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Abstract: Recently, the field of vehicle-mounted visual intelligence technology has witnessed a
surge of interest in pedestrian detection. Existing algorithms for dense pedestrian detection at
intersections face challenges such as high computational weight, complex models that are difficult
to deploy, and suboptimal detection accuracy for small targets and highly occluded pedestrians. To
address these issues, this paper proposes an improved lightweight multi-scale pedestrian detection
algorithm, YOLOv8-CB. The algorithm introduces a lightweight cascade fusion network, CFNet
(cascade fusion network), and a CBAM attention module to improve the characterization of multi-
scale feature semantics and location information, and it superimposes a bidirectional weighted
feature fusion path BIFPN structure to fuse more effective features and improve pedestrian detection
performance. It is experimentally verified that compared with the YOLOv8n algorithm, the accuracy
of the improved model is increased by 2.4%, the number of model parameters is reduced by 6.45%,
and the computational load is reduced by 6.74%. The inference time for a single image is 10.8
ms. The cascade fusion algorithm YOLOv8-CB has higher detection accuracy and is a lighter
model for multi-scale pedestrian detection in complex scenes such as streets or intersections. This
proposed algorithm presents a valuable approach for device-side pedestrian detection with limited
computational resources.

Keywords: improved YOLOv8n; multi-scale feature fusion; attention mechanism; pedestrian
detection

1. Introduction

In recent years, pedestrian detection has emerged as a pivotal component in a variety of
applications [1–23], including driver assistance systems, vehicle surveillance, and proactive
safety mechanisms. This has established it as a fundamental and imperative area of study
within the realm of object detection. Coinciding with the brisk advancement of the AI sector
and the augmentation of computational power in computer hardware, pedestrian detection
methodologies grounded in computer vision have seen extensive implementation in the
vehicular camera systems of autonomous vehicles [4,5]. These innovative technologies
facilitate the precise localization of pedestrians, substantially mitigating accident risks.
Nonetheless, in spite of these technological strides, current pedestrian detection systems
encounter substantial challenges in maintaining both high accuracy and rapid processing
speeds. This is particularly evident in complex environments characterized by dense
pedestrian populations, obstructive elements, and constricted urban intersections.

In the rapid development of visual intelligence technology, a large number of scholars
have dabbled in pedestrian detection research using deep learning and achieved impres-
sive results [6]. Notably, deep learning methods using convolutional neural networks
(CNNs) have played a key role in addressing the complex challenges posed by multi-
scale pedestrian detection [7–12]. Currently, two main approaches to deep learning for
object detection are of interest. The first approach, represented by Girshick’s R-CNN [13],
employs a two-stage principle that uses region suggestion to generate candidate regions
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for subsequent classification and regression tasks. Building on this example, Ren and
colleagues enhanced this paradigm by introducing the Faster R-CNN [14], which integrates
an intrinsic deep network for candidate region replacement, thereby improving detection
accuracy. Despite their effectiveness, these methods have limitations in terms of processing
speed and their inherent complexity prevents effective deployment on mobile platforms.
In contrast, single-stage methods, represented by Redmon’s YOLO family [15], provide
comprehensive end-to-end detection capabilities, proficiently regressing images to classify
object classes and spatial coordinates. The SSD algorithm [16], pioneered by Liu et al.
and referred to as a “single-shot, multi-box detector”, provides excellent fast detection
capabilities but can be limited in recognizing smaller objects. Currently, the YOLO family
is the most complete and commonly used device-side solution due to its superior accuracy
and practical deployability. However, in the realm of complex detection tasks, end-to-end
approaches may require compromises in detection accuracy in order to increase speed.
In order to reconcile the tension between detection speed and accuracy, researchers have
started to further refine the models based on the YOLO family [17–20].

At urban traffic intersections, pedestrians often have different scale characteristics,
which poses a challenge to the detection system. To address this problem, several re-
searchers have proposed methods for balancing scales in multi-scale pedestrian detection.
Zhang and colleagues [21] combined a deep residual contraction network with an at-
tentional mechanism to significantly enhance YOLOv5s, thereby enriching the feature
channel with valuable information. This approach captures a large number of multi-scale
pedestrian features by extending the spatial pyramid pooling module, which significantly
improves the detection accuracy, especially in underground pedestrian detection scenarios.
Ding et al. [22], on the other hand, developed the Cascaded Cross-Layer Fusion Network
(CCFNet). The CCF modules in the backbone of this network can collaborate features from
different layers to facilitate more detailed semantic interpretation. It is further comple-
mented by a global smoothing map in the detection header, which aims to assimilate global
feature data. In addition, Tan et al. [23] introduced the concept of the Weighted Bidirectional
Feature Pyramid Network (BiFPN). This innovative network cleverly fuses multi-scale
neural network features by composite scaling of feature maps of different resolutions, thus
simplifying the fusion process and improving its effectiveness and efficiency.

At urban traffic intersections and similar densely populated areas, the problem of over-
lapping pedestrians and heavy occlusion often leads to lost tracking targets and reduced
detection rates. To address this challenge, Lv and his team [24] developed an innovative
multi-branch, anchorless framework network with a special focus on the differential learn-
ing of pedestrians’ local positions. This approach greatly improves the detection rate of
hidden pedestrians in crowded environments. Based on Retina Net, Zhou et al. [25] intro-
duced an occlusion-aware pedestrian detection algorithm. The algorithm cleverly combines
a dual attention mechanism by integrating spatial and channel attention sub-networks into
the regression and classification branches, which significantly improves the performance
under severe occlusion conditions. However, it is worth noting that the introduction of
these sub-networks increases the computational load and thus affects the frame rate.

In scenarios where pedestrian targets are small in size, such as roads, traditional
methods have a high false detection rate for these small targets. To address this problem,
Gu et al. [26] made significant improvements to the YOLOv5 algorithm. They improved
the feature pyramid network structure (i.e., IM-FPN) to facilitate multi-scale feature fu-
sion for dense objects and synergized it with a layer dedicated to detecting small targets,
effectively reducing the missed detection rate of small outdoor targets. Lou et al. [27]
proposed innovative adaptations to the YOLOv8 backbone network, advocating the use
of cascaded depth-separable convolutions instead of the traditional C2F feature fusion
module. This adaptation helps to retain a wider range of multi-scale pedestrian informa-
tion, thus improving the network’s ability to detect small pedestrian targets in sensor
devices. To further enrich the feature fusion process of YOLOv5, Niu and his team also
integrated bilinear interpolation up-sampling and five CBAM attention mechanisms [28],
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which play an important role in significantly reducing the miss detection rate of small
road targets.

Despite the continuous advances in pedestrian detection techniques, contemporary
algorithms mainly rely on large amounts of computational resources, especially graphics
card acceleration, to achieve optimal accuracy and processing speed. These algorithms
usually emphasize multi-scale feature fusion, focusing on easily distinguishable global
features, but tend to ignore intricate local details, which affects the detection of pedestrians
in dense or small-target scenes. In order to overcome these obstacles and strike a balance
between detection accuracy and speed, especially in complex environments such as street
intersections, this paper introduces a new lightweight dense pedestrian detection algorithm
based on YOLOv8n, namely YOLOv8-CB.

The YOLOv8-CB algorithm employs a lightweight cascaded feature fusion network
(CFNet), which replaces the traditional C2F block in the backbone network with an ad-
vanced Focal-NeXtF Block. This innovation not only simplifies the complexity of the model,
but also improves the efficiency of extracting and merging multi-scale features. As the core
of the detection header, the algorithm integrates a four-layer CBAM channel space focusing
mechanism, which enables the model to pay more attention to the relevant feature channels
and enhances the feature representation associated with small target pedestrians. In addi-
tion, the algorithm integrates a bidirectional weighted feature fusion structure (BIFPN) in
its feature fusion component, which is capable of weighting and fusing multi-scale features
extracted from the backbone network, thereby substantially improving the detection of
pedestrians obscured by dense occlusions. Empirical tests confirm that CB-YOLOv8n
excels in extracting multi-scale features accurately and comprehensively, outperforming
other algorithms in terms of efficiency and presenting a more streamlined model. This
makes it particularly suitable for dense pedestrian detection applications in urban street
and intersection scenarios. The following section describes in detail the fundamentals and
innovations of the YOLOv8-CB algorithm.

2. Materials and Methods
2.1. YOLOv8 Algorithm

The YOLOv8 network architecture consists of four main components: the input, the
backbone network, feature enhancement (Neck), and the decoupling head (Head). On
the input side, key enhancements include Mosaic data augmentation, adaptive anchor
frame computation, and adaptive grayscale filling. The backbone network of YOLOv8
departs from the conventional C3 module, opting for the CSP (Cross Stage Partial) concept
with the lightweight CSPLayer_2Conv module. The backbone network concludes with
the widely adopted SPPF (Spatial Pyramid Pooling with Factorized convolutions) module,
contributing to its robust feature extraction capabilities. In the feature enhancement section,
a bidirectional pathway known as PAN-FPN (Path Aggregation Network–Feature Pyramid
Network) is employed [29,30]. This feature pyramid network integrates three down-
sampled inputs through channel fusion via up-sampling. Ultimately, the output is fed
into three branches, directing the flow towards the decoupling head. The decoupling head
is responsible for segregating the regression and prediction branches. In the regression
branch, loss calculation involves both category and localization components. For category
loss, VFL Loss (Varifocal Loss) is adopted, utilizing the BCE (Binary Cross Entropy) loss
function. Localization loss includes the DFL (Distribution Focal Loss) and CIOU (Complete
IOU) loss components. The overall YOLOv8 network architecture is visually depicted in
Figure 1.
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Figure 1. The network structure of YOLOv8.

DFL aims to model the target detection frame’s position as a global distribution using
cross-entropy. This optimization approach is employed to enhance the probability of
the position being close to the label. Consequently, this enables the network to swiftly
concentrate on the target position, as shown in Equation (1). Si and Si+1 represent the
output of the sigmoid function for the network, yi and yi+1 denote interval orders, and y is
a label.

DFL(Si,Si+1) = −((yi+1 − y) log(Si) + (y − yi) log(Si+1)) (1)

CIOU quantifies the distance between the actual frame and the predicted frame,
while DIOU measures the Euclidean distance between the centers of the two detection
frames. CIOU builds upon DIOU by incorporating considerations for the aspect ratio of
the detection frames, as shown in Equations (2)–(4). α represents the weight function; v
is used to measure the similarity of the aspect ratio; IOU is the intersection ratio between
the real frame and the predicted frame; ρ is the Euclidean distance between the centers
of the predicted frame and the real frame; b and bgt represent the centers of the predicted
frame and the real frame; c is the diagonal distance of the smallest enclosing region that
can contain both the predicted frame and the real frame.

CIOU =
ρ2(b, bgt)

c2 + αv (2)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(3)

α =
v

(1 − IOU) + v
(4)

2.2. The Proposed YOLOv8-CB Algorithm

In this study, the YOLOv8n algorithm is utilized as the baseline for optimization and
enhancement. The proposed YOLOv8-CB model introduces a lightweight Cascaded Fusion
Network (CFNet) to replace the C2F module in the backbone network. This modification en-
ables the model to simultaneously highlight global features and local details, enriching the
spectrum of multi-scale features available for subsequent feature fusion. Additionally, the
detection header incorporates five Convolutional Block Attention Module (CBAM) atten-
tion mechanisms, directing the model’s focus toward semantic and positional information
of pedestrians at both channel and spatial levels. Furthermore, an enhanced Bidirectional
Weighted Feature Fusion structure (BIFPN) is introduced at the feature enhancement
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stage to bolster detection performance, particularly in scenarios involving occlusion and
pedestrians. The refined YOLOv8n network structure is illustrated in Figure 2.
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Figure 2. The network structure of YOLOv8-CB. The dashed area is an improvement to the backbone
section and the red module is the replacement of the C2F module with a Focal-NeXtF module. The
red line connection between the backbone network and the Neck is the BIFPN connection layer. The
purple module is the new CBAM Attention Mechanism module. The red lines are the connections of
the improved parts.

2.2.1. Cascading Fusion Network CFNet

The enhanced cascade fusion network introduced in this paper implements M cas-
cades of stages within the network’s backbone to generate multi-scale features. Each stage
comprises a sub-backbone for feature extraction and an exceptionally lightweight transfor-
mation block for feature integration. Diverging from the feature pyramid structure (FPN),
where features from neighboring layers are summed up and processed by 3 × 3 convo-
lutional layers for transformation, the cascade fusion network (CFNet) adopts a different
approach [31]. The CFNet involves stacking additional convolutional layers to transform
integrated features and embeds the feature integration operation into the sub-backbone
within the network. This design choice enables the network to more deeply and efficiently
fuse features, involving most of the parameters in the entire backbone network. The CFNet
fusion module is illustrated in Figure 3.
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Figure 4 illustrates the CFNet network architecture. The input RGB image of size
H × W undergoes processing by a Stem convolutional layer and N consecutive Block
feature extraction block to extract high-resolution features of size H/4 × W/4. The Stem
convolutional layer comprises two 3 × 3 convolutional layers with a step size of 2, where
each convolutional layer is succeeded by a normalization layer and a GELU activation
function. Subsequently, these features undergo downsampling by an 2 × 2 convolutional
layer with a step size of 2 and are directed to M cascade stages to extract multiscale features.
The output of each stage consists of P3, P4, and P5 neural network layers with steps of 8,
16, and 32, respectively. Only the P3 layer is forwarded to the next stage, and the fused
features (P3, P4, and P5) output in the last stage are utilized for dense detection.
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Transformation blocks are employed to integrate features at different scales in each
stage. Initially, the 1 × 1 convolutional layer is utilized to reduce the number of channels in
C4 and C5 to align with C3. The spatial size of the features is standardized using a bilinear
interpolation operation before conducting element-by-element summation.

In the focusing block FocalNeXt, expansion depth convolution and two jump connec-
tions are introduced to generate features with distinct resolutions. This design is character-
ized by its ability to simultaneously extract fine-grained local features and coarse-grained
global features, thereby enlarging the receptive fields of the neurons in the last block group
of each stage without introducing a substantial number of parameters. Here, N represents
the number of channels in the output features, d7× 7 denotes the deep convolution of 7× 7,
and R is the expansion rate of the convolution. Each convolution of d7 × 7 is succeeded
by a normalization layer and a GELU unit. While the utilization of global attention or
large convolutional kernels to expand the sensory field has been extensively studied in
recent years [32–35], these approaches often introduce significant computational cost and
memory overhead, especially in dense prediction tasks, due to the large size of the input
image. In contrast, the focusing block proposed in this paper introduces only a minimal
additional cost.

2.2.2. Bidirectional Weighted Feature Fusion Method BIFPN

Small-sized targets, such as pedestrian location information, predominantly exist in
the shallower layers of the feature extraction network. Throughout the feature extraction
process, the shallowest layer may discard significant pedestrian-related information. How-
ever, the Weighted Bidirectional Feature Fusion (BIFPN) is designed to understand the
importance of various input features and adaptively fuse contextual multi-scale features.
The architecture of the BIFPN network is depicted in Figure 5.

In Figure 5, the top-down pathway conveys high-level semantic information, while the
low-up pathway carries location information from the underlying features. The same-level
cross-node connection pathway is a newly added connection for input and output. The
concept behind the bi-directional weighted feature fusion method involves treating each
bi-directional path as a feature network layer and repeating the same layer multiple times
to efficiently leverage positional and semantic information for feature fusion.

The weighting process introduces a learnable weight parameter, which, if not appro-
priately constrained, can lead to unstable training. The fusion mechanism of weighted
features scales the range to between [0, 1], ensuring fast and efficient training, as depicted
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in Equation (5). w represents the weight parameters; Ii represents features with different
resolutions; ε represents random numbers; O represents the fused feature outputs.

O =∑i
wi × Ii

ε + ∑j wj
(5)
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indicates small target detectors. Green indicates medium-sized target detectors and orange indicates
large target detectors.

The final feature map, incorporating bi-directional scale linking and fast normalized
fusion, is represented by Equations (6) and (7). Pout

4 denotes the bi-directionally weighted
output features of the P4 convolutional layer; ptd

4 represents the inverse output features of
the P4 layer; Resize(·) typically denotes an up-sampling or down-sampling stage.

Ptd
4 = Conv

(
w1 · Pin

4 + w2 · Resize(Pin
5 )

w1 + w2 + ε

)
(6)

Pout
4 = Conv

(
w′

1 · Pin
4 + w′

2 · Ptd
4 + w′

3 · Resize(Pout
3 )

w′
1 + w′

2 + w′
3 + ε

)
(7)

2.2.3. Channel and Spatial Attention Mechanism CBAM

CBAM (Convolutional Block Attention Module) is a lightweight attention mechanism
module [16,36], depicted in Figure 6, encompassing a channel attention module and a
spatial attention module. These modules sequentially perform mapping in two dimensions:
channel and spatial. The formula for CBAM, presented in Equation (8), involves F as the
input feature map, F ∈ RC×H×W ; Mc as the generated one-dimensional channel attention
map, Mc ∈ RC×1×1; and Ms as the generated two-dimensional spatial attention map,
Ms ∈ R1×H×W .

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′ (8)

The channel attention module focuses more on channels with robust feature infor-
mation. The input feature map undergoes global maximum pooling and global average
pooling to, respectively, derive one-dimensional vectors of channel attention. This process
achieves the compression of spatial dimensions, aggregates the spatial information of the
feature mapping, and subsequently, through the shared perceptron MLP module, sums
the outputs of the two branches. An activation function is applied to obtain the weighting
coefficients. The formula for the channel attention mechanism, as shown in Equation (9),
includes the sigmoid function of σ; the shared weights of the MLP denoted by W0 and
W1, and preceding the ReLU activation functions, W0 ∈ RC×C/r and W1 ∈ RC×C/r; global
maximum pooling, Fc

avg ∈ R1×H×W ; and average maximum pooling, Fc
max ∈ R1×H×W .

Mc(F) = σ(MLP(AvgPool(F)) + MLP(maxPool(F))) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))) (9)
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The spatial attention module is designed to prioritize the more crucial information
within the input image. Initially, global maximum pooling and global average pooling
operations are employed to generate a comprehensive feature description, which is then
concatenated by the channel. Finally, weight coefficients are obtained through a convo-
lutional layer and a sigmoid function. The formula for the Spatial Attention Mechanism,
presented in Equation (10), involves f 7×7 as a 7 × 7 convolutional kernel; and the feature
description comprises both global maximum pooling, Fs

avg ∈ R1×H×W , and global average
pooling, Fs

max ∈ R1×H×W .

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) = σ( f 7×7([Fs
avg; Fs

max])) (10)

In this study, five CBAM attention mechanism modules are incorporated into the Head
section to achieve feature refinement and extraction in two different dimensions: channel
and space. This specifically targets local pedestrian information in the image, aiming to
reduce the loss of feature extraction in scenarios involving background complexity and
occlusion. The overall goal is to enhance the network’s expressive ability and improve the
average accuracy of pedestrian detection at intersections.

3. Results
3.1. Experimental Setup and Dataset Preparation

The hardware platform utilized for this study featured a high-performance NVIDIA
GeForce RTX 4090 GPU with 24 GB VRAM. The software environment included the
Ubuntu 20.04 operating system, the PyTorch 1.10.0 deep learning framework, Torchvision
1.13.1+python3.8_cu113, Anaconda, and CUDA 11.3 with CUDNN 8.0.

For the dataset, the WiderPerson public dataset was chosen [37], supplemented by
real street intersection images, creating a pedestrian detection dataset suitable for dense
scenes, accounting for various pedestrian occlusion scenarios. To streamline the dataset, we
retained labels for ordinary pedestrians, bicyclists, and individuals with occluded bodies,
assigning the new indexes “0, 1, 2”, respectively. The image paths for the training and
test sets were generated, and the data were transformed into a dictionary, with a JSON
file serving as the label file. The corresponding dataset configuration file was created to
align with the model requirements. The processed dataset comprised 13,381 images, with
7999 allocated to the training set, 1000 to the test set, and 4382 to the validation set. It
included approximately 400,000 labeled frames.
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Regarding model training parameters, an image size of 640 × 640 was set, and dataset
augmentation involved scaling, rotation, and random adjustments to brightness and con-
trast. Training commenced with the official pre-trained YOLOv8n model, conducting
100 rounds on the dataset. The trained weight files were then employed for further training
on the new model. The gradient descent optimization algorithm was applied to dynam-
ically adjust the learning rate and weight decay coefficient, mitigating overfitting. After
several validations, the initial learning rate was set to 0.004, the weight decay factor to
0.0005, the batch size to 64, and the number of iterations (epochs) to 100.

3.2. Experimental Evaluation Index

In this study, we used mean average precision (mAP), frame rate (Frames Per Second
or FPS), the number of parameters (params), and Floating-Point Operations per Second
(FLOPs) as key indicators to assess the detection accuracy, speed, model size, and complex-
ity. Average precision (AP) is a measure of the detection capability of a trained model to
detect specific categories of interest. It is calculated as the area of the region enclosed by the
precision–recall (P-R) curve and the axes. As defined in Equations (11) and (12), TP is the
number of correctly predicted bounding boxes; FP is the number of incorrectly predicted
positive samples; FN is the number of non-detected positive samples; AP is the average
precision per category; mAP is the average precision across all categories; k is the number
of categories.

P =
TP

(TP + FP)
R =

TP
(TP + FN)

(11)

AP =
∫ 1

0
P·RdR mAP =

1
k

i=1

∑
k

APi (12)

A higher mAP@0.5 signifies improved average precision when the Intersection over
Union (IOU) threshold exceeds 0.5, indicative of enhanced detection effectiveness. The
frame rate represents the number of images detected by the model per second, denoted in
frames per second (frame/s). The number of parameters quantifies the memory footprint
of the model in megabytes (MB), while FLOPs measures the computational complexity in
gigaflops (G), or one billion floating-point operations. The loss function serves as a crucial
metric reflecting the model’s convergence speed during training, encompassing localization
loss, classification loss, and confidence loss.

3.3. Data Analysis

To validate the efficacy of the improved algorithm, this paper conducts training and
testing of both the YOLOv8n and YOLOv8-CB models on the respective dataset. The
detection results for each category are presented in Table 1.

Table 1. Comparison of detection results before and after improvement of the YOLOv8n algorithm
for WiderPerson datasets.

Method Pedestrian Riders Partially Visible-Persons P R mAP0.5

YOLOv8n 87.6 37.1 32.2 59.2 49.4 52.3
YOLOv8-CB 88.0 43.3 32.9 59.8 51.4 54.7

From Table 1, the YOLOv8-CB algorithm demonstrates a 2.4% improvement in the
mAP@0.5 index compared to the original algorithm. The detection accuracy for each
category in the dataset is enhanced. The P-R curves are shown in Figure 7. Notably, in
categories with fewer samples, such as riders, where the recognition difficulty is high,
YOLOv8-CB exhibits more pronounced improvements in detection accuracy, the accuracy
of the behavioral categories is up to 88%.
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As depicted in Figure 8, during network model convergence, the YOLOv8-CB algo-
rithm exhibits lower loss values across all three categories compared to the YOLOv8n
algorithm, indicating faster model convergence.
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In this study, ablation experiments are conducted to validate the effectiveness of each
improved module. The YOLOv8n network serves as the baseline, with the four C2F mod-
ules in the backbone network replaced by FocalNeXtF modules, denoted as FN modules.
This replacement, while increasing the network’s layer count, significantly reduces the
overall parameter count. Subsequently, we assess the impact of various combinations of
the FN module in the backbone network, the enhanced multilayer feature fusion BIFPN
connectivity layer, and the attention mechanism module CBAM on the holistic model
performance. The experimental results are presented in Table 2.

From Table 2, it is evident that, based on the YOLOv8n model, increasing the FN
module in the backbone network results in a computation of 7.4 GFLOPs, a reduction
of 0.6 MB in the number of parameters, and a decrease of 8.37 frames/s in frame rate
(FPS). When only the FN module and the four-layer CBAM attention mechanism module
are added, the computation increases to 7.5 GFLOPs. The average detection accuracy
mAP@0.5 improves to 54.2%, a 1.9% enhancement. Introducing only the FN module and
the BIFPN connectivity layer results in a computation of 7.4 GFLOPs, with a frame rate
FPS improvement of 7.1 frames/s. In comparison to the YOLOv8n model, the YOLOv8-CB
model in this paper reduces computation by 0.7 GFLOPs, achieving an average detection
accuracy mAP@0.5 of 54.7%, a 2.4% improvement. The number of parameters is reduced
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by 2.7 M, and the single-image inference time is 10.8 ms, with a slight decrease in frame
rate FPS.

Table 2. Experiment results of ablation experiment.

Method FN CBAM BIFPN mAP/% GFLOPs Params(M) FPS (Frame/s)

Yolov8n 52.3 8.2 3.2 113.63
Yolov8n + FN

√ 1 53.5 7.4 2.6 105.26
Yolov8n + FN + CBAM

√ √
54.2 7.5 2.7 91.74

Yolov8n + FN + BIFPN
√ √

54.3 7.4 2.6 112.36
Yolov8-CB

√ √ √
54.7 7.5 2.7 92.59

1 √
indicates the module used.

The model testing results reveal that in the pre-processing and post-processing stages,
YOLOv8-CB takes the same time as YOLOv8n, at 0.2 ms and 0.8 ms, respectively. However,
in the inference stage, YOLOv8-CB incurs an additional 2 ms compared to YOLOv8n. This
increase is attributed to the improvement of the YOLOv8n algorithm, which introduced
a series of modules, leading to an increase in the number of layers in the network and,
consequently, an increase in inference complexity.

To offer a more intuitive comparison between the YOLOv8-CB algorithm and the
baseline model, Figure 9 illustrates complex scenarios depicting intersections in life. Upon
examining the visualization results, it is evident that YOLOv8-CB excels in detecting
pedestrians at a distance on the road, as well as in densely populated areas with overlap-
ping objects.
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3.4. Comparative Analysis

In our pursuit to ascertain the efficacy of our enhanced algorithm for navigating
challenges posed by occlusions and small targets, we meticulously selected two particu-
larly demanding datasets: VisDrone and CrowdHuman [38,39]. The VisDrone dataset, a
comprehensive collection curated by the AISKYEYE team at Tianjin University’s Machine
Learning and Data Mining Lab, offers an extensive assortment of scenes captured through
a variety of drone cameras under diverse weather and lighting conditions. It boasts de-
tailed annotations concerning scene visibility, object classifications, and occlusions, with
a specific emphasis on a multitude of small-target pedestrians and occluded individuals,
thus positioning it as one of the most authoritative and challenging datasets available.
Additionally, the CrowdHuman dataset, introduced by Megvii Technology, is tailor-made
for the detection of densely occluded pedestrians. This dataset is characterized by its con-
siderable volume, averaging about 23 individuals per image, and covers a wide spectrum
of occlusions. Each human instance within this dataset is meticulously annotated with head
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bounding boxes, visible body area bounding boxes, and full-body bounding boxes, making
it an invaluable resource for research in dense pedestrian detection. In this paper, the im-
proved algorithms are comprehensively compared and tested against existing mainstream
object detection algorithms on these selected datasets, including SSD (VGG), YOLOv3-tiny,
YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv8-CB. Each algorithm is
configured with 100 epochs focusing on recording its mAP0.5 and mAP0.5:0.95 metrics. The
detection results of the different algorithms on the three datasets are presented in Table 3.

Table 3. Comparison of detection results of algorithms for different datasets.

Datasets Result SSD(VGG) YOLOv3-tiny YOLOv4-tiny YOLOv5s YOLOv7-tiny YOLOv8n YOLOv8-CB

Visdrone
mAP0.5 23.2 21.0 18.2 27.4 25.6 28.4 30.6

mAP0.5:0.95 11.6 11.3 10.3 15.2 12.3 15.7 17.7

Crowdhuman
mAP0.5 70.2 68.6 51.5 77.8 75.2 78.2 80.1

mAP0.5:0.95 43.5 40.2 32.4 46.2 43.9 46.7 48.5

WiderPerson
mAP0.5 49.5 49.0 40.8 51.2 50.2 52.3 54.7

mAP0.5:0.95 28.3 27.9 21.2 29.8 28.9 31.4 32.6

The data in Table 3 clearly show that YOLOv8-CB performs excellently and outper-
forms other popular target detection algorithms in terms of experimental performance, thus
highlighting its comprehensive ability to detect pedestrians in challenging environments.

To assess the effectiveness of the improved algorithms, this study conducts a quantita-
tive analysis and comparison of the results against current mainstream target detection al-
gorithms. The evaluated models include the one-stage anchor-based frame detection model
SSD, as well as various models from the YOLO family, namely YOLOv3-tiny, YOLOv4-
tiny, YOLOv5s, and YOLOv7-tiny. The models undergo training and validation on the
WiderPerson dataset, and the results are summarized in Table 4.

Table 4. Experiment results of contrast experiment.

Method mAP/% FLOPs (G) Params (M) FPS (Frame/s)

SSD(VGG) 49.5 62.7 26.3 35
YOLOv3-tiny 49.0 19.1 12.1 182.01
YOLOv4-tiny 40.8 16.5 6.1 112.36

YOLOv5s 51.2 15.8 7.1 70.42
YOLOv7-tiny 50.2 13.2 6.07 109.24

YOLOv8n 52.3 8.2 3.2 113.63
YOLOv8-CB 54.7 7.5 2.7 92.59

Examining Table 4 reveals that, when compared with other algorithms, the SSD
algorithm demonstrates less favorable performance in pedestrian detection at intersections.
This can be attributed to its higher model complexity, fewer layers in the low-level feature
convolutional network, inadequate feature extraction for small target pedestrians, and a
low frame rate, failing to meet the requirements for both detection accuracy and real-time
applications. YOLOv3 adopts the feature pyramid concept to introduce a multi-scale
detection mechanism, resulting in improved detection accuracy. However, due to residuals,
the performance of YOLOv7-tiny surpasses that of YOLOv4-tiny, which adopts only one
feature pyramid based on the YOLOv4 algorithm and has a lower frame rate. Although it
achieves faster and lighter models, the insufficient feature extraction, as only two layers
of multi-scale features are selected for the feature pyramid, leads to lower accuracy in
detecting occlusions and pedestrians. YOLOv5s, a smaller training model to YOLOv5,
exhibits reduced channel numbers and depth in the middle layer. YOLOv7-tiny reduces the
number of channels and depth in ELAN based on the yolov7 network, resulting in reduced
model complexity but with a more significant impact on pedestrian detection. The network
achieves speed and parameter reduction by decreasing the stacking of convolutional layers
in ELAN and altering the number of activations. However, this comes at the cost of less
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fusion of multi-scale features in the backbone network, resulting in poor robustness for
detecting pedestrians at different scales.

The improved YOLOv8-CB algorithm presented in this paper achieves a mAP@0.5 of
54.7%, a frame rate (FPS) of 92.59 frames/s, with a model parameter count of only 2.7 M,
and computational load of 7.5 GFLOPs, bringing it closer to the FPS achieved by YOLOv8n.
Experimental results demonstrate that the enhanced algorithm outperforms other algo-
rithms in terms of computation, detection accuracy, and frame rate. It is particularly
well-suited for pedestrian detection at intersections.

To provide a more intuitive observation of each algorithm’s detection effect, the
YOLOv8-CB, YOLOv8n, YOLOv5s, YOLOv7-tiny, YOLOv3-tiny, and YOLOv4-tiny al-
gorithms are applied to a real-life scene: a street intersection with multi-masking and
multi-scale features. For ease of observation, only the output of the detection frames is re-
tained in this paper, as depicted in Figure 10. In Figure 10a–f, it is evident that YOLOv8-CB
outperforms YOLOv8n in detecting large and medium-sized pedestrians in close proximity
and in scenes with moderate occlusion. YOLOv5s and YOLOv3-tiny algorithms excel in
detecting large targets but exhibit duplication of detection frames and omission in cases
of occluded targets. YOLOv7-tiny and YOLOv4-tiny algorithms display inaccuracies in
detecting near large-size pedestrian targets, leading to high false positives and missed
detection rates. In the detection of distant, small-sized pedestrians in heavily occluded
scenes, the YOLOv5s and YOLOv8n algorithms are significantly less effective in detecting
pedestrians, especially for small distant targets. The YOLOv7-tiny, YOLOv3-tiny, and
YOLOv4-tiny algorithms are less efficient in detecting highly occluded targets, resulting in
a high rate of missed detection.
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Figure 10. Pedestrian detection results of various algorithms in complex intersection scenarios.
Each sub-figure illustrates the performance of the algorithms in detecting pedestrians in complex
scenes. From the graphs, it can be concluded that YOLOv8-CB has the best detection results and can
detect both near and far pedestrian targets. YOLOv4-tiny has the worst detection results. (a) The
detection results of YOLOv8-CB; (b) The detection results of YOLOv8n, which has repeated detection
and omission phenomenon for overlapping and small target pedestrian detection; (c) The detection
results of YOLOv5s, which can detect near unobstructed pedestrians; (d) The detection results of
YOLOv7-tiny, which has a high misdetection rate of near large targets; (e) The detection results of
YOLOv3-tiny, which does not detect near and far pedestrian targets; (f) YOLOv4-tiny’s detection
results, which have poor detection results and slightly lower detection accuracy.
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4. Conclusions

In this study, we propose a cascade fusion algorithm based on the improved YOLOv8n.
The algorithm introduces a novel architecture, the cascade fusion network (CFNet), to
replace the C2F module in the backbone network, enhancing the extraction of multi-scale
features. Additionally, a five-layer CBAM attention mechanism is integrated into the
decoupled head section to augment the semantic and positional information of small
targets, addressing the challenge of inaccurate localization that can lead to detection leak-
age. The model incorporates a multi-layer two-way weighted feature fusion structure in
the feature fusion stage, enabling efficient utilization of deep and effective information
to further mitigate the leakage detection issues associated with small targets and occlu-
sions. Through rigorous analysis and experiments, the improved algorithm demonstrates
a 2.4% enhancement in detection accuracy, a reduction of 0.5 MB in the number of pa-
rameters, a decrease of 0.7 GFLOPs in computational load, and a slight reduction in the
frame rate (FPS). The inference time for a single image is 10.8 ms. The results illustrate
that YOLOv8-CB outperforms other detectors, excelling in comprehensive performance
metrics such as accuracy and model efficiency. The algorithm demonstrates superior de-
tection performance, particularly in dense areas with high pedestrian flow, such as street
intersections. While the model exhibits commendable detection performance in dense
environments, improvements are needed for detecting severely occluded pedestrians with
small targets. Future work will focus on optimizing the network model to further enhance
overall performance.
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