jth BS
has Mj ≫ 1 antennas to provide channel hardening and communicates with Kj single-
antenna UEs concurrently on every time-frequency sample, having an antenna-UE ratio
of Mj/Kj > 1. Every BS works independently and utilizes linear receive combining and
linear transmit precoding to handle signals.

Operation using the frequency division duplex (FDD) may be possible in specific
scenarios [23]; the implementation of efficient FDD mMIMO poses substantial challenges
which remain to be solved [18].

To provide channel estimation across both BSs and mobile stations with a massive
number of channels, a sufficiently long channel coherence time is required to ensure
efficient operation. The accuracy of channel estimation and the channel coherence time are
fundamental limitations of mMIMO systems.

mMIMO systems offer several potential benefits, including [26]:

• Reliability: mMIMO systems can attain better reliability by using many antennas
to provide diversity gain. This means that if one antenna is affected by fading or
interference, the signal can still be received by another antenna.

• Spectral efficiency: mMIMO systems can attain better spectral efficiency by utilizing a
vast number of antennas to create multiple beams. This permits multiple users to use
the same frequency range without interfering with each other.

• Energy efficiency: mMIMO systems can transmit more data with less power thanks
to coherent combining. Also, one can increase throughput by utilizing more anten-
nas without raising the transmit power—hence, the energy efficiency improves and,
similarly, so does the system stability.
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• User tracking: user tracking becomes more accurate as mMIMO systems can use
numerous antennas to create narrow beams allowing the system to focus on the
desired user and ignore interference from other users.

• Cost efficiency: mMIMO systems do not require as many expensive components. For
example, massive MIMO systems can use lower-cost amplifiers because they do not
need to transmit as much power.

• Robustness: mMIMO systems can be very resilient to interference and jammings
because of the vast number of antennas since they can still receive signals even if some
of the antennas are affected by interference or jamming.

• Enhanced security: a large amount of antenna terminals results in many degrees
of freedom ensuring security. Moreover, mMIMO systems are naturally robust to
hacking and passive eavesdropping attempts because of the orthogonal channels of
receivers and narrow beams.

• Simple signal processing: a huge amount of antennas decreases the interference effects,
fast fading, uncorrelated noise, and thermal noise, simplifying the signal processing.

Even though the countless antennas benefit the communication system, mMIMO
imposes novel signal processing challenges like pilot contamination, channel estimation,
precoding, hardware efficiency, and data detection.

2.2. mMIMO Theory

An mMIMO wireless system can utilize a single-cell (SC) or multi-cell (MC) structure.
A single-cell structure has one BS with multiple antennas serving multiple users, while
a multi-cell system has multiple linked single-cell systems. Additionally, even if the BSs
in various cells work jointly, the MC structure is classed as noncooperative or coopera-
tive systems [27]. In MC systems, the capacity to accommodate more users is restricted
considering the finite quantity of orthogonal pilot symbols available within a certain time
frame and bandwidth. This constrains the total amount of users the system can support.
To accommodate additional users, neighboring cells in the system employ non-orthogonal
pilots. One of the simple schemes of slotting pilot sequences to users across various cells
involves reusing a similar group of orthogonal pilot sequences across every co-channel cell.
However, this approach can lead to pilot contamination as similar pilot sequences allocated
to users in adjacent co-channel cells will interfere with one another [28].

2.2.1. Precoding

The selection of the transmit signal in an mMIMO technique is crucial for ensuring that
devices get the intended symbols while suppressing interference resulting from symbols
meant for other devices. Precoding technology can mitigate the impacts of interference and
fading, ultimately enhancing the system’s throughput capacity.

Precoding strategies may be categorized as either linear or non-linear, based on con-
siderations like the peak-to-average power ratio (PAPR) and maximum likelihood (ML)
criteria [26].

Linear Precoding

Given that mMIMO presumes excessive BS antennas, it can be inferred that linear
precoding methods are likely to perform effectively in scenarios characterized by favor-
able signal propagation conditions. Linear precoding can be applied in both SC and
MC environments.

Figure 3 illustrates the general structure of communication systems incorporating
precoding and decoding techniques. F is the feedforward matrix of linear precoding, B
represents a feedback matrix of linear precoding, K represents the feedforward matrix
of non-linear decoding, and C represents the feedback matrix of non-linear precoding.
These matrices define the precoding techniques employed, which may be linear, non-linear,
or hybrid.
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Figure 3. Generalized block diagram of a communication system with precoding and decoding
techniques.

In Figures 2 and 3, the sequences relayed to the K users are represented as

u ∆
= (u1, . . . , uk)

T , provided uk corresponds to the symbols directed to the kth user. Fol-

lowing precoding, the resulting transmitted signals are represented as x ∆
= (x1, . . . , xm)T ,

where xm represents the relayed signal by the mth antenna. In downlink transmission,

the signals acquired by the users are generally represented as û ∆
= (û1, . . . , ûk)

T , where
ûk denotes the signal received by kth user. The H matrix K × M dimensions describe the
channel. The received signal could then be represented as follows:

Û = Hx + w. (1)

where w ∼ CN (0, Ik) is an i.i.d complex Gaussian-received noise vector with variance
matrix Ik. The transmitted signals, x, are created via the precoding function:

x = fpre(Ĥ, u). (2)

which depends on the estimation of the channel Ĥ, the elements û ∆
= (u1, . . . , uk)

T that are
sent to the users, and the available transmit power P. Mostly, linear precoding schemes are
considered when the transmitted signal is expressed as x = F(Ĥ)u, with the matrix F(Ĥ)
denoting the linear precoding matrix derived from the channel estimate and other system
parameters, like available transmit power.

In basic precoding techniques, the feedforward matrix F often involves a matrix
inversion operation, which can result in large computational complexity [26]. Linear
precoding methods can be categorized based on their approach to handling the matrix
inversion process. These categories include basic linear precoding, a linear precoder based
on matrix inversion approximation, a linear precoder based on fixed-point iterations, and a
linear precoder based on matrix decomposition.

1 The basic linear precoding algorithms include

• The maximum-ratio transmission (MRT) precoding, also referred to as conjugate
beamforming or a Matched Filter (MF). The feedforward matrix is given by

FMRT = (αMRT HH). (3)

where αMRT is a normalizing scalar that controls the transmit power or the
received signal-to-noise ratio (SNR), among other variables. MRT maximizes the
array gain of the transmission. However, disturbances from other users remain
in the received signal due to the lack of active interference mitigation. In typical
scenarios, MRT suppresses interference naturally with a boost in the amount
of BS antennas and there is orthogonalization of user channels as the limit is
approached [16].

• Zero-forcing (ZF) nullifies all inter-symbol and inter-user interference. The
pseudo-inverse of H gives the precoding matrix:

FZF = (αZF H∗(HHH)−1). (4)
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αZF is a normalizing scalar, and HHH is the Gram matrix, G. The primary
distinction between ZF and MRT lies in the matrix inversion step, which is
responsible for achieving the desired interference suppression. However, such
inverse computations often introduce considerable computational complexity.
The properties of mMIMO channels enable a substantial decrease in complexity
in comparison to the general inversion of matrices.

• The regularized zero-forcing (rZF) precoder shares properties of both MRT and
ZF. The rZF matrix is given by

FRZF = (αRZF H∗(HHH + βreg IkN)
−1). (5)

The regularization constant, βreg, may be set to balance the compromise between
array gain and interference suppression, and IkN represents an identity matrix of
size kN. If βreg is chosen to reduce the mean-squared error (MSE) E∥u − 1√

ρ û∥2,
where ρ is a scaling constant, we achieve the minimum MSE (MMSE) precoder.

2 The linear precoding based on the matrix inversion:
This is used to beat the inveterate noise boost that results when the number of M sig-
nificantly exceeds K causing G to become diagonal dominant, with the non-diagonal
components approaching zero. The diagonal elements tend to approach M. These
algorithms include:

(a) The Truncated Polynomial Expansion (TPE) algorithm.
(b) The Neumann Series Approximation (NSA) algorithm.
(c) The Newton Iteration (NI) algorithm.
(d) The Chebyshev Iteration (CI) algorithm.

3 The fixed-fixed point iteration-based algorithms:
These methods iteratively solve linear precoding equation Gx = a to determine the
matrix G. They include:

(a) The Gauss–Seidel (GS) algorithm.
(b) The Successive Over-Relaxation (SOR) algorithm.
(c) The Conjugate Gradient (CG) algorithm.
(d) The Jacobi Iteration (JI) Algorithm.

4 Based on Matrix Decomposition:
In small-scale MIMO systems, the direct algorithms–matrix decomposition precoder
is commonly employed as an alternative to explicit matrix inversion for the inversion
process. It demonstrates superior numerical stability compared to basic linear pre-
coder algorithms like the MRT, ZF, and MMSE algorithms. Additionally, it enables a
modular design, allowing for the distribution of the inversion process across different
components. However, in the subject of mMIMO systems, the use of direct algo-
rithms–matrix decomposition has substantial computational complexity. The direct
algorithms matrix decomposition involves decomposing the G matrix to a product
of smaller matrices, similar to the QR algorithm and the Cholesky decomposition
algorithm [26]. They include the following:

• The QR Decomposition algorithm.
• The Cholesky Decomposition (CD) algorithm.

Linear precoders generally offer the advantage of low complexity, making them com-
putationally efficient. They provide good performance when the channel correlation
is low. However, their performance deteriorates significantly in situations where there
are high correlations among user channels [29].

Non-Linear Precoding

A comprehensive study has been carried out to determine the most effective precoding
method for mMIMO systems to achieve high throughput performance while minimizing
complexity. However, it is important to address the limitations of linear precoders, de-
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spite their advantage of low complexity, as they may not provide sufficient precoding
accuracy [26,29]. Non-linear precoding schemes exhibit greater robustness against channel
correlation on UEs and can drastically boost the performance of mMIMO systems [29].

The non-linear precoding schemes include:

1. Dirty-paper coding (DPC.)
2. Tomlinson–Harashima (TH) precoding.
3. Vector Perturbation (VP) precoding.
4. Lattice Reduction-Aided (LR) precoding.

Peak-to-Average Power Ratio (PAPR) Precoding

Efficient non-linear amplifiers can be leveraged to realize the practical implementation
of mMIMO, leading to reduced implementation costs. Hence, minimizing the PAPR
becomes crucial to mitigate the impact of amplifier non-linearities. Several precoding
algorithms have been developed to reduce PAPR, including:

1. Constant Envelope (CE) Precoding.
2. Approximate Message Passing (AMP) Precoding.
3. Quantized Precoding (QP).

There are other machine-learning precoding techniques in mMIMO. The authors
of [30] discussed deep neural networks (DNN)-based downlink precoding. Specifically,
DNN-based precoders reduce computational complexity with negligible performance
degradation [31].

2.2.2. Uplink

The uplink transmission is utilized to send data and the pilot message from the UE to
the BS. Assuming a reciprocal channel, during uplink, the user side features no precoding
since they are not assumed to cooperate in reducing interference. Instead, users have
control over their power levels. Using the same notation as shown in Figure 2, representing
the power levels of the K users as a K × K diagonal matrix PUl , and the transmitted user

messages are collected as z ∆
= (z1, . . . , zk)

T , the information attained by the M antennas,

justified as r ∆
= (r′1 . . . , rM)T , can be expressed as:

r = H
√

PULz + w. (6)

with w ∼ CN (0, IM) representing i.i.d zero–mean complex Gaussian noise. The received
user symbols at the BS are analyzed from a detector function:

ẑ = gdet(r, Ĥ). (7)

which depends primarily on the channel estimate Ĥ and the received signal r. It additionally
considers inherent parameters such as the receiver SNR. There should be a class of detectors
that use only linear processing to combine the received signals of all antennas:

ẑ = G(Ĥ)r. (8)

Linear Detection Schemes

By a correct blending of the received signals from the M antennas, it becomes possible
to amplify the required signals whilst rejecting unwanted signals. Since the downlink and
uplink transmissions of TDD systems are broadcasted along an identical set of reciprocal
channels, both processes typically achieve the same rate, uplink–downlink duality. Because
of this, the precoding schemes mentioned earlier have direct analogs for uplink detection.
In other words, the same principles and techniques used in downlink precoding can be
applied to uplink detection to achieve desirable performance in terms of signal separation
and interference rejection. By the premise that the channel estimation provides accurate
information on true channels, we can consider Ĥ = H.
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The maximum ratio combiner (MRT) is the counterpart of the MRT precoder. It is also
known as Matched Filtering. It has the following combining matrix:

GMRC(H) ∝ HH . (9)

Like MRT, MRC also combines the array gain. However, MRC does not actively reduce
interference between signals from different users.

The zero-forcing combiner corresponds to the ZF precoder, and utilizes the following
combining matrix:

GZF(H) ∝ HH(HHH)−1. (10)

The full rank of the channel completely eliminates interference between user signals.
However, array gain is sacrificed to accomplish this. The regularized zero-forcing combiner
is analogous to the rZF precoder and is used to lessen the mean squared errors (MSE) of
the approximated symbols. Therefore, it is also known as minimum mean-squared error
(MMSE) detection or regularized ZF detection. Its output combining matrix is

GRZF ∝ HH(HHH + βreg Ik)
−1. (11)

where the regularization constant is set to balance between array gain and interference
reduction. By selecting βreg to restrict the MSE associated with the signals sent z and the
signal analyzed and obtained, ẑ, denoted as E∥u − 1√

ρ û∥2, where ρ is a scaling constant,
we get the MMSE combiner.

2.2.3. Channel Estimation

Before any data are precoded or detected, the channel parameters should be estimated.
mMIMO presents two significant concerns for channel estimation: the estimation of numer-
ous channel coefficients and the requirement of multiple pilot signals. The former problem
pertains to complexity, while the latter problem relates to the allocation of radio resources.
The transmission of pilot signals reduces the portion of resources that are available for data
transmission. This, along with the channel’s rate of change, presents one of the fundamental
limitations of mMIMO. However, we can ameliorate this problem by employing TDD, with
the assumption that reciprocity and channel estimation performance is only for the uplink.
Similar approaches using FDD also exist, which require channel estimates for both uplink
and downlink. However, these approaches depend on particular channel properties [16].

In the case of TDD systems, the uplink and downlink transmissions use the same
frequency spectrum with distinct time periods, hence channel reciprocity matters. The BS
must have CSI to detect the signal received from the users; hence, in the uplink, the users
send orthogonal pilot symbols to the BS. Then, the BS estimates the channels depending on
the obtained pilot signals. In the downlink, like the uplink, the users send orthogonal pilot
sequences to the BS, and the BS approximates CSI. Then, the BS forms pilot sequences and
transmits them to the users. Users determine the optimal channel gain using the obtained
pilot message [32].

In FDD systems, the uplink and downlink channels are not reciprocal since both trans-
missions use different frequency spectrums. In the downlink transmission, the BS requires
CSI to precode the symbols prior to transferring them to users. The BS antenna transmits
orthogonal pilot sequences to users. Subsequently, every user performs channel estimation
using the obtained pilot signals and provides feedback to the BS via uplink. CSI is essential
for the BS to accurately decode the message sent from the users in uplink transmission.
Users send orthogonal pilot sequences to the BS, which allows it to approximate the chan-
nels depending on the pilot signals. This approach has limited application in mMIMO
systems where the number of time-frequency resources required for the pilot transmission
on the downlink increases proportionally with the number of antennas. Consequently, the
number of channel responses that terminals should estimate is also boosted by the number
of antennas [32].
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However, due to the restriction of coherent properties of the channel, the amount
of patterns is restricted. The reuse of orthogonal pilot patterns is necessary across differ-
ent cells. These pilot sequences may be nonorthogonal, leading to pilot contamination
problems [33]. The presence of pilot contamination negatively impacts the performance of
the system. There are different ways of suppressing pilot contamination. However, this
article will not discuss these because pilot contamination is not a primary constraint in
CF-mMIMO.

2.3. mMIMO Channel Models

Certain specific phenomena must be considered when modeling the behavior of
mMIMO radio channels. These include propagation effects that are relevant when using a
BS having a physically numerous array consisting of many antenna elements and serving
many users located in close proximity [16]. Several varieties of mMIMO channel models
exist, including conventional MIMO models, the extensions of conventional MIMO models,
and an mMIMO extension of the COST 2100 channel model [16]. For simplicity, we review
the models presented in [24,25].

We provide a basic review of two types of channel models: correlation-based stochastic
models (CBSMs) and geometry-based stochastic models (GBSMs). These models are often
utilized to assess the performance of wireless communication systems.

CBSMs serve as conceptual models for the performance evaluation of mMIMO net-
works. There exist three types of CBSM:

• The i.i.d Rayleigh channel model makes no assumptions about correlation or mutual
coupling between transmit and receive antennas. The fast-fading matrix elements
are i.i.d random Gaussian variables. The i.i.d quality provides favorable propagation,
offering both superior performance and simplified algorithm design for mMIMO
systems. Moreover, the channel-hardening phenomena can lessen the influence of fast
fading on the scheduling gain, reducing the complexity of scheduling schemes [25].

• The correlation channel model accounts for antenna correlation owing to both the
antenna spacing and scattering properties of the surrounding environment. This
model introduces the angle of the arrivals parameter, which can be initialized to
differentiate between UE and enhance the channel estimation accuracy.

• The mutual coupling channel model accounts for the increased impact of mutual
impedance as the number of antennas grows. Moreover, it considers load impedance
and antenna impedance for increased realism. As such, this model is more practical
for use with mMIMO systems. In addition, the model can help in the investigation of
the effect of antenna space on mMIMO performance––a key factor in the design of the
antenna array configuration.

GBSMs are cluster-based models which describe a propagation channel with several
clusters having varying delays and power factors. Each cluster can be modeled in 2D or 3D.

The use of mMIMO for wireless communications is increasing rapidly thanks to
its numerous advantages in 5G standardizations. With the introduction of beyond-5G
(B5G) and 6G use cases, future systems will require high SE, making MIMO an ideal
candidate. However, the literature acknowledges several challenges faced by mMIMO.
These include, but are not limited to, pilot contamination, hardware impairments, uplink
detection complexities, and issues surrounding channel estimation, precoding techniques,
user scheduling, and energy efficiency. Duplex modes are a further area of concern,
particularly full-duplex and FDD transmission modes [16–25].

2.4. CF-mMIMO Fundamentals

Mobile communications continue to evolve as human demand increases. The current
focus of mobile communications is shifting increasingly toward 6G, while 5G deployments
continue. CF-mMIMO has attracted substantial interest as a potential enabling technology
for the envisioned 6G network [34,35]. In addition, the authors of [36,37] suggest possible
6G architectures that are CF and feature mesh connectivity. CF-mMIMO was first intro-
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duced in [38,39]. It was proposed as an alternative to address the inter-cell interference in
cellular networks [39].

A CF-mMIMO network consists of several widespread APs that are linked to a central
processing unit (CPU). The APs collectively service all of the UE within the network
simultaneously [8–10,38–45]. The APs are connected over a fronthaul link to a CPU that
facilitates cooperation among the APs. The CF network may be partitioned into two
sections: the edge and the core. The edge comprises APs, CPUs, and the fronthaul links,
while the core network handles all the UE functions. The connectivity between the core
and edge is established through backhaul links. CPUs communicate with the core network
through such links. Figure 4 shows a simple CF-mMIMO network architecture.

CPU

CPU

Single-Antenna AP

Fronthaul Link

Backhaul Link

Multi-antenna AP

UE

Figure 4. A simple CF-mMIMO network architecture.

The term “cell-free” indicates that the network features no cell boundaries from the
perspective of the UE. This status arises because all APs that interact with a UE will
participate in communication [45]. CF-mMIMO can be considered as an umbrella term for
CF networks, that covers conventional mMIMO, conventional coordinated multipoint, and
traditional ultra-dense networks as a case study.

The most distinguishing features of CF architecture are as follows. First, the utilization
of TDD protocol to exploit channel reciprocity for the uplink and downlink communications.
Second, estimates of the uplink channels are computed locally at every AP, using the pilot
signals transmitted by the UEs. These estimates are then exploited locally, and so do
not have to be sent via the backhaul link. Third, the beamformers utilized at the APs
are generated locally, rather than at the CPU. Finally, the backhaul is utilized to transmit
information symbols via the downlink and statistics via the uplink, which are sufficient for
making centralized uplink information decisions.

TDD Communication Protocol

As for conventional mMIMO, TDD operation is preferred for CF-mMIMO because the
channel estimation overhead is solely determined by the number of users and unaffected
by the number of APs. This property gives CF-mMIMO substantial scalability: the addition
of more APs will not impact channel estimation and will always provide an increased data
rate. Using the reciprocity principle, the uplink channel estimates may also be employed for
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the downlink channel estimates, serving both the uplink and downlink communications.
Figure 5 depicts the TDD communication protocol.

Figure 5. The TDD transmission protocol.

The coherence interval, which spans τc time units, contains distinctive three activities:
uplink training (of length τp time units), uplink data transmission (of length τu time units),
and downlink data transmission (of length τd time units).

During the uplink training phase, users first send their pilot symbols consisting of
τp time units to the APs. Subsequently, the APs calculate their channels for every user for the
pilot message received. As in [12,45], we represent the pilot sequence transmitted kth UE as
ϕk ∈ CNUE×τp . We assume that the rows of ϕk are orthogonal, that is, ϕkϕD

k = Is. Given that
a single pilot sequence can be shared among many UEs, we use the notation tk ∈ {1, . . . , τp}
to represent the pilot index dedicated to the kth UE. The signal received by lth AP during
the pilot transmission is represented as yPILOT

l ∈N×τp and can be expressed as:

YPILOT
l =

K

∑
i=1

√
ηihilϕ

T
ti + Nl . (12)

where Nl ∈ CN×τp represents the receiver noise, having i.i.d elements following NC(0, σ2
UL).

The uplink signal acquired serves as the lead for the lth AP to determine the channel. The
determination can be performed either directly at the lth AP or handed over to the CPU.
For the second scenario, the AP functions as a relay and transmits the acquired pilot signals
to the CPU through fronthaul links.

Channel hkl is typically estimated by either an AP or CPU, using the received pilot
signal YPILOT

l . Interference from UEs can be removed by using orthogonal pilots and
multiplying YPILOT

l by the normalized conjugate of the corresponding pilot ϕtk. It yields
the following:

YPILOT
tk l =

√
ηiτphkl + Σi∈Pk/{K}

√
ηiτphil + ntk l . (13)

where the first term represents the desired part, the second term represents interference,
and the third term represents the noise. The linear MMSE scheme is typically employed
for channel estimation. This technique leverages channel statistics to achieve accurate
estimates. We choose τp > K if the coherence interval is sufficiently larger than the number
of users. The pilot sequence may then be allotted to K UEs in a pairwise orthogonal manner.
Otherwise, non-orthogonal pilot symbols should be utilized across the setup. For this
instance, the channel estimates of a particular UE will suffer interference from the pilot
messages sent by different users, degrading the system performance whether numerous
APs are used. This is known as pilot contamination.

During the uplink payload transmission, every user simultaneously transmits mes-
sages to the APs. The signal sent by the kth user will be denoted as xu,k ∈ C and it satisfies
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E{|xu,k|2} = 1. These signals are mutually independent and have no correlation with noise
and channel coefficients. The normalized transmit power is represented as ρu. The acquired
signal at the mth AP may then be denoted as

Yu,m =
√

ρu

K

∑
k=1

gmk
√

ηkxu,k + nu,m. (14)

where nu,m ∼ CN (0, 1) represents the additive noise. Each AP employs its local channel
estimates to examine the incoming signals and transmits the examined signals to the CPU.
The m value of each AP is used to multiply yu,m by ĝ∗mk, providing conjugate beamforming
and matched filtering. The CPU then detects all messages sent by the M APs, with the kth
user’s signal detected as:

ru,m =
M

∑
m=1

ĝ∗mkyu,m
√

ρu

×
K

∑
k′=1

M

∑
m=1

ĝ∗mkgmk′xu,k′ +
M

∑
m=1

ĝ∗mknu,m.

(15)

Each AP should use simple linear processing, like the maximum ratio for signal
processing. Signal processing may also be performed on CPUs. The APs must transmit
their channel estimations and recorded information to the CPU for signal detection.

Finally, during the downlink payload transmission phase, the APs utilize their local
channel estimations to pre-code the symbols meant for the K UEs and then broadcast the
precoded symbols to all users. The information symbol for the kth user is xd,k ∈ C with
E{|xd,k|2} = 1. The data signal sent by the mth AP for the K users is denoted as

Ydm =
√

ρd

K

∑
k=1

ĝ∗mkxd,k. (16)

Users then individually extract the expected symbol from the received signals. Each
AP can use either maximum ratio processing or conjugate beamforming. The received
signal is given by

rdk =
M

∑
m=1

gmkyd,m + nd,k

=
√

ρd

M

∑
m=1

K

∑
K+=1

ĝ∗mk′ gmkxd,k′ + nd,k.

(17)

CF-mMIMO is anticipated to deliver many significant advantages, such as substan-
tial throughput, remarkably low latency, exceptional reliability, excellent energy usage
and uniform coverage, flexible and economical utilization, channel hardening, optimal
propagation conditions, and a consistent level of service [8,43].

Despite these benefits, CF-mMIMO still faces some challenges and limitations. First,
practical implementations require a large number of backhaul connections, particularly
if there are numerous APs. Hence, an appropriate transmission approach is required. A
user-centric approach is one possible solution. However, the system performance when
using such an approach will not be greater than that of the traditional CF-mMIMO in
scenarios where there are more UEs than APs. This approach does allow the use of multiple
CPUs. Secondly, it is essential to synchronize the system to ensure that users can coherently
be served by the APS. Finally, CF-mMIMO is susceptible to pilot contamination, which
significantly degrades the system’s performance.

The incorporation of CF-mMIMO with other novel schemes offers the potential to fur-
ther enhance system performance in various aspects, including increased achievable rates,
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improved reliability, enhanced security, and higher connection density [9,11]. These tech-
nologies include physical layer security, RIS, the radio stripes system, federated learning,
ML, unmanned aerial vehicles (UAVs), and NOMA—our focus.

CF-mMIMO builds upon the benefits and characteristics of mMIMO while providing
additional features beyond those. Channel hardening and favorable propagation are
inherited from mMIMO. CF-mMIMO also features macro-diversity and signal spatial
sparsity, which is not present in mMIMO. We now define these features.

Channel hardening is the phenomenon where the impacts of small-scale fading are
mitigated. This causes device channels to become similar to that of deterministic wired
channels as the antennas increase toward infinity. Favorable propagation refers to the
channels of various devices becoming orthogonal as the antennas approach limitlessness,
making various equipment spatially differentiable. Macro diversity is a signal combination
technique that finely integrates multiple copies of a signal into a single powerful signal.
Macro diversity gain is increased due to the geographic distribution of the APs, with each
AP being surrounded by several neighbors. This reduces the distance from any device
to the nearest AP, in comparison to mMIMO. The signals a user sends to dissimilar APs
undergo varying levels of large-scale fading. As such, neighboring APs typically capture
stronger signal energy than more distant APs. This macro diversity results in non-negligible
channel gains for neighboring APs, leading to signal spatial sparsity.

2.5. NOMA Fundamentals

Users can share a limited portion of the radio spectrum thanks to multiple access
mechanisms. This allows for efficient utilization of the bandwidth by serving multiple
users simultaneously, resulting in increased capacity. Such schemes should be implemented
without degradation in the system performance.

Generally, multiple access schemes can be broadly categorized into orthogonal and
non-orthogonal approaches. A variety of multiple access schemes are discussed in [6,7,46].

Orthogonal multiple access (OMA) systems utilize a resource allocation method where
users are assigned orthogonal resources to prevent interference within the cells. The
number of active users is constrained by the availability of orthogonal resources. For this
reason, OMA is unable to fulfill the rising needs of throughput requirements and the system
capacity for subsequent systems [47].

Non-orthogonal multiple access (NOMA) systems can support multiple users within
a single resource, leading to enhanced throughput for both individual users and the overall
system. However, this comes to the detriment of higher receiver complexity, necessary
for separating the non-orthogonal signals [6]. Figure 6 shows a comparison between basic
downlink NOMA and orthogonal frequency division multiple access (OFDMA).

As discussed in [4–7], possible benefits of NOMA include the following:

• Massive connectivity, allowing an unlimited user capacity.
• Low latency, allowing NOMA to support flexible scheduling and grant-free transmission.
• Improved SE—each NOMA user enjoys access to the entire bandwidth, and appropri-

ately grouped users have improved data rates.
• Relaxed channel feedback— since perfect uplink CSI is not a must at the BS, only the

received signal power must exist for channel feedback.

The components of the NOMA cellular system include multi-user grouping, resource
allocation (of power, code, etc.), and successive interference cancellation (SIC) or multi-user
detection (MUD) techniques for removing the controlled NOMA additions. We now discuss
the defining properties of NOMA non-orthogonality.



Electronics 2024, 13, 231 16 of 47

Figure 6. A comparison between basic downlink NOMA and OFDMA.

In the downlink NOMA, the transmitter uses superposition coding (SC) to combine
multiple signals, while the receiver employs successive interference cancellation (SIC)
for decoding and removing the interference from other signals. Such techniques allow
utilization of the same spectrum by all users [48,49]. SIC is also involved in uplink trans-
mission [49].

The goal of SC is to transmit two messages concurrently by combining them into one
signal with two layers. The source node generates two varying messages: the base message
and the superposed message. Assume a BS that is communicating with two end users in a
downlink communication. The messages are broadcast to two receivers. The receiver with
the strongest channel can decode both messages, while the receiver with the worse channel
can decode only the base message [49,50].

SIC is a physical technique that enables the simultaneous decoding of messages
at the receiver. It allows for the concurrent processing of multiple signals. Receivers
implementing SIC decode stronger signals (one at a time), subtract (cancel) them from the
combined signals, and extract the weaker signals from the remaining remnant [49,51].

The NOMA variant that employs both SC and SIC is known as the power domain
NOMA (PD-NOMA). It was suggested as the long-term evolution of the third-generation
partnership project [49].

Overloading allows NOMA to accommodate multiple transmissions simultaneously
in the same time-frequency resource block by assigning different codes to different users
and adopting a unique user-specific spreading sequence [6,7]. This concept is inspired by
classic code division multiple access (CDMA) systems.

Code domain NOMA encompasses various NOMA schemes that have been developed
using this approach, such as low-density spreading (LDS) CDMA, LDS orthogonal fre-
quency division multiplexing, sparse code multiple access, and multi-user shared access [6].

Linear transform decoding defines NOMA that relies on the multi-user detection
complexity. Within an OMA scheme, this approach is employed to segregate the signals of
distinct users into orthogonal subspaces utilizing a linear transform. Schemes that do fit
this description are categorized as NOMA [52].

From an information theoretical view, NOMA refers to any technique that permits
simultaneous transmission over the same time, frequency, code, or space resources to
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achieve a superior rate region in comparison to the orthogonalization of one or more of
these resources. This includes SC and SIC, rate-splitting, and dirty paper coding [49].

The usage of the various techniques presented above provides many different vari-
ants of NOMA. Two principal categories of NOMA exist: PD-NOMA and code domain
NOMA [6]. Figure 7 shows a simple overview of NOMA variants.

NOMA

SCMA

LDS-OFDM

LDS-CDMA

OthersCode DomainPower Domain

Figure 7. An overview of NOMA variants [6].

To understand the use of SIC with NOMA, consider Figure 8. It shows the basic
NOMA scheme when utilizing SIC at the UE receivers in the cellular downlink. The total
system transmission bandwidth is considered to be 1 Hz. The BS sends a signal intended
for both Users 1 and 2, with xi(i = 1, 2) and E[|xi|2] = 1. The signal has transmission
power Pi with a maximum total of P [6]. With the superposition coding of x1 and x2, the
transmitted signal is represented as

x =
√

P1x1 +
√

P2x2. (18)

The signal received by UE-i can be represented as

yi = hix + wi. (19)

where hi represents the complex channel coefficient within UE-i and the BS, and wi is the
receiver Gaussian noise, which includes inter-cell interference. N0,i denotes the power
density of wi.
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Figure 8. A simple example of OFDMA versus NOMA.

In the NOMA downlink, the SIC method is applied at the receiver of the UE. The
optimal decoding order is given in order of increasing channel gain, normalized by the

noise and the inter-cell interference power, represented as |h2
i |

N0,i
. Following the pattern, a user

may perfectly decode the signals of any other user that is earlier in the decoding order for
interference cancellation. Then, UE-i eliminates the inter-user interference from the jth user,

where
|h2

j |
N0,i

is less than |h2
i |

N0,i
. For the case of two UEs, UE-2 is not performing interference

cancellation because it appears in front in the decoding sequence, |h2
1|

N0,1
>

|h2
2|

N0,2
. UE-2 first

decodes x2, and then cancels the x2 component from the signal received, y1. Thereafter,
UE-1 can decode x1 without interference from x2. Assuming error-free detection of x2 at
UE-1, the throughput of UE-i, Ri, is expressed as

R1 = log2

[
1 +

P1|h1|2
N0,1

]
. (20)

R2 = log2

[
1 +

P2|h2|2
P1|h2|2 + N0,2

]
. (21)

This can be compared with OFDMA, if OFDMA is assumed to use orthogonal user
multiplexing, with a bandwidth of α(0 < α < 1) Hz allocated to UE 1 and the rest
(1 − α) Hz allocated to UE 2. Ri is represented as

R1 = α log2

[
1 +

P1|h1|2
αN0,1

]
. (22)

R2 = (1 − α) log2

[
1 +

P2|h2|2
(1 − α)N0,2

]
. (23)
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When compared to OFDMA, the performance gain of NOMA becomes significantly
greater when there is a disparity in channel gains. Figure 8 shows that this NOMA scheme
can achieve higher rates than OFDMA [5]. The figure assumes a scenario with two UEs:
one located at the cell interior and the other at the cell edge. In this case, the P1|h1|2/N0,1
and P2|h2|2/N0,2 are considered to be 20 and 0 dB, respectively. This choice of values
demonstrates the potential performance of the NOMA scheme in leveraging the natural
differences in user channel gains. By effectively utilizing the near–far effect, higher spectral
efficiency can be achieved, leading to improvements in the overall system capacity and the
rate of the cell-edge user [5].

Figure 9 shows the boundaries of the rate regions achievable with superposition coding
and optimal orthogonal schemes for an asymmetric downlink additive white Gaussian
noise (AWGN) channel for Equations (22) and (23), (with SNR1 = 0 dB and SNR2 = 20 db).
We observe that the results of the superposition coding outperform that of the orthogonal
scheme [53].

Figure 9. Boundaries of the rate regions achievable for two-user downlink asymmetric AWGN, using
superposition coding (solid line) and orthogonal schemes.

To investigate the practical performance improvement of NOMA, the authors of [6]
conduct a multi-cell system-level simulation and evaluate the performance gain of NOMA
using wideband scheduling and power allocation (PA). The wideband case is chosen
because the system performance is independent of the frequency-selective channel infor-
mation. This is significant in practical wide-area deployments. To further illustrate this,
Figure 10 shows a cumulative distribution function of the user throughput for OFDMA
and NOMA with SIC. The results clearly demonstrate that the user throughput of NOMA
is approximately 27% greater than that of OFDMA for both cell and cell-edge users.

Figure 10. A system-level evaluation of OFDMA and NOMA when using wideband scheduling and
power allocation.



Electronics 2024, 13, 231 20 of 47

2.6. Clustering and User Pairing in NOMA

The performance of NOMA systems depends on favorable SIC at user nodes which,
however, is dependent upon user pairing or user clustering (UC) schemes [54]. The
UC schemes target to lower SIC complexity and cross-interference to possible extents by
classing the network into smaller NOMA clusters which lessen and guarantee the overall
system’s maximum sum-rate throughput [55]. In [56], the authors investigate how user
pairing affects sum rate and individual user rates. The results show that the sum rate
enlarges by scheduling two users whose channel conditions differ considerably. The critical
issues for UC in NOMA is examined by the authors of [57]. In downlink NOMA, it is
advantageous to disperse the users with better channel gains in a cell into distinct clusters as
this will greatly enhance the overall sum throughput of the cluster. Pairing users with low
channel gains with those having high channel gains is beneficial for increasing the overall
throughput. High channel gain users may attain better rates even at lower power levels
while allocating a significant portion of power to weaker users. Finally, the throughput of
the remaining users in the NOMA cluster is predominantly influenced by the distribution
of transmit power levels. For uplink NOMA, users experience various channel gains; hence,
power control will result in sum throughput degradation. Diversity plays a crucial role in
minimizing inter-user interference and thence maximizing the cluster throughput. Finally,
including high channel gain users operating at their maximum power levels in each cluster
is beneficial as they can make a significant contribution to the overall throughput.

Clustering in massive MIMO with NOMA usually is divided into two main ap-
proaches: Joint Resource Aware User Clustering and Learning-Assisted User Cluster-
ing [58].

i. Joint Resource Aware User Clustering
This entails the following:

(a) Clustering based on the channel correlation coefficient considers interference-
aware approaches for both cellular and device-to-device (D2D). The BS con-
structs a channel graph for mobile users by evaluating the channel correlation
among them, while D2D users are partitioned into separate clusters using an
interference graph. After completing the construction of channel and interfer-
ence graphs, cluster matching is performed to find the optimum match of each
D2D paired cluster and its corresponding mobile user cluster.

(b) Energy-efficient user admission-based clustering focuses on maximizing en-
ergy efficiency in current and future systems. It involves clustering multiple
users using efficient power allocation (PA) techniques. The goal is to admit
users gleaned from their predefined Quality of Service (QoS) needs, with a fo-
cus on energy efficiency. Users are admitted in increasing order of the amount
of power needed to meet respective QoS needs.

(c) Joint user clustering and power allocation aims to elevate the sum rate by
selecting the two best users in a cluster. It follows a constant transmit power
allocation method; it derives a minimal distance metric to differentiate between
the cell center and edge users. For the uplink scenario, a unique cluster
creation and power regulation technique can be employed. In the uplink, the
clustering strategy involves designing high-power and low-power clusters,
dividing active mobile users based on composite channel gains instead of
individual gains.

(d) Spatial position-based clustering offers a reduced complexity compared to
alternative schemes. The clusters are created based on the spatial positions of
the users, which are determined through the use of a global position-tracking
system. Users with closer spatial proximity are grouped, and a multi-antenna
cluster head is chosen for their service. However, it is important to note
that without employing additional interference mitigation techniques, this
approach may suffer from significant performance deterioration regarding the
achievable sum rate.
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ii. Learning Assisted User Clustering
It entails the following:

(a) K-means is an unsupervised machine learning algorithm with low complexity.
It starts by randomly selecting initial cluster heads for predetermined clusters,
and then each user is assigned to the nearest cluster head. The associated
cluster members then change the head position by taking the average for
all users.

(b) K-means ++ is highly responsive to the choice of starting centroids, as any
inconsistencies in the initial centroids or the presence of multiple centroids in
the same cluster can lead to ineffective user grouping.

(c) Fuzzy C-means is an unsupervised clustering algorithm utilized for feature
analysis, enabling the classification of users into multiple clusters. First, the
cluster members and fuzzy exponent are initialized. Then the membership
function is allocated to every user to establish their proportional relationship
to the group. The grouping is iteratively generated by revising the association
factor of every data point, aiming to minimize the objective function below a
given limit.

(d) Clustering as a multi-level classification problem is a multi-level classifica-
tion problem developed by adopting a gradient-boosted decision tree and a
sorting network as base modules. Members are first divided into two distinct
categories and then sorted so that successive members exhibit great spatial
correlation. The objective is to assign members to distinct clusters to minimize
the sum rate.

While these techniques have their challenges, the purpose of UC is to mitigate multi-
cluster and intra-cluster interference to facilitate the transmission of the desired signal. This
involves determining the optimal amount of clusters and, consequently, the users within
each cluster.

As long as the users in a cluster are determined, the process of user grouping is carried
out. It is inadvisable to ask NOMA users to conduct NOMA jointly as NOMA is limited
by interference. Therefore, users might be allocated into various categories where NOMA
will be deployed. Several user-pairing algorithms are based on desired performance,
deployment environment, and implementation complexity. User pairing should provide
high throughput with minimum computational complexity while ensuring user fairness.
With an increasing number of UEs, UE pairing becomes challenging due to significant CSI
acquisition along with feedback overhead, in addition to the need to execute complicated
algorithms [57,59].

3. NOMA-Aided CF-mMIMO

Despite its advantages and potential, the literature features little work on NOMA in
CF-mMIMO (CF-mMIMO-NOMA) systems. In the following part, we will go over the
system, channel, and signal models and finally survey the state-of-the-art literature that is
available for CF-mMIMO.

3.1. System, Channel, and Signal Models

In the system and channel model, we focus on a downlink communication of a
CF-mMIMO-NOMA system where M single antenna APs serve KN single antenna UEs.
The users are spatially dispersed in N groups using the TDD protocol at the same time-
frequency resource block. Every cluster comprises K users. The APs communicate to the
CPU through a fronthaul network with unlimited capacity, ensuring perfect and error-
free communication. Figure 11 shows a CF-mMIMO-NOMA network with two users
per cluster.
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Figure 11. A CF-mMIMO-NOMA network with two users per cluster.

The downlink channel between the mth AP and the kth user in the nth cluster, where
m ∈ {1, · · · M}, k ∈ {1, · · ·K}, and n ∈ {1, · · · N}, is presented as

hmnk = ζ1/2
mnk h̃mnk. (24)

here, ζmnk represents large-scale fading and h̃mnk ∼ CN (0, h̃mnk) is circularly symmetric
Gaussian distributed with zero mean and unit variance. The former is considered as known
in advance because it varies very gradually over time. Therefore, it should be approximated
after every 40 coherence time intervals. The latter captures the effect of quasi-static Rayleigh
fading [60]. Thus, hmnk ∼ CN (0, h̃mnk) is a complex normal random distribution variable
with zero mean and covariance ζmnk [61].

Moreover, users belonging to a particular NOMA clustering are organized based on
their respective channel environments:

M

∑
m=1

|hmn1|2 ≥
M

∑
m=1

|hmn2|2 : 1 ≤ n ≤ N. (25)

Notably, the channel reciprocity assumption of the TDD protocol allows the downlink
channel to be approximated by uplink pilots. As a result, the initial section of every
coherence block is dedicated to uplink pilots, while the remainder is dedicated to data
transmission. The authors of [62] show that the assumption of channel reciprocity does
not consider hardware mismatches between the AP and UE. Such mismatches act against
the reciprocity assumption, and impact system performance.
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3.1.1. CSI Acquisition and Uplink Pilot Training

The APs conduct channel estimation for the uplink channels utilizing user-transmitted
pilot signals. For the downlink channel estimation, TDD channel reciprocity is utilized. To
reduce the channel estimation overhead, users in a particular cluster are assigned a similar
pilot sequence, which has a period τ symbols. The N pilot sequences dedicated to the
N clusters are mutually orthogonal, hence, τ ≥ N. The pilot sequence dedicated for the
K users in the nth cluster is denoted as ϕn ∈ Cτ×1 and satisfies ∥ϕn∥2 = 1 and ϕH

n ϕl = 0
for n ̸= l. During the uplink channel estimation, the mth AP obtains a pilot signal given by

YP
m =

√
τpp

N

∑
n=1

K

∑
k=1

hmnkϕn + nm. (26)

where pp represents the pilot transmit power (uplink normalized SNR) and
nm ∼ CN τ×1(Oτ×1, Ii) denotes the AWGN vector at the mth AP.

For the reason of channel estimation hmnk, the pilot signal received by the mth AP yP
m

is extended onto ϕn as

ỸP
mn = ϕH

n yP
m =

√
τpp

K

∑
k=1

hmnk + ϕH
n nm. (27)

If the pilot sequences happen to be similar or orthogonal, ỹP
mn serves as an adequate

statistic. In this case, the MMSE estimate of hmnk provided by ỹP
mn is

h̃mnk =
E[ ỹP∗

mnhmnk]

E[ |ỹP
mn|2]

ỹP
mn =

√
τpPζmnk

1 + τpP ∑K
k=1 ζmnk

ỹP
mn. (28)

By using the fact that ỹP
mn is a Gaussian distribution, h̃mnk may be denoted as

h̃mnk =
√

ηmnkvmn. (29)

where vmn ∼ CN (O, 1), and ηmnk is defined as

ηmnk = E[ |h̃mnk|2] =
τpPζ2

mnk

1 + τpP ∑K
k=1 ζmnk

. (30)

The channel estimation error is defined as ϵmnk = hmnk − h̃mnk, where ϵmnk andh̃mnk
are statistically independent. Supplementarily, E[ |ϵmnk|2] = ζmnk − ηmnk. Each AP serves
each user in its cluster using power control coefficient ηmnk. The CPU computes these
coefficients, which are then transmitted to the APs via the fronthaul networks.

3.1.2. Signal Model

The APs utilize a conjugate beamformer for downlink data transmission. The beam-
former is designed using the locally determined CSI, which is obtained from uplink MMSE
channel estimation, using the principle of channel reciprocity.

The K users’ data signal in the nth cluster is superposition coded as

xn =
K

∑
k=1

√
Pnkxnk. (31)

where xnk and Pnk are the data signal and transmit power, respectively, assigned to the kth
user in the nth cluster for n ∈ {1, · · · N} and k ∈ {1, · · ·K}. In addition, for xnk and xml ,
m, n ∈ {1, · · · N} and k, l ∈ {1, · · ·K}, xnk and xml satisfy

E{xnkxml} =

{
1, if n = m and k = l
0, Otherwise.

(32)
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Hence, the expected value of the squared magnitude of xn(E[ |xn|2] ) is equal to the
summation of the transmit powers given to the users in the nth cluster (∑K

k=1 Pnk = Pn).
Pn signifies the overall signal power assigned to the nth cluster. The signal sent at the mth
AP is expressed as

tn =
N

∑
n=1

h̃∗mnk

h̃mnk
xn =

N

∑
n=1

v∗mn
vmn

xn. (33)

where the conjugate beamformer is designed using the short-term power constraint. The
mean transmit power at the mth AP considering all N clusters is denoted as Ptm and can
be calculated as the sum of the individual signal powers allocated to each cluster Pn. In
the CF-mMIMO-NOMA system, all KN users belonging to the N clusters get services
simultaneously from the M APs. As a result, the signal acquired by the kth user in the nth
cluster may be expressed as follows:

ynk =
M

∑
m=1

hmnk + nnk

=
√

Pnkcnkxnk︸ ︷︷ ︸
Desired Signal

+ cnk

K

∑
k′=1,k′ ̸=k

√
Pnk′xnk′︸ ︷︷ ︸

Intra-cluster Interference before SIC

+
N

∑
n′=1,n ̸=n

cn′kxn′︸ ︷︷ ︸
Inter-cluster interference

+ nnk︸︷︷︸
AWGN

.

(34)

where cnk = ∑K
k=1 hmnk

vmn∗

|vmn| , cn′k = ∑K
k=1 hmnk

v∗mn
|vmn′ |

, and nnk ∼ CN (0, 1) .
In PD-NOMA, the power allocation strategies assign higher powers to the users with

weaker channel strengths, resulting in a power ordering of Pn1 ≤ · · · Pnk ≤ · · · ≤ PnK
within the nth cluster. This power allocation scheme ensures that within each cluster,
the kth user is capable of effectively decoding the message set for the lth user given that
the kth is able to decode its own message. Consequently, the kth user can progressively
eliminate the intra-cluster interference originating from the lth user where l is greater
than k, before decoding its signal. The kth user considers signals from users with indices
l ≥ k as interference. For brevity, we leave optimal PA and optimal UC as open problems.

It is important to note that for TDD CF-mMIMO, the user terminals cannot use real-
time CSI. Nonetheless, with an increasing quantity of APs, the channel conditions become
more stable. Therefore, the expected value of cnk can be employed as an approximation
of the efficient channel gain for decoding xn at the kth user in the nth cluster. In practice,
acquiring the expected value of cnk is not challenging, given that it is dependent solely
on the statistical features of the channels, and stays constant over numerous coherence
intervals. Perfect successive interference cancellation (SIC) is not feasible as a result of
intra-cluster pilot contamination, channel estimation errors, and limited statistical CSI
information of the users. Following imperfect SIC, a post-processed message in the kth
user terminal in the nth cluster may be described as

ỹnk =
√

Pnkcnkxnk

+ cnk

k−1

∑
k′=1

√
Pnk′xnk′︸ ︷︷ ︸

Inherent intra-cluster interference after SIC

+
N

∑
n′=1,n′ ̸=n

cn′kxn′

+
K

∑
k”=k+1

√
Pnk”[cnkxnk” −E[Cnk]x̂nk”]︸ ︷︷ ︸

error propagation or residual interference due to imperfect SIC

+ nnk.

(35)
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In this equation, x̂nk represents an estimate of xnk for all n, k, and xnk is supposed to be
taken from a Gaussian distribution with zero-mean and unit variance. Thus, x̂nk and xnk
are mutually Gaussian distributed with a normalized correlation coefficient ρnk:

xnk = ρnk x̂nk + ⌉nk. (36)

where xnk ∼ CN (0, 1), ⌉nk ∼ CN
(

0,
σ2
⌉nk

[1+σ2
⌉nk

]

)
, and ρnk = 1√

1+σ2
nk

. Furthermore, xnk and

enk are statistically independent. From [60], the upper bound ergodic sum rate is given by

R̃ < R = ϕ
N

∑
n=1

K

∑
k=1

E[ log (1 + γnk)] . (37)

where R̃ represents the achievable sum rate of CF-mMIMO-NOMA, and expressed as

R̃ =
N

∑
n=1

K

∑
k=1

R̃n,k. (38)

Figure 12 shows a plot of the achievable sum rate of various NOMA systems when
compared to an OMA counterpart. The plot shows that NOMA offers better performance
for CF-mMIMO, particularly with a greater amount of users.

Figure 12. The achievable sum rate of various NOMA and OMA systems versus the number of users.

3.2. State-of-the-Art

CF-mMIMO-NOMA was first introduced in [60]. An achievable sum rate of PD-
NOMA is obtained considering the effects of intra-cluster pilot contamination, inter-cluster
interference, and imperfections in SIC. The system model entails a downlink communica-
tion with single antenna APs and users, operating using TDD protocol. The APs employ
conjugate beamforming. Numerical evaluations demonstrated better results of NOMA
in comparison to OMA. The authors of [63] were the first to investigate the CF-mMIMO-
NOMA uplink. They derived a comprehensive analytical expression for the SE of conjugate
beamforming that acknowledges the effect of intra-cluster pilot contamination, inter-cluster
interference, imperfect SIC, channel estimation errors, and power optimization. By em-
ploying an iterative geometric programming (GP) algorithm based on sequential convex
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approximation (SCA), the derived expression aims to improve spectral efficiency (SE).
Through simulation results, it was revealed that CF-mMIMO-NOMA outdoes cell-free
massive MIMO with OMA (CF-mMIMO-OMA) in terms of efficient spectrum utilization
despite its limited availability. Also, with power optimization, the uplink spectral efficiency
is maximized. Identical to [64,65], the authors suggest an optimal backhaul combining
(OBC) that improves the uplink signal-to-interference noise ratio (SINR). The findings
indicate that by ensuring that the total number of users allocated to every pilot symbol is
no greater than the total number of BSs, the correlated interference can be successfully re-
duced. Moreover, by adopting OBC CF-mMIMO-NOMA overperforms CF-mMIMO-OMA
in terms of both maximizing the minimum QoS and enhancing connectivity.

From the perspective of communication protocol, all recent works have used TDD;
none of them have considered FDD as a transmission protocol. Although the majority of
the literature focuses on single-antenna APs, Refs. [66–69] consider multi-antenna APs.
Most of the literature assumes a Rayleigh fading channel. That ignores the presence of
spatial correlation, while channels often exhibit a combination of small-scale fading due to
NLoS propagations and static Line-of-Sight (LoS). These characteristics can be effectively
captured by modeling the channel as Rician fading. The authors of [69–71] model the
channel using Rician fading. Specifically, Ref. [69] considers a system with multiple-
antenna APs communicating with single-antenna UEs across spatially correlated Rician
fading channels.

While most works use conjugate beamforming precoders at the APs, the authors
of [64,67] employ MRT precoders, the authors of [72] employ full-pilot zero-forcing (fpZF)
precoders, and the authors of [68] compare the performance of all three practical linear
decoders. Specifically, the authors of [68] thoroughly analyze the system performance
using MRT, fpZF, and modified regularized ZF (mRZF). Furthermore, the authors obtain a
closed-form expression for the sum rate given a Rayleigh fading channel and accounting for
the impact of intra-cluster pilot contamination, inter-cluster interference, and imperfect SIC.
The analytical results show that MRT with perfect SIC is outperformed by mRZF and fpZF,
despite possessing the same front-hauling overhead. The highest rates were achieved by
mRZF because it attempts to strike a balance between mitigating inter-cluster interference
and enhancing intra-cluster power. However, in regions with higher user numbers, MRT
surpasses fpZF. Furthermore, the authors of [73] derive a closed-form SINR using both
conjugate beamforming and normalized conjugate beamforming to maximize bandwidth
efficiency. The findings demonstrate the superior performance of conjugate beamforming
compared to normalized conjugate beamforming. Finally, Ref. [71] compares the perfor-
mance of MR precoding to L-MMSE precoding in different channel estimators. The results
show that L-MMSE offers better performance than MR precoding while, among the three
estimators (MMSE, EWMMSE, and LS), MMSE estimation is the best because it utilizes
comprehensive statistical channel information. In contrast, EW-MMSE only leverages
partial statistical information, and the LS lacks any prior knowledge of channel statistics.

Most authors consider static APs and users. However, the authors of [74,75] consider
random APs and users. Specifically, they investigate how the achievable rates of CF-
mMIMO-NOMA systems may be improved under random AP or user deployments by
using stochastic geometry-based modeling to accurately characterize performance network-
wide. The authors evaluate a Poisson point process (PPP) of APs and users using Rayleigh
fading and log-distance path loss. Primary observations include a reduced rate gain
of NOMA as the density of APs decreases and as path loss exponents increase and the
provision of reduced latency by NOMA at the expense of a reduced overall rate.

Two major challenges faced by NOMA are user clustering and user ordering. UC is a
key technique that enables the deployment of NOMA for numerous users by lowering the
complexity of SIC [73]. The majority of NOMA works from the literature study UC schemes
that group two users per cluster with random pairing [73,76]. In [73], three pairing schemes
are implemented: far, near, and random pairing. The authors of [67] use the Jaccard index
to compute the correspondence between the large-scale fading profile of each user and a
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predetermined centroid. Those users with high similarities are assigned to different groups.
This is UC via a low complexity optimal method. In [64], the authors introduce an iterative
algorithm for user localization, which involves minimizing the correlation coefficients and the
large-scale fading profiles of two users in a group. The authors of [77] propose a clustering
algorithm for which each AP only requires knowledge of each user’s location. The CPU sorts
the pairs of closest users into common clusters, thereby significantly reducing the path loss
between them. The authors of [78] study a novel UC algorithm that employs cooperative links
between users without requiring complex optimization. The algorithm ensures that there are
reliable channels between users belonging to a NOMA cluster. The authors of [79,80] study a
dynamic user pairing technique where two users who meet the iterative algorithm’s criteria
are paired regardless of geographical distance. This technique is shown to outperform random
pairing, far pairing, and close-pairing strategies. However, the above clustering schemes
do not consider any learning features. Moreover, random UC yields a suboptimal solution,
whereas exhaustive search methods entail high computational complexity. The authors of [72]
propose the use of unsupervised ML for UC algorithms. Specifically, K-means++ and improved
K-means++ are suggested as effective approaches to create disjointed clusters of users. The
provided numerical results confirm the effectiveness of these algorithms over far, near, and
random pairing schemes, and the Jaccard-based UC scheme.

Even though grouping users in clusters in CF-mMIMO-NOMA can significantly serve
more users than conventional OMA, it results in a reduced sum rate as a result of inter-
cluster interference. To achieve the highest possible rate while ensuring equal service for
all users, a hybrid NOMA/OMA mode selection technique based on the channel’s statistics
is proposed [61,73,76]. This approach, when combined with SIC, demonstrates improved
efficiency in comparison to single-mode NOMA or OMA systems.

Different power optimization techniques are used for CF-mMIMO NOMA. The authors
of [63] aim to maximize the uplink SE using an iterative GP algorithm relying on the principles
of SCA. Likewise, in [66], SCA is used in maximizing the sum SE considering the power
constraints of every AP and the SIC. In addition to the max–min power method presented
in [64,65], the authors of [81] consider a max–min algorithm with adaptive SIC, while the
authors of [82] propose a quasi-concave max–min transmit power control problem, which
is solved using the bisection method to obtain the optimal solution. In [72], the sum SE
is maximized using an iterative algorithm based on inner approximation. The algorithm
accomplishes this by optimizing the normalized transmit power while considering constraints
such as the power budget at the APs, the SIC conditions, and all lowest-needed SE at the UEs.
In [73,76], the authors formulate a max–min bandwidth efficiency (BE) optimization problem
with per-AP power constraints. The authors of [76] conceive a bisection scheme to explore
the best approach to this issue. Additionally, the power reduction issues associated with
conjugate beamforming are addressed by utilizing second-order cone programming (SOCP)
while standard semidefinite programming (SDP) is employed for normalized conjugate
beamforming. To further enhance performance, the authors propose a mode-switching
scheme dependent on the average BE. The authors of [69] consider a dynamic intra-cluster
PA method that produces dynamic power coefficients for different APs. The authors of [61]
investigate an adaptive algorithm that dynamically switches between different modes, namely
OMA, non-cooperative NOMA, and cooperative NOMA modes. The goal is to enhance the
system’s achievable sum rate and energy efficiency. Initially, the system operates in OMA
mode, before switching to different modes to utilize their benefits as required by the scenario.
The system presented in [83] utilizes Dinkelbach’s method-based algorithm to solve its non-
convex optimization and obtain an optimal solution for maximizing energy efficiency. The
algorithm has two layers, with the bottom layer solving the power control optimization. The
solution is obtained using the difference of convex functions programming approach. The
authors further detail the complexity of the algorithms. The authors of [78,84] consider a
power optimization technique for user-centric CF-mMIMO-NOMA. Specifically, the authors
of [84] use a particle swarm algorithm to distribute transmit power for the APs. The authors
of [78] adopt a joint power optimization technique for CF-mMIMO-NOMA based on AP
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selection, in which APs within a single group conducting SC to obtain their superimposed
signals employ a common PA. This both enables the CPU to optimize the PA strategy for each
AP group individually and reduces the calculations required for joint power optimization.

Finally, while most works compare NOMA to OMA in CF-mMIMO networks, the
authors of [85] study sum rate data of a clustered adaptive relay coordinated transmission
scheme based on NOMA, and compare it to direct transmission, relay AF transmission, and
relay DF transmission schemes. Importantly, while their proposed schemes offer better sum
rates, the limited capacity, and energy of relay nodes still present drawbacks to network
performance. Also, the authors of [86] consider intelligent reflecting surfaces (IRS) with
CF-mMIMO-NOMA and compare the result to CF-mMIMO-NOMA with no IRS. However,
from the results, the ergodic performance is reduced as the number of IRSs and APs is
increased while at lower numbers of IRSs and APs, the performance outperforms the
traditional CF-mMIMO-NOMA with no IRS.

A summary of research papers on CF-mMIMO-NOMA is shown in Table 2.

3.3. Summary

In this section, we have studied the system, channel, and signal model and provided
a review of the available literature on CF-mMIMO-NOMA. In general, NOMA with CF-
mMIMO has been shown to outperform OMA-based CF-mMIMO in several works in
regards to achievable throughput, sum rate, spectral efficiency, and supporting more users.
In contrast, when the number of users is low, OMA is superior to NOMA because of factors
such as intra-cluster pilot contamination from shared pilots within the clusters, and residual
ICI caused by imperfect SIC. To maximize the minimum downlink bandwidth efficiency,
NOMA/OMA mode selection is proposed in [73,76]; however, it is dependent both on the
length of the channel’s coherence time and on the total number of users.

UC in NOMA remains a design challenge compared to OMA since an efficient beam
to cover the users in a NOMA cluster must be formed. Several solutions are proposed
including deep learning techniques such as K-means ++ providing better performance
in comparison to other techniques. Nevertheless, the impact of virtual and actual cluster
center users on the possible sum rate is yet to be distinguished and thoroughly examined. In
order to address this problem, joint optimization schemes can be implemented to maximize
the achieved sum rate [87]. Furthermore, deep learning approaches may be employed
to boost the effectiveness of data/model-driven transmitter/receiver solutions for CF-
mMIMO-NOMA. These techniques provide valuable tools for optimizing the fundamental
compromises involving system variables, such as channel estimation, power allocation,
and SIC decoding, through deep learning frameworks.

Table 2. Summary of papers on NOMA-Aided CF-mMIMO.

Ref. Topic System
Model

Design
Objective

Optimization
Method

Key
Findings

Limitations

[60]

Achievable
sum-rate;

power
domain;
NOMA.

Single antenna
APs and users

with a Rayleigh
fading channel

operating in
TDD mode.

Maximize
achievable
sum-rate

and
capacity

Matched
filter-based
precoding
(conjugate

beamforming
precoders)

When numerous users
are simultaneously

served, NOMA
demonstrates superior

sum-rate gain compared
to OMA, achieved by
grouping users into

clusters and utilizing the
proposed pilot

assignment technique.

Complex to guarantee
high reliability with

user fairness.
Performance

degradation by
intra-cluster pilot

contamination and the
residual interference
of imperfect SIC for a

few users.

.
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Table 2. Cont.

Ref. Topic System
Model

Design
Objective

Optimization
Method

Key
Findings

Limitations

[61]

User
grouping;
achievable
sum-rate;

power
efficiency;

PD-NOMA.

Downlink
system with

single antenna
APs and users.
Homogenous
PPPs to model
node locations.

Maximize
PE and

achievable
sum rate.

Matched
filter-based
precoding;
adaptive
switching

algorithm; UC
algorithm.

Proposed cooperative
CF-mMIMO-NOMA has

the most superior
performance in
comparison to

conventional OMA and
CF-mMIMO-NOMA

systems. The UC
procedure offers much
stronger performance

than previous methods.

The cluster size is
directly proportional

to the large-scale
fading in users and
APs, thus reducing

performance for large
clusters. It also leads
to reduced data rates
in cooperative links.

[62]

Imperfect SIC;
non-

reciprocities;
hardware

mismatches.

Single antenna
APs and users

with a Rayleigh
fading channel

operating in
TDD mode.

Maximize
achievable
sum rate.

A use-and-then-
forget bound to

obtain an
achievable

downlink rate.

NOMA provides
improved user fairness.

AP phase mismatch and
imperfect SIC have a
similar effect on the
achievable sum rate.

Considers fixed user
distribution.

[63]
Maximize

sum-rate; SE;
uplink.

APs equipped
with antennas.

Users are
randomly

grouped into
clusters.

Maximize
SE.

Conjugate
beamforming
receiver; an

SCA-based GP
algorithm.

For a few users, OMA
performs better than
NOMA, but for many
users, NOMA is more

efficient in utilizing
spectrum bands. The
proposed algorithm
greatly enhances the

system.

NOMA’s
performance is

degraded for a small
number of users due

to pilot
contamination and

residual intra-cluster
interference caused
by imperfect SIC.

[64,65,
81]

SE; optimal
combining;

power control.
SIC

Uplink
transmission

with a Rayleigh
fading channel.

Maximize
the uplink

SINR.

The maximum
ratio combining

technique; an
OBC method;
zero-forcing

backhaul
combining

(ZFBC) [64]. An
adaptive SIC
method [81].

OBC outperforms both
equal gain combining

and ZFBC. With the use
of OBC,

CF-mMIMO-NOMA is
superior to

CF-mMIMO-OMA in
both max–min QoS and

connectivity. The
proposed method

outperforms
conventional SIC

methods, particularly for
higher QoS values [81].

With an increasing
number of antennas

on every BS, the
impact of correlated
interference becomes

more significant,
leading to SINR

degradation in both
OBC and ZFBC.

[66]
Power

optimization,
Sum SE

Downlink
multi-antenna
APs and single
antenna users

with a Rayleigh
fading channel.

Maximize
SE.

Conjugate
beamforming;

SCA-based
sum-SE

approximation
algorithm.

NOMA exploits the
limited spectrum bands
better than OMA. The

proposed sum-SE
maximization algorithm

boosts sum-SE by
exploiting NOMA.

In the training phase,
SIC operation is not
performed. QOS is

not guaranteed.

.
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Table 2. Cont.

Ref. Topic System
Model

Design
Objective

Optimization
Method

Key
Findings

Limitations

[67]
Achievable

rate;
PD-NOMA.

Multi-
antenna APs
and single-

antenna users
in a Rayleigh

fading
channel.

Maximize
sum rate.

MRT
beamforming.
UC algorithm
based on the

Jaccard distance
coefficient.

Cognitive CF-mMIMO
with NOMA supports
more secondary users,

improving the sum rate
via channel gain

difference.

NOMA strikes a
balance in

performance and
complexity. It adds

hardware complexity
as a result of SIC

processing and error
propagation.

[68] AP precoding;
sum-rate.

Downlink
system with

multi-
antenna APs,
clusters, and
users, with a

Rayleigh
fading

channel.

Maximize
sum rate.

MRT; fpZF;
mRZF.

mRZF and fpZF achieve
better performance than
MRT when perfect SIC is

available.
CF-mMIMO-NOMA
using fpZF or mRZF

outdoes OMA with MRT.

System performance
is degraded by

intra-cluster pilot
contamination and

imperfect SIC,
especially with a
small number of

users.

[69]

Achievable
sum-rate;

power
allocation;
channel

estimation.

Multi-
antenna APs,

single
antenna UEs,
with a Rician

fading
channel.

Maximize
achievable

rates.

MMSE
estimation;

maximum ratio
precoding.

More AP antennas and
Rician factor boost sum

rate; MMSE outperforms
EMMSE for correlated

Rayleigh fading.

Ignores the impact of
self-interference

between cluster head
antennas.

[70]

Finite
block-length

coding;
statistical

delay
bounded QoS
provisioning

Rician fading
channel with

randomly
located APs
and mobile

users
grouped into

clusters.

Maximize
achievable
data rates.

The Mellin
transform;

finite
blocklength

coding.

Proposed
CF-mMIMO-NOMA

scheme excels in
statistical delay and

error-rate bounded QoS
provisioning in the finite

block-length regime.

CSI estimation is
insufficient when the

number of APs is
small.

[71]

Spectral
efficiency; IoT;
power control;
user pairing

Spatially
correlated

Rician fading
channels,
randomly

distributed
multiantenna

APs and
single-

antenna UEs

Max-min
power control

MMSE,
EWMMSE, and
LS estimations

with MRT
precoding,
large-scale-
based user

pairing, and
low-complexity
SCA method.

MMSE estimation
outperforms EW-MMSE

and LS estimations.
L-MMSE precoders

outperform MR
precoding. For many

users, NOMA
outperforms OMA.

Imperfect SIC and
pilot contamination

within clusters
degrade NOMA

performance for a
few users.

[72]
User

clustering
algorithm

APs have
multiple

antennas, UEs
have single
antennas.

Maximize
sum SE.

fpZF;
unsupervised
ML-based UC

algorithms:
K-means++ and

Improved
K-means++.

MML-based UC
algorithm outperforms
baseline schemes, with

the proffered PA
algorithm having faster
convergence and better

performance than
CF-mMIMO-NOMA.

SIC affects the
performance of

CF-mMIMO-NOMA

.
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Table 2. Cont.

Ref. Topic System
Model

Design
Objective

Optimization
Method

Key
Findings

Limitations

[73,76] BE

Downlink
NOMA-
Aided

CF-mMIMO
involves the
use of APs,

clusters, and
users.

Maximize BE.

A bisection
search method

based on
conjugate and

normalized
conjugate

beamforming.;
use of SOCP

and SDP in the
iteration of the

bisection
search.

The switching point
between NOMA and
OMA modes depends
on channel coherence

time and the number of
users. NOMA with

conjugate
beamforming

outperforms OMA.

The optimal mode
switching to

maximize the
minimum

max–min downlink
BE depends on the

length of the
channel coherence

time.

[74,75]

Achievable
rate;

PD-NOMA;
user-fairness.

Rayleigh
channel with
log-distance

path loss.

Maximize
overall

through-
put [74].

Maximize
achievable
rate [75].

Matched
filter-based
precoding,

homogenous
PPP to model

node locations.

NOMA improves rate
performance over

OMA in CF-mMIMO
with low path loss and

high AP density,
enhancing user

fairness.

NOMA rate gain
decreases with

lower AP density
and higher user PA

coefficients,
sacrificing the
overall rate for
lower latency.

[77]

Simultaneous
wireless

information
and power

transfer
(SWIPT).

A single
antenna APs

with two
users per
cluster.

Maximize
ergodic sum

rate.

Conjugate
beamforming.

SWIPT-NOMA
outperforms
conventional

CF-mMIMO-NOMA
systems for many

users.

Ignores the impacts
of self-interference

between cluster
head antennas. An
excessive number

of antennas are
required for the

user.

[78]

AP selection;
AP tiered

user-
grouping.

A single CPU,
single

antenna APs,
and single

antenna
users.

Maximize
achievable
sum rate.

Distributed
power

optimization
aided by AP

tiering.

The distributed power
optimization aided by

AP tier sum rate is
used in practical

deployment to achieve
good performance.

Performance
depends on AP

density.

[79,80]
Channel

estimation,
user pairing

Considers
single

antenna users,
served with

single
antenna APs

Max-min
downlink rate
optimization

Dynamic user
pairing,

conjugate
beamforming.

Dynamic user pairing
excels in user rate with
acceptable complexity
compared to baseline

strategies.

Complex to
guarantee high

reliability with user
fairness. Does not
consider random

AP and user
assignments.

[82]

Achievable
rate;

max–min
fairness.

Primary and
secondary

systems use
single-

antenna APs
and users.

Maximize the
achievable
sum rate.

Conjugate
beamforming;
the bisection

method;
max–min
fairness.

NOMA and underlay
spectrum boost
concurrent user

capacity.

Pilot
contamination,

imperfect SIC, and
partial CSI

significantly hinder
performance.

[83] Power
control.

A network
consisting of

APs and
single-

antenna UEs.

Maximize
achievable

rate.

A two-layer
algorithm,
based on

Dinkelbach’s
method.

The proposed
algorithm outperforms

fractional power
control and

OMA-based CF
schemes in terms of

energy efficiency.

Intra-cluster pilot
contamination and

imperfect SIC
degrade the system

performance of
NOMA in the

low-user regime.

.
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Table 2. Cont.

Ref. Topic System
Model

Design
Objective

Optimization
Method

Key
Findings

Limitations

[84] User-centric,
big data; 6G.

APs and
mobile users
served via a
TDD system.

Maximize
achievable

rate and
energy

efficiency.

Multiple
matching

algorithms;
particle swarm

algorithm;
bipartite graph

matching

Proposed NOMA-based
CF-mMIMO

outperforms others in
energy efficiency, data
rate, and interference.

User QoS is not
guaranteed.

[85]

Power
optimization;

clustering
NOMA;

multi-access
edge

computing
(MEC).

A cell-free
edge network
architecture
with small

BSs.

Maximize
sum data rate.

Adaptive relay
coordinated
transmission

scheme; power
optimization

algorithm
based on

continuous
convex.

The sum rate data of the
clustered NOMA-based

adaptive relay
coordinated transmission

scheme is superior to
that of the direct, relay

AF, and relay DF
transmission schemes.

Limited capacity and
energy of relay nodes.

QoS is not
guaranteed.

[86]

Intelligent
reflecting

surfaces (IRS);
SE; User

clustering

Single
antenna APs

and users.

Improve
weighted

ergodic rate

Distance-aware
user clustering,

conjugate
beamforming,

and IRS

Ergodic rate is
proportional to the

number of IRSs and vice
versa.

Interference from
APS, IRSs, and IRSs

phase shifts degrades
performance.

[88] SE, achievable
sum rate.

Single
antenna APs

and users
with a

Rayleigh
fading

channel.

Maximize SE
and

achievable
sum rate.

Conjugate
beamforming;

SCA-based
sum-SE

approximation
algorithm.

In a fair comparison,
NOMA outperforms
OMA in both normal

and stressed scenarios.

The effect of SIC
imperfection on

performance.

[89]

SWIPT;
layered
division

multiplexing;
energy

efficiency.

Downlink
backhaul-

constrained
CF-mMIMO
system with

SWIPT, which
consists of

multi-
antenna APs,
and single-

antenna UEs.

Maximize
energy

efficiency.

A first-order
algorithm to
find both an

initial feasible
point and a

nearly optimal
solution for
maximizing

energy
efficiency; SCA

technique;
Dinkelbach’s

algorithm.

Proposed algorithms
achieve a similar energy

efficiency to
second-order approaches

with lower
computational

complexity. The
proffered first-order

algorithms are better for
massive access

deployments because of
their fast convergence

speed and reduced
computational

complexity.

Doesn’t consider the
joint optimization of

backhaul
compression and

transmit
beamforming for best

energy utilization,
joint AP clustering
and UE scheduling,
and beamforming

methods, to meet the
next huge

connectivity in
practical

applications.

[90] Compressed
Sensing.

Considers
uplink

transmission
with single-

antenna users
and APs.

Improve
system

capacity.

Extended
approximate

message-
passing

algorithm
(EAMP).

EAMP algorithm
improves system
capacity despite

predetermined iteration
times and step size,

outperforming other
algorithms.

Assumes AP receives
signals from all users,
compromising QoS.

Signal recovery is not
precise and quick, for

a few users.

.

While most works presented here exploit the spatial domain in designing user group-
ing and related signal processing techniques, the usage of the angle domain remains a
future research direction. Furthermore, the authors of [91,92] have investigated angle-based
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processing techniques for FDD-based CF-mMIMO systems, and results show better perfor-
mance. Consequently, angular models of mMIMO with NOMA channels may be used in
designing angle information-aided pilot allocation, channel estimation, beamforming, and
PA and interference reduction by array signal processing [93].

Lastly, it is important to acknowledge that none of the implementations of CF-mMIMO-
NOMA have been carried out in practical scenarios. Therefore, further contributions and
advancements are necessary to connect theoretical developments and practical scenarios in
this field.

4. Challenges and Future Research Opportunities

Unresolved issues persist in fully harnessing the integration of CF-mMIMO-NOMA,
despite the proposed solutions discussed earlier. In addition, CF-mMIMO-NOMA must
be integrated with alternate enabling technologies to adapt to future communication
requirements. Therefore, this section addresses several key challenges and open research
directions for future work.

4.1. Channel Estimation

Coherent detection requires that the receiver evaluates the channel. Such estimation
can be performed for the uplink and then used for the downlink via the reciprocity principle.
Many channel estimation algorithms exist. Some techniques use least square approaches:
MMSE and linear MMSE. Future networks with numerous users and antennas will pose
challenges for channel estimation. Existing high-performance algorithms may lead to
excessive signaling overhead and complexity. Hence, new channel estimation techniques
are required to strike to balance complexity and performance well. Again, flexible schemes
and dynamic protocols should be designed in such a way that they can adapt to varied en-
vironments and provide seamless connectivity and network interoperability. Compressive
sensing (CS)-based channel estimation can be efficient for massive MIMO [94]. Thus, CS
for massive MIMO-NOMA is a potential technique and should be redesigned to embody
NOMA features such as the near–far user effect. Deep learning is an approach that can be
used for channel estimation. Deep convolutional neural networks can reduce the cost and
complexity of channel estimation [95,96]. Estimation techniques based on artificial intelli-
gence (AI) take one of four types: deep convolution neural networks, deep recurrent neural
networks, super-resolution technology, and compression sensing technology. ML-based
estimators are proposed in [10] and show better performance than conventional methods.
Further options for channel estimation exist, depending on their specific application within
CF-mMIMO systems [10,11].

4.2. Non-Linear Effects on Signals

As seen in the state-of-the-art, preprocessing such as precoding techniques in cell-free
massive MIMO and combining signals with different power levels NOMA can lead to
non-linear effects. When these non-linear characteristics are known an appropriate receiver
can be designed that takes into account the non-linear effects introduced by the transmitter.
To avoid problems resulting from combining signals with different power levels, precoding
of the superposition-coded signals to multiple user clusters is necessary. Most of the
precoding techniques used in available literature are linear. However, it is worth more to
investigate and find more efficient and high-performance non-linear precoders that could
be distortion-aware with comparable complexity with linear precoders. For example in [97],
proposes a suboptimal yet more practical non-linear precoding scheme that requires a
multidimensional integer-lattice least square optimization, which can be found by several
approaches. Also, precoders with scalability in terms of complexity could be investigated.
Specifically, the use of divide-and-conquer approaches and methods based on sensor-
array signal processing could be vital in mitigating the dimensionality of the transmitting-
processing problem. There are plenty of opportunities to use AI-based technologies such
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as machine learning and deep neural networks to design high-performance and low-
complexity precoders [26].

In terms of implementations, most of the discussed precoders above operate at sub-
6 GHz bands, which cannot be used in the state-of-the-art architectures with multiple
antenna elements and operating at higher frequency bands, millimeter wave [26]. In cell-
free massive MIMO, the number of antennas at the transmitter is larger compared to the
served users. This makes the number of radio frequency chains (signal mixer and analog-
to-digital-converter (ADC)) large hence requiring hundreds of low-cost amplifiers with
low-output power. To keep the cost and circuit power consumption low, cost-effective and
power-efficient hardware components are employed. This results in hardware impairments
that may affect the system’s performance. However, some of these impairments can be
taken into account in the precoding and signal design, providing schemes with promising
spectral efficiency performance.

With 5G and 6G technologies using frequencies above 6 GHz for communications,
current transceivers may not be realistic and cost-effective at these frequencies. New
transceivers to address these challenges have been proposed. They require joint optimiza-
tion of precoding weights in digital and analog domains, hybrid precoding [98]. Never-
theless, research is required to ensure the design of sub-optimal, efficient, and practical
architectures that improve the joint performance of hybrid decoders.

4.3. Signal Detection

In all the studied works, none focus on signal detection and receive processing. Cost-
effective detection algorithms that can perform dimensionality reduction and schemes
based on a receiving matched filter with non-linear interference-cancellation capabilities
could be investigated. In addition, smarter algorithms with low could be investigated.
More importantly, the issue of performance at the cost of complexity is worth investigat-
ing. Finally, receiver design with smart signal-processing algorithms that will ensure SIC
stability for NOMA signals is important.

4.4. Backhaul/Fronthaul Capacity

CF-mMIMO requires additional overhead to exchange information between APs and
the CPU. Unfortunately, practical applications often face limitations in the availability
or capacity of the fronthaul. The transmitted signals and structured lattice codes can
be quantized to reduce the fronthaul load. Further investigation is needed to tackle the
challenge of designing signal processing algorithms that can effectively operate within the
limitations of limited fronthaul capacity [11].

The fronthaul can be implemented via wired or wireless connections. Wired con-
nections provide high-capacity links but with high implementation costs and limited
scalability [9]. The radio stripes approach has been used to bypass the latter problem for
indoor systems. Nevertheless, deploying a wireless millimeter-wave fronthaul network
presents the most feasible solution in terms of cost and scalability. Implementable wireless
technologies include a microwave-based fronthaul network for backhaul and fronthaul
network data transfers, as well as a hybrid millimeter wave or free space optics fronthaul
network to meet the high-capacity demands. The authors of [15] also discuss deployment
structures for CF-mMIMO and propose a ring deployment structure as a possible solution
to offer an alternative transmission path, resulting in more dependable networks at a
cheap cost. Nonetheless, empirical studies in this area need to be more mature, and their
application scenarios need investigation.

4.5. Hardware Complexity

SIC processing and error propagation in NOMA systems introduces additional hard-
ware complexity. As such, NOMA provides an equal mix of performance and complex-
ity [67]. The resolution of hardware complexity due to SIC detection requires fair PA and
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effective UC techniques. A reduction in error propagation requires an improvement in the
quality of channel estimation.

Although adding more antennas in CF-mMIMO increases power consumption and
hardware complexity, NOMA offers increased performance with more antennas at the
BS. In [74,75], the rate gain of NOMA decreases with the density of APs. Additionally,
the authors of [64] also consider the influence of adding more antennas on each BS.
As the number of antennas increments, correlated interference dominates, prompting a
degradation in SINR. In [70], CSI estimation is shown to provide poor results for a small
number of APs.

Due to these issues, high priority is placed on research into the effects of hardware
components and methods to mitigate the complexities caused by SIC and error propagation.
It is important to evaluate the balance between performance and complexity that NOMA
offers to show that it is beneficial and can improve overall system performance. Efficient
and practical alternatives for SIC applications in transmissions may be discovered utilizing
appropriate approaches.

4.6. Multi-Antenna UEs and APs

Most works concerning CF-mMIMO-NOMA consider only single antenna UEs and
APs. However, most current and practical APs and UEs feature three or more antennas,
and it is expected that future devices will have even more antennas. Generally, multiple
antennas can be utilized to achieve either spatial multiplexing, enabling the transmission
of multiple data streams to one UE, or improved precoding and combining to mitigate
interference [10,99]. Within the literature, only [77] considers a two-antenna UE. As such,
the question of resource allocation for multi-antenna UEs remains open.

4.7. Performance in Regions with a Low Number of Users

The performance of NOMA is adversely affected by inter-cluster pilot contamination
and imperfect successive interference cancellation (SIC), especially when the number of
users is small [63,65,68,72,82,83]. Therefore, methods to address this problem should be
investigated. The authors of [73,76] propose an algorithm that switches modes between
NOMA and OMA to maximize BE. The success of the suggested solution depends on
two factors: the coherence time of the channel and the total number of users. Another
approach called Pattern Division Multiple Access (PDMA) hinged on code patterns has
been recommended to solve the challenges of propagation error in SIC [94]. However,
this technique may increase the error probability of strong users. Given the envisioned
intelligent physical layer in 6G, AI-enabled multiple access or similar approaches could be
used to mitigate the influence of imperfect SIC and inter-cluster pilot contamination.

4.8. Synchronization

System synchronization poses a significant challenge in CF-mMIMO-NOMA systems
due to a large number of APs and users, as well as their random distribution. Synchroniza-
tion is crucial to ensure coordinated service to users across the entire system. Therefore, it
is essential to explore simple, cost-effective, and innovative methods for achieving system
synchronization.

4.9. Resource Allocation and Optimization

The Internet of Everything is envisioned to represent the future of the Internet. Radio
resources may be limited and require proper resource management to ensure effective
utilization. Resource allocation assigns radio resources to devices to boost throughput,
data rate, energy efficiency, and user fairness. Key study fields include pilot allocation,
power control, and user scheduling of CF-mMIMO systems in mobility scenarios. NOMA
efficiently utilizes resources by serving multiple users at distinct power levels. However,
resource allocation in NOMA is challenging due to interference from both co-channel and
cross-channel transmissions [100].
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Moreover, user pairing and optimum PA among NOMA users require a sophisticated
algorithm to optimize performance while minimizing resource usage [101]. Different power
control algorithms, such as game theory and ML-based PA approaches, can be utilized to
address utility optimization problems and achieve better performance. Another important
direction for research is the implementation of distributed resource allocation schemes,
as they allow easy deployments and computational complexity on distributed units and
control units. It also reduces the load on the fronthaul as resource allocation information is
not sent to a single network node [14].

It is worth considering techniques for multi-objective optimization of resources such
as maximizing capacity, ensuring fairness, and minimizing power consumption. One of the
most commonly used multi-objective optimization problems is the min–max
method [71,79,80]. Nevertheless, there are instances where convectional optimization
models may not be adequate in addressing multi-objective problems, hence the use of other
techniques such as game theory [102].

Also, meta-heuristics processes that ensure user QoS and can be tailored to multi-
objective optimization are worth investigating. Metaheuristics can be used to solve many
types of problems. They include algorithms Ant Colony Optimization, Genetic Algorithms,
Iterated Local Search, Simulated Annealing, and Tabu search. They can be categorized
into different categories. Among the categories, in CF-mMIMO-NOMA, bio-inspired meta-
heuristics have been implemented and the authors of [84] investigates particle-swarm to
transmit power to different APs. While these metaheuristics are good with large, practi-
cal, and/or computationally demanding problems in large spaces, the solutions are not
transferable and can not be analyzed numerically [103]. One solution to this would be
hybridization. Hybridization of metaheuristics would help exploit the complementary
characters of different strategies. This would help in obtaining top performance in solving
many hard optimization problems [104].

Finally, while these algorithms and proposals look optimal, the algorithms with low
complexities are worth investigating while ensuring good system performance.

4.10. AP-UE Optimization

Many performance optimization strategies have been investigated to improve QoS,
the sum rate, and the max–min rate for CF-mMIMO-NOMA. However, these solutions
cannot satisfy the network requirements, including diverse QoS requirements for users.
To address this, joint optimization of AP and users would be a possible solution. In user-
centric CF-mMIMO, a practical and lightweight AP-user association is essential in boosting
the system’s performance and enhancing spatial reuse. With multiple APs and users, two
fundamental problems arise: assigning AP to users and allocating share transmission
resources among multiple AP-user pairs. The authors of [87] show that QoS may be
assured with comparatively modest cluster sizes that need reduced fronthaul capacity.
However, combining AP-centric and user-centric approaches provides better data rates at
the expense of higher fronthaul link data traffic [105]. It is worth investigating dynamic
and intelligent approaches to AP selection and dynamic clustering that consider changing
network demand factors and realistic fronthaul restrictions.

4.11. Interference Management

Interference management directly impacts system performance in mobile communi-
cations. The network’s performance is limited by inter-user interference, inter-antenna
interference, and radio frequency interference caused by numerous users and antennas. The
interference model becomes complex due to the presence of more reflecting and scattering
paths in the signals. Interference mitigation and management technique solutions are
limited to a fixed amount of terminals and antennas. Meanwhile, the CF-mMIMO-NOMA
system incorporates a larger number of terminals and antennas. In addition, a proper trade-
off is needed between increased resource utility and decreased interference. Therefore, it
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is necessary to establish new interference models, analyze common wireless transmission
scenarios, and develop improved interference control techniques.

4.12. FDD

In the case of FDD, channel reciprocity cannot be applied as the uplink and downlink
channels operate in separate frequency bands. This adds extra overhead for acquiring and
providing CSI feedback. However, if the carrier frequencies of the uplink and downlink
are within a few GHz of each other and the angle coherence time significantly exceeds the
conventional coherence time, the system may still benefit from angle reciprocity, where
the channel angle information remains relatively unchanged. All works concerning CF-
mMIMO-NOMA assume the use of TDD. A small number of works concerning CF-mMIMO
assume the use of FDD. Contemporary mobile communication systems are dominated
by FDD. Moreover, FDD may be appropriate for millimeter wave bands because of the
reciprocal nature of angular parameters across a wide bandwidth. As such, FDD should be
considered for the implementation of CF-mMIMO systems. Currently, few works consider
FDD-based CF-mMIMO systems [91,92,106–109].

4.13. Full-Duplex NOMA

Full duplex enables concurrent transmission of both downlink and uplink signals
using the same time and frequency resources. This theoretically doubles SE. In addition to
improved SE, a full duplex can also yield benefits in the medium access control layer [110].
By leveraging full duplex NOMA in CF-mMIMO systems, it becomes possible to support
multiple uplink and downlink users concurrently using the same frequency, resulting in
improved SE. Furthermore, this approach simplifies the design of mMIMO base stations by
utilizing the abundance of antennas and capitalizing on the degrees of freedom offered by
full-duplex transmission [111]. The integration of FD-NOMA and CF-mMIMO systems
has challenges like complexity and energy consumption of signal processing for reducing
self-interference and interference between multiple users. As the number of antennas
increments, one of the challenges faced is the growing hardware complexity. However, it is
critical to evaluate the influence of hardware impairment on the resolution of analog-to-
digital converters in such systems [111].

4.14. Grant-Free Access

Also referred to as contention-based transmission, grant-free (GF) transmission takes
place over preconfigured or semi-statistically configured resources for uplink or downlink
users. The sharing of resources among multiple users in GF systems can lead to transmis-
sion collision. As opposed to grant-based transmission, the GF transmission scheme is
characterized by an “arrive and go” approach that is suitable for services and applications
that demand low latency, like ultra-reliable low-latency communications [112]. The GF
transmission scheme can also significantly save power and reduce signaling overhead for
uplink transmission because it halts the need to forward a scheduling request to the BS upon
traffic arrival and can avoid the detection process when receiving control information. GF
transmission may incur certain collisions due to its contention-based nature, with multiple
users possibly sharing time and frequency resources. This can lead to unavoidable retrans-
missions and concerns about reliability. The combination of NOMA and GF transmission
can ensure reliable, fast, and efficient data transmission, given that the NOMA receiver can
separate overlapped signals with high reliability. Additionally, integrated protocols like
random back-off approaches help reduce non-orthogonal collisions and packet-dropping
rates. NOMA eliminates the need for the base station to access the grant procedure, but
compressed sensing algorithms can address this issue by leveraging user activity spar-
sity [113]. With large spatial diversity and multiplexing gains, acceptable transmission
reliability and SE can be realized. As studied previously, features of CF-mMIMO adopted
from mMIMO include channel hardening and favorable propagation. Features distinct to
CF-mMIMO include macro-diversity and signal sparsity [114]. In combination with GF
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transmission, these features would open many new research avenues. Resource allocation
schemes remain a challenge when there are numerous users or very low latency is required.
This includes intelligent user pairing, dynamic precoding, and channel estimation, among
others. Furthermore, there is currently no existing generalized framework for resource
allocation in CF-mMIMO that effectively balances scalability, reliability, and latency trade-
offs [114]. Finally, the application of GF transmission to CF-mMIMO-NOMA could be used
to address collision issues for both data and pilots.

4.15. New Waveforms and High Mobility Scenarios

Modulation techniques significantly contribute to enhancing data rates and minimiz-
ing energy consumption in multiple access schemes. The requirements of 6G waveforms
and modulation schemes include but are not limited to very high frequency, satellite com-
munications, short-range communications, low-cost devices and hardware, high mobility
scenarios, and ultra-reliable low-latency communications [112]. Such varied requirements
lead to different potential research directions, such as low PAPR, low complexity to enable
power saving, time-frequency localization to improve frequency utilization and SE, high
mobility where the Doppler effect leads to time selectivity in the wireless channels, and
robustness to radio frequency distortion.

High mobility communication systems require high robustness to the Doppler effect
and compatibility with MIMO technologies. The channels use time-and-frequency-selective
or doubly selective fading [112,115], due to the Doppler effect. Using these approaches,
advanced schemes capable of meeting overhead, complexity, or other requirements should
be considered [116] provides several schemes that can be used to address novel trials of 5G
systems. These include the following: modulation based on pulse shaping, which includes
generalized frequency division multiplexing and filter bank multicarrier; modulations
based on sub-band filtering, which includes filtered orthogonal frequency division multi-
plexing and universal filtered multicarrier. Other approaches include spectral-precoded
OFDM, guard interval discrete Fourier transform spread OFDM, and OTFS modulation.
Interestingly, a combination of OTFS and NOMA [117] has attracted attention for ap-
plication in environments that suffer from harsh channel conditions, such as terrestrial
communications [115] and heterogenous mobility scenarios [118]. OTFS modulation uses
the delay-Doppler plane, wherein user signals are arranged orthogonally. The advan-
tage of utilizing the time-invariant channel gains in the delay-Doppler plane is that it
deciphers channel estimation and signal detection in high-mobility situations. Doppler
fading channels using OTFS modulation are resilient with better SE and energy perfor-
mance in MIMO [119]. Specifically, [118] proposes OTFS-NOMA uplink and downlink
transmission schemes, in which users with varying mobility characteristics are clustered
for the deployment of NOMA. One major conclusion is that OTFS-NOMA boosts SE and
minimizes latency. The authors of [120] investigate the implementation of OTFS modula-
tion in CF-mMIMO to improve SE when considering the effects of channel estimation. In
high-mobility situations, the throughput of CF-mMIMO systems is improved when using
OTFS compared to OFDM, as indicated by the results.

4.16. Low-Density Parity-Check with NOMA

With the introduction of 5G, new channel coding schemes have been implemented to
meet the demanding requirements. For data channels, low-density parity-check (LDPC)
codes are used due to their superior performance across various coding rates, supporting
high peak rates and offering low latency and reliability at low coding rates. Contrastingly,
polar codes are considered one of the initial types of codes that approach the Shannon
capacity for shorter blocks.

LDPC codes are found to offer better performance when applied to NOMA [121]. The
application of LDPC to CF-mMIMO systems can boost reliability. In addition, NOMA
and LDPC methods can be employed to address transmission errors in data packets and
to enhance the efficiency of data forwarding [122]. The authors of [123] observe that the
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joining of NOMA with m-MIMO whereas applying LDPC codes offers strong performance.
Furthermore, the authors of [124] find that NOMA schemes are strong for 5G LDPC codes.
Therefore, further research should consider a combination of NOMA with LDPC in CF-
mMIMO for research purposes. This should also include variants of LDPC codes, as
in [125].

Finally, other coding techniques should also be investigated. For example, polar codes
that operate near the Shannon limit have been found to offer high SE with MIMO and large
system capacity with NOMA [126].

4.17. RIS-Aided NOMA

RISs, also referred to as large intelligent surfaces or intelligent reflecting surfaces, are
planar surfaces composed of an array of passive reflecting elements. Every such element
may individually inflict the expected phase shift on the incoming signal. Gleaned from
the material from which the reflecting elements are constructed, RISs can be classed as
antenna-array-based or meta surface-based [127]. RISs are anticipated to lower energy
usage and boost the SE of wireless networks by artificially reconfiguring the propagation
environment of electromagnetic waves. RISs boast the following advantages [128]:

• Cost-efficient manufacture and deployment.
• The ability to control and customize favorable radio environments.
• The ability to give better-accuracy contact and contactless sensing.

Due to their control of the propagation environment, RISs have proved their po-
tential in various applications. Here are some examples of applications in the field of
wireless technology:

• Enhancement of SE.
• Coverage extension.
• Enhancement of energy efficiency.

The individual advantages of NOMA, RISs, and CF-mMIMO render a combination of
the three a promising technology for application to future networks. Very few works have
studied RIS-NOMA or RIS -CF-mMIMO [9,113,117]. In [86], IRS with CF-mMIMO-NOMA
is studied. The results show that at a lower number of RIS, the performance is better
compared to traditional CF-mMIMO-NOMA, however, as the number of RIS enlarges, the
users’ ergodic rate is reduced due to interference from the RIS. RIS can be used with NOMA
to beneficially handle the wireless channel vectors of every user, aligning them with each
other to enhance performance, particularly when the channel vectors are orthogonal. RIS
can also be used with NOMA to improve reliability at a very low SNR, accommodate more
users, and enable higher modulation [112]. The authors of [129] investigate the outage
performance of wireless systems incorporating RIS with NOMA. Specifically, positive
results are generated when RIS is deployed to guarantee fairness among NOMA users in
wireless systems.

CF-mMIMO systems that require extensive use of BSs can suffer from unsatisfactory
energy efficiency as a result of the substantial expenses associated with hardware and power
sources. RIS can be deployed to solve this issue. RIS requires no additional hardware
implementation, and thus greatly reduces energy consumption and complexity for signal
processing [128,130]. S. Elhoushy et al. propose the use of RIS to provide physical layer
security [9]. The deployment of RIS is recommended for CF-mMIMO systems to achieve
high secrecy rates, because of the flexibility with which RISs can enhance or suppress signal
beams to different users. S. Elhoushy et al. further suggest the possibility of adjusting
RIS-based beamforming coefficients for bettering the received signal at the expected user
whilst canceling the received signal at the intruder, thereby increasing the secrecy of the
system. Analysis of secrecy rates is an interesting research area. In addition, the authors
of [85] suggest the application of RIS to replace relay nodes as a transmission medium and
assist users with the worst channel quality in completing their message transmission, where
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diversity gain may be exploited to optimize user QoS. Nonetheless, there is an insufficient
study of RIS-aided CF-mMIMO systems and their applications with NOMA.

For the best exploitation of these technologies, challenges such as channel estimation,
resource allocation, and system optimization must be addressed [13,131]. For example, the
authors of [13] suggest that resource allocation is a challenging issue due to the size and
complexity of the involved systems.

4.18. Machine Learning (ML)/Artificial Intelligence (AI)

AI plays a vital role in wireless networks, bringing intelligence and automation by
replicating human cognitive processes and intelligent behaviors. It has emerged as a
highly valued technology in future mobile communication systems. The use of AI in future
networks will be required to increase robustness, performance, and efficiency. Thus, AI
technologies are anticipated to have a vital role in networks; particularly those that are
dynamic, and too complex scenarios that are challenging for human analysis. Considering
their advantages, a combination of AI and CF-mMIMO-NOMA could yield very strong
performances. ML methods are the most applied forms of AI. As shown in Figure 13,
common ML techniques encompass deep learning, supervised learning, unsupervised
learning, and deep reinforcement learning.

 

Supervised Learning 

Deep Learning 

Unsupervised Learning 
Deep Reinforcement 

Learning 

 

 Machine Learning

Artificial Inteligence

Figure 13. The relationship between AI, ML, and deep learning [132].

ML techniques have been successfully deployed in a variety of areas of wireless
communication systems, including the physical layer and medium access control. These
approaches have been applied for tasks such as CSI feedback, channel estimation and predic-
tion, MIMO detection, channel coding and decoding, UC, and power
control [11,117,132–134]. The utilization of ML to boost the performance of CF-mMIMO-
NOMA is therefore highly attractive. When used in CSI feedback, for example, if supplied
with abundant sensing data, AI can extract more useful features from angle and distance
information to assist CSI recovery or prediction. The authors of [72] use unsupervised ML
for UC. The authors of [10] suggest the idea of federated learning, which enables collabora-
tive learning among distributed devices while preserving their local training and control
privacy. They suggest that applying federated learning can enhance channel estimation
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and resource allocation in CF-mMIMO systems. The distributed processing approach of
federated learning is a natural fit for CF-mMIMO.

Both the transmitters and receivers of multiple access schemes can utilize AI tech-
niques [112]. AI assistance could allow the design of a multiple access transmission scheme
with low cost, low PAPR, low latency, high reliability, and massive connectivity properties.
For example, data-driven neural networks can be used to design NOMA signatures together
with many other modules, such as waveforms and MIMO precoding. To improve detection
and reduce complexity, an AI-assisted receiver could facilitate multi-user detection for
NOMA. Specifically, the authors of [117] give a detailed overview of the ML tools utilized
in NOMA communications.

To achieve truly intelligent systems in 6G, AI-enabled systems must be more reliable,
efficient, and easier to implement. Therefore, AI should be implemented to facilitate
training and improve learning efficiency, while data- and model-driven AI should be
implemented to ensure more timely and accurate learning [112].

4.19. CF-mMIMO-NOMA with MEC

Edge computing represents a progression from cloud computing, enabling the hosting
of applications to be moved closer to end-users and the data produced by those applications,
residing at the network edge. It is regarded as one of the critical pillars for attaining the
stringent core indicators of 5G, particularly low latency and bandwidth efficiency. ETSI
ISG MEC, the industry specification group for MEC, provides the technical standards
for edge computing [135]. MEC is defined by its on-premises location, proximity to end-
users, low latency, awareness of location, and contextual information of the network.
The advantages of MEC extend to various services and applications that go beyond the
capabilities of 5G networks. The integration of MEC with these techniques will enhance the
value of MEC systems. Of particular interest is the integration of NOMA with MEC. This
combination brings many benefits, including support for numerous users, reduced latency
and energy usage of users, and improved achievements for complex network scenarios
such as millimeter wave mMIMO [136]. The authors of [136] indicate that a combination of
MEC and NOMA could provide several benefits, including:

• A significant improvement in user satisfaction and network performance by leveraging
golden opportunities.

• Reinforcement of the services and applications that are supported by 5G networks.
• Provision of low latency transmission.
• Flexible combination with many existing technologies, like MIMO, mMIMO, and mil-

limeter wave communications, leading to increased connectivity, SE, energy efficiency,
and computing capability.

The integration of MEC with NOMA and CF-mMIMO has the potential to improve
computing capabilities and SE and reduce task delay. Specifically, CF communications can
boost reliability, with MEC serving as a suitable platform for managing delay-sensitive
applications. For example, the authors of [137] introduce a novel CF-mMIMO system
with edge computing, together with a cloud data center and several APs, and derives the
probability of successful edge computing. The authors observe that for a given successful
edge computing probability, the energy usage is reduced with larger AP density, rather
than with more antennas per AP. With a focus on maximizing the sum data rate, [85] studies
MEC in CF edge networks where NOMA is used to cluster users. A clustered NOMA-based
adaptive relay coordinated transmission scheme is found to outperform direct transmission,
relay AF transmission, and relay DF transmission schemes.

5. Conclusions

This paper provided a thorough review of CF-mMIMO-NOMA, with a focus on
identifying research gaps and the possibility of integration with other enabling technologies.
A detailed theoretical description was provided, in addition to a simple system model and
description of the operation.



Electronics 2024, 13, 231 42 of 47

Notably, TDD operation is more appropriate than FDD because TDD allows the
exploitation of channel reciprocity for hardware calibration. A comprehensive literature
review found that no work has investigated the use of FDD with CF-mMIMO-NOMA. The
problems of error propagation and imperfect SIC still pose a challenge for CF-mMIMO-
NOMA. As a result, the system performs more poorly for a low number of users. Although
some authors [73,76] have investigated switching techniques to implement OMA in regions
with low users, the switching algorithm is dependent upon the length of the coherence
time. In addition, few works consider multi-antenna users, despite current and future UEs
requiring many antennas. This limits practicability and is an area in which more research
should be carried out.

The integration of CF-mMIMO-NOMA with certain 6G-enabling technologies was
discussed. AI has attracted substantial interest in recent works. Its application in the
physical layer could allow the full potential of CF-mMIMO-NOMA to be realized, and
improve resource allocation, which remains a persistent challenge. The integration of MEC
with CF-mMIMO and NOMA could lead to further increases in connectivity, SE, energy
efficiency, and computing capability. In addition, RISs could be employed in CF-mMIMO
systems can address the issue of unsatisfactory energy efficiency caused by the extensive
deployment of base stations, which incurs significant costs for hardware and power sources.
While each of these integrations seems inevitable, there remain many challenges that must
be addressed to optimize performance.

In conclusion, this review has provided a thorough examination of CF-mMIMO-
NOMA, covering its motivation, current state-of-the-art, system model, research challenges,
and the potential integration with other technologies that enable 6G.

Author Contributions: Conceptualization—A.A. and J.I.; Methodology—A.A.; Software—A.A.;
Validation—A.A. and J.I.; Investigation—A.A.; Resources—A.A. and J.I.; Writing-original draft—A.A.;
Writing-review and editing—A.A. and J.I.; Visualization—A.A. and J.I.; Supervision—J.I.; Project
administration—J.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable.

Conflicts of Interest: Author Antonio Apiyo was employed by the company Nokia. The remaining
author declares that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References
1. You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless

communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [CrossRef]
2. Saghezchi, F.B.; Rodriguez, J.; Vujicic, Z.; Nascimento, A.; Huq, K.M.S.; Gil-Castiñeira, F. Drive towards 6G. In Enabling 6G Mobile

Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–35. [CrossRef]
3. Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi,

K.A.; Hashim, F. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access 2021, 9, 148191–148243.
[CrossRef]

4. Shin, W.; Vaezi, M.; Lee, B.; Love, D.J.; Lee, J.; Poor, H.V. Non-Orthogonal Multiple Access in Multi-Cell Networks: Theory,
Performance, and Practical Challenges. IEEE Commun. Mag. 2017, 55, 176–183. [CrossRef]

5. Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular
Future Radio Access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany,
2–5 June 2013; pp. 1–5. [CrossRef]

6. Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun.
Surv. Tutor. 2018, 20, 2294–2323. [CrossRef]

7. Cai, Y.; Qin, Z.; Cui, F.; Li, G.Y.; McCann, J.A. Modulation and Multiple Access for 5G Networks. IEEE Commun. Surv. Tutor. 2018,
20, 629–646. [CrossRef]

8. Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access
2019, 7, 99878–99888. [CrossRef]

9. Elhoushy, S.; Ibrahim, M.; Hamouda, W. Cell-Free Massive MIMO: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 492–523.
[CrossRef]

http://doi.org/10.1007/s11432-020-2955-6
http://dx.doi.org/10.1007/978-3-030-74648-3_1
http://dx.doi.org/10.1109/ACCESS.2021.3124812
http://dx.doi.org/10.1109/MCOM.2017.1601065
http://dx.doi.org/10.1109/VTCSpring.2013.6692652
http://dx.doi.org/10.1109/COMST.2018.2835558
http://dx.doi.org/10.1109/COMST.2017.2766698
http://dx.doi.org/10.1109/ACCESS.2019.2930208
http://dx.doi.org/10.1109/COMST.2021.3123267


Electronics 2024, 13, 231 43 of 47

10. Chen, S.; Zhang, J.; Zhang, J.; Björnson, E.; Ai, B. A survey on user-centric cell-free massive MIMO systems. Digit. Commun. Netw.
2022, 8, 695–719. [CrossRef]

11. He, H.; Yu, X.; Zhang, J.; Song, S.; Letaief, K.B. Cell-free massive MIMO for 6G wireless communication networks. J. Commun. Inf.
Netw. 2021, 6, 321–335. [CrossRef]

12. Obakhena, H.I.; Imoize, A.L.; Anyasi, F.I.; Kavitha, K. Application of cell-free massive MIMO in 5G and beyond 5G wireless
networks: A survey. J. Eng. Appl. Sci. 2021, 68, 13. [CrossRef]

13. Shi, E.; Zhang, J.; Chen, S.; Zheng, J.; Zhang, Y.; Ng, D.W.K.; Ai, B. Wireless energy transfer in RIS-aided cell-free massive MIMO
systems: Opportunities and challenges. IEEE Commun. Mag. 2022, 60, 26–32. [CrossRef]

14. Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. User-Centric Cell-Free Massive MIMO Networks: A
Survey of Opportunities, Challenges and Solutions. IEEE Commun. Surv. Tutor. 2022, 24, 611–652. [CrossRef]

15. Zheng, J.; Zhang, J.; Du, H.; Niyato, D.; Ai, B.; Debbah, M.; Letaief, K.B. Mobile Cell-Free Massive MIMO: Challenges, Solutions,
and Future Directions. arXiv 2023, arXiv:2302.02566.

16. Edfors, O.; Liu, L.; Tufvesson, F.; Kundargi, N.; Nieman, K. Massive MIMO for 5G: Theory, implementation and prototyping. In
Signal Processing for 5G: Algorithms and Implementations; Wiley: Hoboken, NJ, USA, 2016; pp. 189–230.

17. Zhao, L.; Zhao, H.; Zheng, K.; Xiang, W. Massive MIMO in 5G Networks: Selected Applications; Springer: Berlin/Heidelberg,
Germany, 2018. [CrossRef]

18. Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends®

Signal Process. 2017, 11, 154–655. [CrossRef]
19. Marzetta, T.L.; Yang, H. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016.
20. Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next? Five promising

research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [CrossRef]
21. Borges, D.; Montezuma, P.; Dinis, R.; Beko, M. Massive mimo techniques for 5g and beyond—Opportunities and challenges.

Electronics 2021, 10, 1667. [CrossRef]
22. Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—Overview, recent trends, challenges, and future

research direction. Sensors 2020, 20, 2753. [CrossRef] [PubMed]
23. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag.

2014, 52, 186–195. [CrossRef]
24. Araújo, D.C.; Maksymyuk, T.; de Almeida, A.L.; Maciel, T.; Mota, J.C.; Jo, M. Massive MIMO: Survey and future research topics.

IET Commun. 2016, 10, 1938–1946. [CrossRef]
25. Zheng, K.; Ou, S.; Yin, X. Massive MIMO channel models: A survey. Int. J. Antennas Propag. 2014, 2014, 848071. [CrossRef]
26. Albreem, M.A.; Habbash, A.H.A.; Abu-Hudrouss, A.M.; Ikki, S.S. Overview of Precoding Techniques for Massive MIMO. IEEE

Access 2021, 9, 60764–60801. [CrossRef]
27. Fatema, N.; Hua, G.; Xiang, Y.; Peng, D.; Natgunanathan, I. Massive MIMO Linear Precoding: A Survey. IEEE Syst. J. 2018,

12, 3920–3931. [CrossRef]
28. Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An Overview of Massive MIMO: Benefits and Challenges. IEEE J.

Sel. Top. Signal Process. 2014, 8, 742–758. [CrossRef]
29. Kebede, T.; Wondie, Y.; Steinbrunn, J.; Kassa, H.B.; Kornegay, K.T. Precoding and Beamforming Techniques in mmWave-Massive

MIMO: Performance Assessment. IEEE Access 2022, 10, 16365–16387. [CrossRef]
30. Zhang, X.; Vaezi, M. Deep Learning Based Precoding for the MIMO Gaussian Wiretap Channel. In Proceedings of the 2019 IEEE

Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]
31. Shi, J.; Wang, W.; Yi, X.; Gao, X.; Li, G.Y. Deep Learning-Based Robust Precoding for Massive MIMO. IEEE Trans. Commun. 2021,

69, 7429–7443. [CrossRef]
32. Pereira de Figueiredo, F.A. An Overview of Massive MIMO for 5G and 6G. IEEE Lat. Am. Trans. 2022, 20, 931–940. [CrossRef]
33. Marzetta, T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun.

2010, 9, 3590–3600. [CrossRef]
34. Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8,

133995–134030. [CrossRef]
35. Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges,

Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [CrossRef]
36. Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074. [CrossRef]
37. Ziegler, V.; Viswanathan, H.; Flinck, H.; Hoffmann, M.; Räisänen, V.; Hätönen, K. 6G Architecture to Connect the Worlds. IEEE

Access 2020, 8, 173508–173520. [CrossRef]
38. Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H. Cell-Free Massive MIMO systems. In Proceedings of the 2015 49th Asilomar

Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 8–11 November 2015; pp. 695–699. [CrossRef]
39. Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO: Uniformly great service for everyone.

In Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Stockholm, Sweden, 28 June–1 July 2015; pp. 201–205. [CrossRef]

40. Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel.
Commun. 2017, 16, 1834–1850. [CrossRef]

http://dx.doi.org/10.1016/j.dcan.2021.12.005
http://dx.doi.org/10.23919/JCIN.2021.9663100
http://dx.doi.org/10.1186/s44147-021-00014-y
http://dx.doi.org/10.1109/MCOM.001.2100671
http://dx.doi.org/10.1109/COMST.2021.3135119
http://dx.doi.org/10.1007/978-3-319-68409-3_1
http://dx.doi.org/10.1561/2000000093
http://dx.doi.org/10.1016/j.dsp.2019.06.007
http://dx.doi.org/10.3390/electronics10141667
http://dx.doi.org/10.3390/s20102753
http://www.ncbi.nlm.nih.gov/pubmed/32408531
http://dx.doi.org/10.1109/MCOM.2014.6736761
http://dx.doi.org/10.1049/iet-com.2015.1091
http://dx.doi.org/10.1155/2014/848071
http://dx.doi.org/10.1109/ACCESS.2021.3073325
http://dx.doi.org/10.1109/JSYST.2017.2776401
http://dx.doi.org/10.1109/JSTSP.2014.2317671
http://dx.doi.org/10.1109/ACCESS.2022.3149301
http://dx.doi.org/10.1109/GCWkshps45667.2019.9024579
http://dx.doi.org/10.1109/TCOMM.2021.3105569
http://dx.doi.org/10.1109/TLA.2022.9757375
http://dx.doi.org/10.1109/TWC.2010.092810.091092
http://dx.doi.org/10.1109/ACCESS.2020.3010896
http://dx.doi.org/10.1109/JPROC.2021.3061701
http://dx.doi.org/10.1109/ACCESS.2020.2981745
http://dx.doi.org/10.1109/ACCESS.2020.3025032
http://dx.doi.org/10.1109/ACSSC.2015.7421222
http://dx.doi.org/10.1109/SPAWC.2015.7227028
http://dx.doi.org/10.1109/TWC.2017.2655515


Electronics 2024, 13, 231 44 of 47

41. Shaik, Z.H.; Björnson, E.; Larsson, E.G. Cell-Free Massive MIMO with Radio Stripes and Sequential Uplink Processing. In
Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11
June 2020; pp. 1–6. [CrossRef]

42. Yang, H.; Marzetta, T.L. Energy Efficiency of Massive MIMO: Cell-Free vs. Cellular. In Proceedings of the 2018 IEEE 87th
Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [CrossRef]

43. Interdonato, G.; Björnson, E.; Quoc Ngo, H.; Frenger, P.; Larsson, E.G. Ubiquitous cell-free massive MIMO communications.
EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–13. [CrossRef]

44. Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO.
IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [CrossRef]

45. Demir, Ö.T.; Björnson, E.; Sanguinetti, L. Foundations of user-centric cell-free massive MIMO. Found. Trends® Signal Process. 2021,
14, 162–472. [CrossRef]

46. Wang, P.; Xiao, J.; Ping, L. Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE
Veh. Technol. Mag. 2006, 1, 4–11. [CrossRef]

47. Kumaresan, S.P.; Tan, C.K.; Ng, Y.H. Extreme Learning Machine (ELM) for Fast User Clustering in Downlink Non-Orthogonal
Multiple Access (NOMA) 5G Networks. IEEE Access 2021, 9, 130884–130894. [CrossRef]

48. Kizilirmak, R.C.; Bizaki, H.K. Non-orthogonal multiple access (NOMA) for 5G networks. Towards Wirel. Netw. Phys. Layer
Perspect. 2016, 83, 83–98.

49. Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Nonorthogonal Multiple Access for 5G and Beyond. Proc.
IEEE 2017, 105, 2347–2381. [CrossRef]
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