
Citation: Tang, J.; Li, J.; Yang, X.; Du,

Z.; Wu Y. Prescribed Time Fault-

Tolerant Affine Formation Control for

Multi-Agent Systems with Double-

Integrator Dynamics. Electronics 2024,

13, 36. https://doi.org/10.3390/

electronics13010036

Academic Editor: Marcin Witczak

Received: 9 November 2023

Revised: 14 December 2023

Accepted: 18 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Prescribed Time Fault-Tolerant Affine Formation Control for
Multi-Agent Systems with Double-Integrator Dynamics
Jiye Tang, Jianzhen Li * , Xiaofei Yang, Zhaoping Du and Yunkai Wu

College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
tangjiye11@163.com (J.T.); yxfei_0809@just.edu.cn (X.Y.); duzhaoping98@163.com (Z.D.);
wuyunkaischolar@just.edu.cn (Y.W.)
* Correspondence: jzli@just.edu.cn

Abstract: There is an increasing interest in the affine formation control of multi-agent systems,
because it can change the centroid, orientation and scale of the formation by controlling only a few
leaders. In this paper, the fault-tolerant affine formation control problem is addressed for double-
integrator multi-agent systems with partial loss of efficiency and bias faults. Firstly, in order to track
the leaders with dynamically changing accelerations, an acceleration observer with prescribed time
convergence is proposed, which can estimate the ideal acceleration for each follower. Then, based
on the acceleration observer, a fault-tolerant control algorithm is given. A new Lyapunov function
candidate is constructed, based on which a sufficient condition to achieve the control objective is
derived. Theoretical analysis shows that the formation tracking error can converge to zero within
a prescribed time, and remain in a small neighborhood of zero after that time. Finally, numerical
simulations are given to show the effectiveness of the proposed algorithm and compare it with
existing results.

Keywords: affine formation control; prescribed-time convergence; multi-agent systems; fault-tolerant
control

1. Introduction

The last two decades have witnessed ever-increasing research interests in the cooper-
ative control of multi-agent systems [1–5]. This is mainly due to its wide applications in
swarm robotics [6], wireless sensor networks [7], spacecraft systems [8], smart grids [9] and
so on. Formation control is a significant research topic in the field of cooperative control of
multi-agent systems. Recently, consensus theory has been successfully applied in formation
control [10,11]. Different from the behavior-based approach [1], using the consensus-based
formation control algorithm, system convergence can be proved mathematically.

Maneuver control is an important subtask of formation control, which aims to steer
the formation as a whole, such that the geometric parameters like centroid, orientation and
scale can be changed continuously. In order to solve the formation maneuvers problem,
some methods have been proposed [12,13]. However, these methods add additional sensing
and communication ability requirements to the agents. In [14], a method that can be used
to track time-varying formations has been proposed. However, it needs to prescribe the
desired maneuver of each agent in advance. Very recently, the affine formation control
approach has been proposed in [15] to stabilize stationary target formations. The affine
formation control approach defines the target formation using stress matrices. Different
from most consensus-based formation control approaches, where the weights on the edges
are positive, elements in the stress matrix can be negative. What is more, any translation,
rotation and scaling change in the formation can be formulated as affine transformations of
the nominal formation. Based on the work in [15], the affine formation maneuver control
problem is then studied in [16] for both single-integrator and double-integrator dynamics.
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By introducing the concept of affine localization, a leader–follower approach was proposed,
which can track time-varying affine transformation of the nominal formation continuously.

Fast convergence is usually needed in the practice of multi-agent systems [17]. Many forma-
tion control algorithms with finite-time or fixed-time convergence have been proposed [18–20].
Nevertheless, using the finite-time and fixed-time formation control algorithms, the con-
vergence time is dependent on the initial states. In recent years, the prescribe-time control
problem has attracted more and more attention [21]. Using a time-varying feedback gain
related to the appointed convergence time, the system can converge to zero within the
time appointed by the user. A prescribe-time affine formation control approach has been
proposed in [22] for multi-agent systems with single-integrator dynamics. Practical pre-
scribed time affine formation control algorithms are given in [23], for the leaderless and
the leader–follower affine formation control problems, respectively. In practice, some
agents are modeled as double-integrator dynamics. As far as the multi-agent systems with
double-integrator dynamics are concerned, prescribed time approaches have been reported
for consensus and formation control problems [24,25].

In practical applications, some agents may be subject to actuator faults. Therefore,
it is very important to design fault-tolerant control algorithms. Motivated by this, many
researchers consider the fault-tolerant control problem for multi-agent systems [26–31].
Fault-tolerant formation control of multi-agent systems with finite-time convergence or
fixed-time convergence has also been considered in [32–34]. The fault-tolerant affine
formation control problem is investigated in [35] for heterogeneous multi-agent systems. A
neural network-based adaptive fault-tolerant affine formation control algorithm is proposed
for the followers, which can drive the formation tracking error to zero exponentially. To
the authors’ best knowledge, the prescribed time fault-tolerant affine formation control
problem for multi-agent systems with double-integrator dynamics has not been addressed
in the literature. This motivated this paper.

In this paper, the fault-tolerant affine formation control problem is investigated for
double-integrator multi-agent systems with partial loss of efficiency and bias faults. An
prescribed time observer-based control algorithm is proposed. Based on a newly designed
Lyapunov function candidate, sufficient conditions are derived, under which the control
objective is achieved. Theoretical analysis shows that, if the control parameters are properly
chosen, the formation tracking error can converge to zero within a prescribed time, and
remain in a small neighborhood of zero after that time. The algorithm proposed in this
paper can be applied to the formation control of omnidirectional mobile robots. It can also
be applied to the position loop of formation controllers for multiple quad-rotors. Compared
with the existing results in the literature, the contributions of this paper are as follows:

• The algorithm proposed in this paper can guarantee prescribed time convergence,
while the tracking error converges exponentially using the algorithm in [16]. Pre-
scribed convergence time means that users can appoint the convergence time accord-
ing to their demands. Therefore, using the proposed algorithm, the formation tracking
error can converge faster than that in [16] if the designer chose a small convergence
time. A comparison of the proposed algorithm with that in [16] is given in Section 4 by
a simulation example. The simulation result shows that using controller (20) proposed
in this paper, the convergence is faster than that of controller (25) in [16].

• Different from the work in [22], where multi-agent systems with single-integrator
dynamics is considered, in this paper, double-integrator dynamics is investigated. It is
more difficult to design prescribed-time convergence algorithms for double-integrator
multi-agent systems because the system dynamics matrix is more complex than single
integrator multi-agent systems. A new Lyapunov function is constructed in this paper,
using which some cross-terms cancel each other.

• The fault-tolerant affine formation control problem is considered in this paper, and
the work in [22] is a fault-free approach. To the best of the authors’ knowledge, the
prescribed time fault-tolerant affine formation control problem has not been addressed
in the literature yet. When the loss of efficiency and bias faults is considered, the
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closed-loop system model is more complex than the fault-free one. To deal with this
problem, we add a matrix related to the efficiency of the actuators in the Lyapunov
function, which simplified the theoretical analysis.

The rest of this paper is organized as follows: Section 2 gives some basic notations
used in the paper, together with the problem formulation. Section 3 provides the main
results of the paper, including the prescribed time observer and the observer-based fault-
tolerant affine formation control algorithm. Theoretical analysis is also given in Section 3.
Simulation results are given in Section 4 and the paper is concluded in Section 5.

Notations: In this paper, 1n indicates the vector with all entries equal to one. We
use sgn, • and ⊗ to denote the signum function, the product and the Kronecker product,
respectively. For a vector, diag is the diagonal function, ∥ · ∥1, ∥ · ∥ and ∥ · ∥∞ denote the
1-norm, 2-norm and ∞-norm, respectively. Given a positive definite matrix A, λmin(A) and
λmax(A) denote the smallest and largest eigenvalue of A, respectively.

2. Preliminaries and Problem Formulation
2.1. Notations for Graph Theory and Formation

Consider a multi-agent system with N agents moving in Rd. The communication
topology among the agents can be described as a graph G(V , E), where V = {1, 2, . . . , N}
is the node set and E ⊂ V × V is the edge set. A directed edge (i, j) ∈ E indicates that
agent j’s information is available for agent i, but not vise versa. We say that agent j is a
neighbor of agent i, if (i, j) ∈ E . The neighbor set Ni of agent i is the set {j ∈ V | (i, j) ∈ E}.
An undirected edge (i, j) ∈ E indicates that agent j’s information is available for agent i;
meanwhile, agent i’s information is also available for agent j. If all the edges in a graph are
undirected, it is an undirected graph. See Figure 1 as an example of a graph with seven
nodes. In this graph, the node set is {1, 2, 3, 4, 5, 6, 7}. We can see that nodes 2 and 4 are
connected by a line without arrow. This means that nodes 2 and 4 can obtain information
from each other, i.e., there is an undirected edge between them. It is easy to see that there
are 12 edges in this graph. Since all edges are undirected, this graph is an undirected graph.

1

2

3

4

5

6

7

1

2

3
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Figure 1. An example of an undirected graph with 7 nodes.

Let pi(t) ∈ Rd be the position of agent i and p(t) ≜ [pT
1 (t), . . . , pT

N(t)]
T , the formation

can be denoted as (G, p). Assume that Nl agents are selected as leaders, and the rest N − Nl
agents are followers. Without loss of generality, let Vl = {1, 2, . . . , Nl} denote the leader
set and V f = V/Vl denote the follower set. The positions of leaders and followers are,
respectively, pl(t) = [pT

1 (t), . . . , pT
Nl
(t)]T and p f (t) = [pT

Nl+1(t), . . . , pT
N(t)]

T .
For a formation (G, p), the stress matrix Ω ∈ RN×N is defined as
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[Ω]ij =


∑N

j=1 ωij, i = j,
−ωij, i ̸= j, (i, j) ∈ E

0, i ̸= j, (i, j) /∈ E

where ωij is the weight on edge (i, j) satisfying ωij = ωji. With the leader–follower
communication structure, Ω can be divided as

Ω =

[
Ωll Ωl f
Ω f l Ω f f

]
. (1)

2.2. Notations for Affine Formation Control

Let r = [rT
1 , . . . , rT

N ]
T = [rT

l , rT
f ]

T be the nominal configuration, where ri ∈ Rd is the
nominal position of agent i. The nominal formation of multi-agent systems can be denoted
as (G, r). Given a set of points {pi}n

i=1, the affine span of these points is defined as

S =

{
n

∑
i=1

ai pi : ai ∈ R,
n

∑
i=1

ai pi = 1

}

If the dimension of S is d, we say that {pi}n
i=1 affinely span Rd. The affine image of the

nominal configuration is defined as [15]

A(r) =
{

p ∈ RdN : p = (IN ⊗ A)r + 1N ⊗ b, A ∈ Rd×d, b ∈ Rd
}

.

The objective of affine formation control is to steer the multi-agent system to track the
time-varying target formation

p∗(t) = (IN ⊗ A(t))r + 1N ⊗ b(t) (2)

where A(t) ∈ Rd×d and b(t) ∈ Rd are continuous of t. It is easy to see that the target
formation always belongs to A(r).

In this paper, we consider multi-agent systems with a leader–follower structure, the
objective is to control the whole formation by controlling the leaders. To achieve this
objective, it is necessary to make sure that the positions of the followers are uniquely
determined by the positions of the leaders. To tackle this problem, we need the following
definitions and assumptions.

Definition 1 ([16]). Affine localizability: The nominal formation (G, r) is affinely localizable by
the leaders, if for any p = [pT

l , pT
f ]

T ∈ A(r), p f can be uniquely determined by pl .

The following assumptions are essential for affine localizability of the nominal formation.

Assumption 1. Assume that {ri}N
i=1 in the nominal formation (G, r) affinely span Rd.

Assumption 2. Assume that {ri}
Nl
i=1 in the nominal formation (G, r) affinely span Rd.

Lemma 1 ([16]). If Assumptions 1 and 2 are satisfied, the nominal formation (G, r) is
affinely localizable.

At least d + 1 points are needed to span Rd, so the number of leaders must satisfy
Nl ≥ n + 1. For more details about affine span, please refer to [16].

Assumption 3. Assume that the nominal formation (G, r) has a positive definite stress matrix Ω
satisfying rank(Ω) = N − d − 1.
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Lemma 2 ([16]). Under Assumptions 1 and 3, the nominal formation (G, r) is affinely localizable
if and only if Ω f f is non-singular. When Ω f f is non-singular, for any p = [pT

l , pT
f ]

T ∈ A(r), p f

can be uniquely calculated as p f = −(Ω−1
f f Ω f l ⊗ Id)pl .

Figure 2 gives an example of leader–follower-based affine formation control. As
is mentioned above, at least three leaders are needed in R2. Without loss of generality,
we chose agents 1–3 as the leaders, as shown in Figure 2. Suppose that the nominal
configuration is

r =



4 2
3 3
3 1
2 3
2 1
1 3
1 1


.

It is easy to see that Assumptions 1 and 2 are satisfied. By the method provided in [16], we
can obtain the following stress matrix satisfying Assumption 3

Ω =



0.2741 −0.2741 −0.2741 0.1370 0.1370 0 0
−0.2741 0.6852 0 −0.5482 0 0 0.1370
−0.2741 0 0.6852 0 −0.5482 0.1370 0
0.1370 −0.5482 0 0.7537 −0.0685 −0.2741 0
0.1370 0 −0.5482 −0.0685 0.7537 0 −0.2741

0 0 0.1370 −0.2741 0 0.2741 −0.1370
0 0.1370 0 0 −0.2741 −0.1370 0.2741


.

Figure 2. An example of leader–follower-based affine formation control.

We can see that Ω f f is non-singular. By Lemma 2, we have that r f is affinely local-
izable by rl , and the relationship between them is r f = −(Ω−1

f f Ω f l ⊗ I2)rl . Assume that

p(t) ∈ A(r), and by the definition of affine image we have p f (t) = −(Ω−1
f f Ω f l ⊗ I2)pl(t).

The main idea of the leader–follower-based affine formation control is, if we can
drive the leaders to satisfy pl(t) = (IN ⊗ A(t))rl + 1N ⊗ b(t), and make sure that p f (t) =
−(Ω−1

f f Ω f l ⊗ I2)pl(t), then we have p f (t) = (IN ⊗ A(t))r f + 1N ⊗ b(t). Therefore, the
formation of the multi-agent systems is always in the affine image of the nominal configu-
ration.

The affine image of the nominal configuration includes its moving, rotation, scaling
and shear [16]. When the team needs to pass through a narrow passage, as is shown in
Figure 2, we can drive the leaders to change their positions according to pl(t) = (IN ⊗
A(t))rl + 1N ⊗ b(t). If the control law for the followers is designed to guarantee that
p f (t) = −(Ω−1

f f Ω f l ⊗ I2)pl(t), then the formation is kept in the affine image of the nominal
configuration, and all agents can pass though the narrow passage with a desired formation.
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2.3. Problem Formulation

In this paper, we consider that multi-agent systems consist of N agents with the
following double-integrator dynamics:

ṗi(t) = vi(t)

v̇i(t) = ui(t), i ∈ V , (3)

where pi(t), vi(t) and ui(t) ∈ Rd are, respectively, the position, velocity and control input
of agent i.

Actuator failures can not be ignored in practice. With partial loss of efficiency and bias
faults, the control input can be written as

ũi(t) = θiui(t) + εi(t), (4)

where θi ∈ (0, 1] is a constant scalar, εi(t) ∈ Rm.

Assumption 4. Assume that ∥ ui(t) ∥< Ui and ∥ u̇i(t) ∥∞< di, i ∈ Vl , where Ui, di > 0 are
positive scalars.

Similar to [16], we assume that the leaders are well-controlled.

Assumption 5. Assume that pi(t) = p∗i (t), vi(t) = v∗i (t) and ui(t) = v̇∗i (t), for i ∈ Vl , where
p∗i (t), v∗i (t) and v̇∗i (t) are objective position, velocity and accelerations of agent i in the objective
formation.

From Lemmas 1 and 2 we can see that, if Assumptions 1–3 are satisfied, Ω f f is positive
definite, and for any p(t) = [pT

l (t), pT
f (t)]

T ∈ A(r), p f (t) can be uniquely calculated

as p f (t) = −(Ω−1
f f Ω f l ⊗ Id)pl(t). Therefore, when the leaders are well-controlled, the

objective position of the followers is p∗f (t) = −(Ω−1
f f Ω f l ⊗ Id)pl(t). It is easy to see that the

ideal velocity of the followers is v∗f (t) = −(Ω−1
f f Ω f l ⊗ Id)vl(t). Define δp(t) ≜ p f (t)− p∗f (t),

δv(t) ≜ v f (t)− v∗f (t), and δ(t) ≜ [δT
p (t), δT

v (t)]T .

Definition 2. Fault-tolerant prescribed-time affine formation control: For a given double-integrator
multi-agent systems (3) subject to actuator faults (4), the objective of fault-tolerant prescribed-time
affine formation tracking control is to design a control protocol ui(t) such that δ(t) converge to
S(ϵ) = {δ :∥ δ ∥< ϵ} as t → t0 + T, and δ(t) remains in S after t > t0 + T, where ϵ and T are
positive scalars.

The following time-varying function is commonly used in prescribed time control [21]:

µ(t) =

{ (
T

t0+T−t

)ρ
, t0 ≤ t < t0 + T,

1, t ≥ t0 + T,
(5)

where ρ > 1 is a constant scalar, t0 is the initial time and T is the convergence time defined
by the user. The derivative of µ(t) is

µ̇(t) =

{
ρ
T µ

(1+ 1
ρ ), t0 ≤ t < t0 + T,

0, t ≥ t0 + T,
(6)

where the right-hand derivative is used at t = T. To analyze the prescribed time conver-
gence property, the following lemmas are needed:

Lemma 3 ([24]). Consider system

ẏ(t) = f (t, y(t)), y0 = y(0), (7)
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if there exists a Lyapunov function V(y) such that

V̇(y) + cV(y) + hϕ(t)V(y) ≤ 0, t ∈ [t0, ∞), (8)

where c ≥ 0, h > 0, and ϕ(t) is defined as

ϕ(t) =

{
µ̇(t)
µ(t) , t0 ≤ t < t0 + T,

ρ
T , t ≥ t0 + T,

(9)

then, system (7) is globally prescribed time stable with a prescribed time t0 + T. In particular, the
following solution can be obtained:{

V(y) ≤ µ−hexp−c(t−t0)V(y0), t0 ≤ t < t0 + T,
V(y) ≡ 0, t ≥ t0 + T.

(10)

Lemma 4 ([33]). Assume V(t) : R → R≥0 is a continuously differentiable function satisfying

V̇(t) ≤ −cV(t)− h
µ̇(t)
µ(t)

V(t) + ζ, t ∈ [t0, ∞), (11)

where c, h, ζ > 0. Then,

V(t)

{
≤ µ−he−c(t−t0)V(t0) + ϵ(t), t ∈ [t0, t0 + T),

≤ ζ
c , t ∈ [t0 + T, ∞),

(12)

where

ϵ(t) =

(
t0 + T − t

ch − 1
− µ−h(t)

ch − 1

)
ζ. (13)

3. Main Results
3.1. Prescribed-Time Acceleration Observer

Due to the fact that the accelerations of the leaders are non-zero, each follower needs
an acceleration estimator to estimate its ideal acceleration. Assume that the followers can
communicate with each other, and part of them can receive information from some leaders.
The followers can adopt the following observer to estimate their ideal acceleration:

ξ̇i(t) = −[c1 + h1ϕ(t)] ∑
j∈Ni

ωij(ξi(t)− ξ j(t))

−γsgn

[
∑

j∈Ni

ωij(ξi(t)− ξ j(t))

]
, i ∈ V f , (14)

where c1, h1 and γ are positive scalars, ξ j(t) = uj(t) if j ∈ VL, and ϕ(t) is defined
in Lemma 3. In the remainder of this paper, subscript t is omitted for simplicity if no
confusions occur.

Remark 1. In (14), the time-varying feedback gain ϕ(t) plays an important role. It is noticed
that ϕ(t) increases as t → t0 + T. This avoids the feedback term converging too fast, and hence
guarantees a fast convergence speed when t ∈ [t0, t0 + T].

Theorem 1. Define ξ ≜ [ξT
nl+1, ..., ξT

N ]
T , ul ≜ [uT

1 , ..., uT
nl
]T . If Assumptions 1–5 are satisfied, and

γ > max
i∈Vl

di• ∥ Ω−1
f f Ω f l ∥∞, using observer (14), ξ will converge to −(Ω−1

f f Ω f l ⊗ Im)ul within

t0 + T, and ξ ≡ −(Ω−1
f f Ω f l ⊗ Im)ul for t > t0 + T.

Proof. Equation (14) can be rewritten in a compact form as
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ξ̇ = −(c1 + h1ϕ)
[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
−γsgn

[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
. (15)

From Lemmas 1 and 2, we can see that, if Assumptions 1–3 are satisfied, Ω f f is positive
definite. Let η = ξ − (−Ω−1

f f Ω f l ⊗ Im)ul . From (15), we have

η̇ = ξ̇ − (−Ω−1
f f Ω f l ⊗ Im)u̇l

= −(c1 + h1ϕ)
[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
−γsgn

[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
+ (Ω−1

f f Ω f l ⊗ Im)u̇l . (16)

Choose the Lyapunov function as V1 = 1
2 ηT(Ω f f ⊗ Im)η. It follows from (16) that

V̇1 = ηT(Ω f f ⊗ Im)η̇

= ηT(Ω f f ⊗ Im)
{
−(c1 + h1ϕ)

[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
−γsgn

[
(Ω f f ⊗ Im)ξ + (Ω f l ⊗ Im)ul

]
+ (Ω−1

f f Ω f l ⊗ Im)u̇l

}
= −(c1 + h1ϕ)ηT(Ω f f ⊗ Im)(Ω f f ⊗ Im)

[
ξ − (−Ω−1

f f Ω f l ⊗ Im)ul

]
−γηT(Ω f f ⊗ Im)sgn

[
(Ω f f ⊗ Im)η

]
+ ηT(Ω f f ⊗ Im)(Ω−1

f f Ω f l ⊗ Im)u̇l

= −(c1 + h1ϕ)ηT(Ω2
f f ⊗ Im)η − γηT(Ω f f ⊗ Im)sgn

[
(Ω f f ⊗ Im)η

]
+ηT(Ω f f ⊗ Im)(Ω−1

f f Ω f l ⊗ Im)u̇l

≤ −(c1 + h1ϕ)ηT(Ω2
f f ⊗ Im)η − γ ∥ (Ω f f ⊗ Im)η ∥1

+ηT(Ω f f ⊗ Im)(Ω−1
f f Ω f l ⊗ Im)u̇l . (17)

By the Holders inequality, it can be obtained that

ηT(Ω f f ⊗ Im)(Ω−1
f f Ω f l ⊗ Im)u̇l ≤ ∥ (Ω−1

f f Ω f l ⊗ Im)u̇l ∥∞∥ (Ω f f ⊗ Im)η ∥1

≤ ∥ Ω−1
f f Ω f l ⊗ Im ∥∞∥ u̇l ∥∞∥ (Ω f f ⊗ Im)η ∥1

≤ max
i∈Vl

di• ∥ Ω−1
f f Ω f l ∥∞∥ (Ω f f ⊗ Im)η ∥1 . (18)

If γ > max
i∈Vl

di• ∥ Ω−1
f f Ω f l ∥∞, it follows from (17) and (18) that

V̇1 ≤ −(c1 + h1ϕ)ηT(Ω2
f f ⊗ Im)η

≤ −(c1 + h1ϕ)λminηT(Ω f f ⊗ Im)η

= −(c̃ + h̃1ϕ)V1, (19)

where c̃1 = c1λmin, h̃1 = h1λmin and λmin = λmin(Ω f f ). By Lemma 3, we have V1 which
will converge to zero within t0 + T and V1 ≡ 0 for t ≥ t0 + T. It then follows that η will
converge to zero within t0 + T and η ≡ 0 for t ≥ t0 + T, which implies that ξ will converge
to −(Ω−1

f f Ω f l ⊗ Im)ul within t0 + T, and ξ ≡ −(Ω−1
f f Ω f l ⊗ Im)ul for t ≥ t0 + T.

Remark 2. As is mentioned in Section 2.3, the ideal velocity of the followers is
v∗f (t) = −(Ω−1

f f Ω f l ⊗ Id)vl(t). Therefore, the ideal acceleration of the followers is −(Ω−1
f f Ω f l ⊗

Id)ul(t). Theorem 1 shows that, using observer (14), ξ will converge to −(Ω−1
f f Ω f l ⊗ Im)ul

within t0 + T, and ξ ≡ −(Ω−1
f f Ω f l ⊗ Im)ul for t > t0 + T. So the followers can receive their

ideal accelerations.
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3.2. Fault-Tolerant Affine Formation Control with a Prescribed Convergence Time

Based on the acceleration observer (14), the follower can adopt the following
control algorithm:

ui(t) = −k1ϕ2 ∑
j∈Ni

ωij(pi(t)− pj(t))− k2ϕ ∑
j∈Ni

ωij(vi(t)− vj(t)) + ξi(t), i ∈ V f , (20)

where k1, k2 > 0 are constant parameters to be designed and ϕ is defined in Lemma 3.
Actuator failures cannot be ignored in practice. Controller (20), with partial loss of

efficiency and bias faults, can be written as [33,35]

ũi(t) = θiui(t) + εi(t)

= −θik1ϕ2(t) ∑
j∈Ni

ωij(pi(t)− pj(t))

−θik2ϕ(t) ∑
j∈Ni

ωij(vi(t)− vj(t)) + θiξi(t) + εi(t), i ∈ V f , (21)

where θi ∈ (0, 1] is a constant scalar, εi(t) ∈ Rm.

Assumption 6. Assume that the efficiency factor and unknown output bias are bounded, and there
exist positive scalars θ∗ and ε̃i such that 0 < θ∗ ≤ θi ≤ 1, and ∥ εi(t) ∥< ε̃i.

Remark 3. Same with [33], we assume that the efficiency factor and unknown output bias are
bounded. When θi(t) = 1 and εi(t) = 0, the actuator is fault-free. The lower bound θ∗ means that
the actuator will not lose all efficiency.

Theorem 2. Under Assumptions 1–6, using observer (14) and the fault-tolerant affine formation
control algorithm (21) with user-defined convergence time T and control parameters c1, h1, γ, k1,
k2 and ρ, if γ > max

i∈Vl
di• ∥ Ω−1

f f Ω f l ∥∞, and there exists positive scalars α, c and h such that the

following conditions are satisfied,

k1 < 2k2
2λminθ∗, (22)

k1λmin
k2

− 2λmin
ρ

− 1
2k2ρθ∗

− hλmax −
h

2k2θ∗
> 0, (23)

ρ

T

(
k1λmin

k2
− 2λmin

ρ
− 1

2k2ρθ∗
− hλmax −

h
2k2θ∗

)
−
(

cλmax +
c

2k2θ∗

)
− α

k2θ∗
> 0, (24)

k2λmin −
k1

k2θ∗
− k1

2k2ρθ∗
− h

2θ∗
− hk1

2k2θ∗
> 0, (25)

ρ

T

(
k2λmin −

k1

k2θ∗
− k1

2k2ρθ∗
− h

2θ∗
− hk1

2k2θ∗

)
−
(

c
2θ∗

+
ck1

2k2θ∗

)
− α

θ∗
> 0, (26)

the formation tracking error δ will converge to zero within t0 + T, and remain in the following
neighborhood of zero: δ : ∥ δ ∥≤

√√√√ ζ0

cλmin(Γ)

[
1 +

(
T
ρ

)2
]

where ζ0 = 1
θ∗α (

k1
k2

+ 1)((1 − θ∗)2 ∥ Ω−1
f f Ω f l ∥2

2 ∑i∈Vl
U2

i + ∑i∈V f
ε̃2

i ), and δ is defined before
Definition 2.

Proof. Let δ̃p = ϕδp, and we have

˙̃δp = ϕ̇δp + ϕδ̇p =
ϕ̇

ϕ
δ̃p + ϕ( ṗ f − ṗ∗f ) = ϕ̄δ̃p + ϕδv (27)
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where ϕ̄ = ϕ̇
ϕ =

{
ϕ
ρ , t0 ≤ t < t0 + T,
0, t ≥ t0 + T.

Let ũ f = [ũT
nl+1, . . . , ũT

N ]
T , ε = [εT

nl+1, . . . , εT
N ]

T , Θ = diag{θnl , . . . , θN}, and ω =

((Θ − IN−nl )⊗ Im)ξ + ε. Equation (21) can be written in a compact form as

ũ f = −k1ϕ2
[
(ΘΩ f f ⊗ Im)p f + (ΘΩ f l ⊗ Im)pl

]
−k2ϕ

[
(ΘΩ f f ⊗ Im)v f + (ΘΩ f l ⊗ Im)vl

]
+ (Θ ⊗ Im)ξ + ε (28)

From (28) and the definition of v∗f , we have

δ̇v = v̇ f − v̇∗f
= ũ f − (−Ω−1

f f Ω f l ⊗ Im)ul

= −k1ϕ2
[
(ΘΩ f f ⊗ Im)p f + (ΘΩ f l ⊗ Im)pl

]
−k2ϕ

[
(ΘΩ f f ⊗ Im)v f + (ΘΩ f l ⊗ Im)vl

]
+(Θ ⊗ Im)ξ − (−Ω−1

f f Ω f l ⊗ Im)ul + ε

= −k1ϕ2(ΘΩ f f ⊗ Im)
[

p f − (−Ω−1
f f Ω f l ⊗ Im)pl

]
−k2ϕ(ΘΩ f f ⊗ Im)

[
v f − (−Ω−1

f f Ω f l ⊗ Im)vl

]
+ξ − (−Ω−1

f f Ω f l ⊗ Im)ul + [(Θ − IN−nl )⊗ Im]ξ + ε

= −k1ϕ(ΘΩ f f ⊗ Im)δ̃p − k2ϕ(ΘΩ f f ⊗ Im)δv + η + ω, (29)

where we have used the fact that δ̃p = ϕδp. Let δ̃ ≜ [δ̃T
p , δT

v ]
T and choose the Lyapunov

candidate as

V2 =
1
2

δ̃T(Γ ⊗ Im)δ̃, (30)

where

Γ =

[
2k1Ω f f

k1
k2

Θ−1

k1
k2

Θ−1 Θ−1

]
.

If condition (22) is satisfied, it is trivial to prove that 2k1Ω f f −
k2

1
k2

2
Θ−1 > 0. Therefore,

Γ is positive-definite. From (27) and (29), we have

V̇2 = 2k1δ̃T
p (Ω f f ⊗ Im)

˙̃δp +
k1

k2
δT

v (Θ
−1 ⊗ Im)

˙̃δp +
k1

k2
δ̃T

p (Θ
−1 ⊗ Im)δ̇v + δT

v (Θ
−1 ⊗ Im)δ̇v

= 2k1δ̃T
p (Ω f f ⊗ Im)

(
ϕ̄δ̃p + ϕδv

)
+

k1

k2
δT

v (Θ
−1 ⊗ Im)

(
ϕ̄δ̃p + ϕδv

)
+

k1

k2
δ̃T

p (Θ
−1 ⊗ Im)

[
−k1ϕ(ΘΩ f f ⊗ Im)δ̃p − k2ϕ(ΘΩ f f ⊗ Im)δv + η + ω

]
+δT

v (Θ
−1 ⊗ Im)

[
−k1ϕ(ΘΩ f f ⊗ Im)δ̃p − k2ϕ(ΘΩ f f ⊗ Im)δv + η + ω

]
= 2k1ϕ̄δ̃T

p (Ω f f ⊗ Im)δ̃p +
k1

k2
δT

v (Θ
−1 ⊗ Im)

(
ϕ̄δ̃p + ϕδv

)
−

k2
1

k2
ϕδ̃T

p (Ω f f ⊗ Im)δ̃p +
k1

k2
δ̃T

p (Θ
−1 ⊗ Im)(η + ω)

−k2ϕδT
v (Ω f f ⊗ Im)δv + δT

v (Θ
−1 ⊗ Im)(η + ω) (31)

For t ∈ [t0, t0 + T], notice that ϕ̄ = ϕ
ρ , and from (31) we have
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V̇2 = (
2k1

ρ
−

k2
1

k2
)ϕδ̃T

p (Ω f f ⊗ Im)δ̃p +
k1

k2ρ
ϕδT

v (Θ
−1 ⊗ Im)δ̃p − k2ϕδT

v (Ω f f ⊗ Im)δv

+
k1

k2
ϕδT

v (Θ
−1 ⊗ Im)δv +

k1

k2
δ̃T

p (Θ
−1 ⊗ Im)(η + ω) + δT

v (Θ
−1 ⊗ Im)(η + ω). (32)

If condition (23) is satisfied, we have 2
ρ − k1

k2
< 0. Noting that

−δ̃T
p (Ω f f ⊗ Im)δ̃p ≤ −λmin δ̃T

p δ̃p, (33)

−δT
v (Ω f f ⊗ Im)δv ≤ −λminδT

v δv, (34)

δ̃T
p (Ω f f ⊗ Im)δ̃p ≤ λmax δ̃T

p δ̃p, (35)

δT
v (Θ

−1 ⊗ Im)δv ≤ 1
θ∗

δT
v δv, (36)

δ̃T
p (Θ

−1 ⊗ Im)δv ≤ 1
2θ∗

(δ̃T
p δ̃p + δT

v δv), (37)

and, for any α > 0,

δ̃T
p (Θ

−1 ⊗ Im)η ≤ 1
2θ∗

(αδ̃T
p δ̃p +

1
α

ηTη), (38)

δT
v (Θ

−1 ⊗ Im)η ≤ 1
2θ∗

(αδT
v δv +

1
α

ηTη), (39)

δ̃T
p (Θ

−1 ⊗ Im)ω ≤ 1
2θ∗

(αδ̃T
p δ̃p +

1
α

ωTω), (40)

δT
v (Θ

−1 ⊗ Im)ω ≤ 1
2θ∗

(αδT
v δv +

1
α

ωTω), (41)

it follows from (32)–(41) that

V̇2 ≤ −k1

[(
k1λmin

k2
− 2λmin

ρ
− 1

2k2ρθ∗

)
ϕ − α

k2θ∗

]
δ̃T

p δ̃p

−
[

ϕ(k2λmin −
k1

k2θ∗
− k1

2k2ρθ∗
)− α

θ∗

]
δT

v δv +
1

2θ∗α
(

k1

k2
+ 1)(ηTη + ωTω). (42)

From (30) and (35)–(37), we have

V2 = k1δ̃T
p (Ω f f ⊗ Im)δ̃p +

1
2

δT
v (Θ

−1 ⊗ Im)δv +
k1

k2
δ̃T

p (Θ
−1 ⊗ Im)δv

≤ (k1λmax +
k1

2k2θ∗
)δ̃T

p δ̃p + (
1

2θ∗
+

k1

2k2θ∗
)δT

v δv. (43)

Suppose that conditions (23) and (25) are satisfied, combined with the fact that ϕ ≥ ρ
T ,

from (42) and (43) we have for any c, h > 0,

V̇2 + (c + hϕ)V2

≤ −k1

[(
k1λmin

k2
− 2λmin

ρ
− 1

2k2ρθ∗
− hλmax −

h
2k2θ∗

)
ρ

T

−
(

cλmax +
c

2k2θ∗

)
− α

k2θ∗

]
δ̃T

p δ̃p

−
[

ρ

T

(
k2λmin −

k1

k2θ∗
− k1

2k2ρθ∗
− h

2θ∗
− hk1

2k2θ∗

)
−
(

c
2θ∗

+
ck1

2k2θ∗

)
− α

θ∗

]
δT

v δv

+
1

2θ∗α
(

k1

k2
+ 1)(ηTη + ωTω). (44)

Suppose we can find c, h > 0 such that conditions (24) and (26) are also satisfied, we
can see that V̇2 + (c + hϕ2)V2 ≤ 1

2θ∗α (
k1
k2
+ 1)(ηTη + ωTω). Therefore,
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V̇2 ≤ −(c + hϕ)V2 +
1

2θ∗α
(

k1

2k2
+ 1)(ηTη + ωTω). (45)

By the definition of ω, we have

ωTω ≤ 2ξT((Θ − IN−nl )
2 ⊗ Im)ξ + 2εTε

≤ 2(1 − θ∗)2ξTξ + 2 ∑
i∈V f

ε̃2
i . (46)

If γ > max
i∈Vl

di• ∥ Ω−1
f f Ω f l ∥∞, from Theorem 1 we have that ξ converge to −(Ω−1

f f Ω f l ⊗

Im)ul and η converge to zero within t0 + T. Therefore, 1
2θ∗α (

k1
k2
+ 1)(ηTη +ωTω) is bounded

during [t0, t0 + T). Assume that 1
2θ∗α (

k1
k2

+ 1)(ηTη + ωTω) ≤ ζ1 during [t0, t0 + T), and
we have

V̇2 ≤ −(c + hϕ)V2 + ζ1. (47)

By Lemma 4, we have

V2 ≤ µ−he−c(t−t0)V(t0) + ϵ2(t), (48)

where

ϵ2(t) =

(
t0 + T − t

ch − 1
− µ−h(t)

ch − 1

)
ζ1. (49)

Due to the fact that µ−h → 0 and t0+T−t
ch−1 − µ−h(t)

ch−1 → 0 as t → t0 + T, we have V2 → 0
as t → t0 + T. It follows that δ̃p and δv converge to zero as t → t0 + T. Notice that ϕ is
positive, and we have δp converge to zero as t → t0 + T. Therefore, δ converge to zero as
t → t0 + T.

For t ∈ [t0 + T, ∞), from Theorem 1 we know that η = 0. Noting that ϕ̄ = 0 when
t ≥ t0 + T and ϕ = ρ

T , by a similar process we can obtain that

V̇2 + (c + hϕ)V2

≤ −k1

[(
k1λmin

k2
− hλmax −

h
2k2θ∗

)
ρ

T
−
(

cλmax +
c

2k2θ∗

)
− α

k2θ∗

]
δ̃T

p δ̃p

−
[

ρ

T

(
k2λmin −

k1

k2θ∗
− h

2θ∗
− hk1

2k2θ∗

)
−
(

c
2θ∗

+
ck1

2k2θ∗

)
− α

θ∗

]
δT

v δv

+
1

2θ∗α
(

k1

k2
+ 1)ωTω. (50)

Suppose that conditions (22)–(26) are satisfied, it follows that

V̇2 ≤ −(c + h
T
ρ
)V2 +

1
2θ∗α

(
k1

k2
+ 1)ωTω. (51)

From Theorem 1, we know that ξ ≡ −(Ω−1
f f Ω f l ⊗ Im)ul for t ≥ t0 + T. It follows

from (46) that

ωTω ≤ 2(1 − θ∗)2 ∥ (Ω−1
f f Ω f l ⊗ Im)ul ∥2 +2 ∑

i∈V f

ε̃2
i

≤ 2(1 − θ∗)2 ∥ Ω−1
f f Ω f l ∥2

2 ∑
i∈Vl

U2
i + 2 ∑

i∈V f

ε̃2
i . (52)

It follows from (51) that

V̇2 ≤ −(c + h
T
ρ
)V2 + ζ0. (53)
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Noting that c, h, T, ρ > 0, and V2(t0 + T) = 0, we have V2 ≤ ζ0
c for t > t0 + T.

Therefore, δ̃T
p δ̃p + δT

v δv is bounded by ζ0
cλmin(Γ)

for t > t0 + T. It then follows that δT
p δp ≤

ζ0T2

cλmin(Γ)ρ2 for t > t0 + T. It is easy to see that ∥ δ ∥≤
√

ζ0
cλmin(Γ)

[1 + ( T
ρ )

2] for t > t0 + T.

Remark 4. Algorithms (20) and (21) are designed based on the acceleration estimator (14). Maybe
some sliding mode control algorithms without disturbance observer can be proposed, by considering
the leaders’ accelerations as disturbances. However, sliding mode control algorithms may cause
chatters of the tracking error. If the leaders’ accelerations are not compensated for using the observer-
based method, the disturbance will be very large when the formation changes rapidly. This will lead
to large chatters. Therefore, even though the sliding mode control algorithms are adopted, it would
be better to use an observer to estimate the ideal acceleration of the followers to compensate for the
leaders’ accelerations.

Remark 5. From Theorem 2, we can see that, in algorithm (21), the formation tracking error
converges with a prescribed convergence time. As a comparison, using controller (25) in [16],
only exponential convergence can be achieved. Therefore, the algorithm proposed in this paper can
guarantee faster convergence. This will be confirmed in Section 4.2 by a numerical simulation.

Remark 6. Of note, c, h and α in Theorem 2 are auxiliary variables for problem analysis. These
parameters are not used in the control algorithm (21). It is also worth noting that c and h can be
chosen differently from c1 and h1 in the observer (14). When selecting control parameters to satisfy
conditions (22)–(26), c h and α can be chosen freely.

Remark 7. It is easy to see that, if the following conditions are satisfied:

k1 < 2k2
2λminθ∗, (54)

k1λmin
k2

− 2λmin
ρ

− 1
2k2ρθ∗

> 0, (55)

k2λmin −
k1

k2θ∗
− k1

2k2ρθ∗
> 0, (56)

one can always find c, h, α > 0 satisfying (23)–(26).

4. Simulation Studies

In this section, simulation examples are given to show the effectiveness of the proposed
algorithm and compare it with existing results.

4.1. Fault-Tolerant Affine Formation Control

Consider a multi-agent system with three leaders and four followers moving in two-
dimensional space with dynamics given in (3). Assume that agents 1–3 are leaders and
agents 4–7 are followers. The communication topology is shown in Figure 1, which is the
same with [16]. The nominal configuration and the stress matrix are given in Section 2.2. By
some calculation, we can obtain λmin(Ω f f ) = 0.0235, λmax(Ω f f ) = 0.9593. The parameters
used in the simulation are chosen as k1 = 10, k2 = 25, T = 2, ρ = 10, c1 = 10, h1 = 0.1 and
γ = 5.

Let θ∗ = 0.8 and ε̃i = 0.01. Most of the time, only a part of the agents are subject
to partial loss of efficiency and bias faults. In order to test the effectiveness of the pro-
posed algorithm, we assume that all the followers are subject to loss of efficiency faults.
Using the fault-tolerant controller (21) with observer (14), the simulation results are shown
in Figures 3 and 4.

We assume that the multi-agent system needs to go through two narrow gates, as
is shown in Figure 3. In this process, the formation needs to change the scale four times
and rotate two times. Figure 3 shows trajectories of agents 1–7. It can be seen that the
desired formation is achieved and when the desired formation is changed, and the followers
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can track the formation appropriately even when all the followers are subject to loss of
efficiency faults. Figure 4 shows the formation tracking error ∥ δ(t) ∥. It can be seen
that the formation tracking error converges to zero within T = 2 and remains in a small
neighborhood of zero. When the formation is changing, the tracking error increases. This is
mainly caused by the actuator fault. Once the formation change is completed, the tracking
error converges rapidly.

Figure 3. Trajectories of multi-agent systems with 4 followers. Red balls denote the leaders and blue
balls denote the followers.
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Figure 4. Formation tracking error ∥ δ(t) ∥.



Electronics 2024, 13, 36 15 of 18

To test the effectiveness of the proposed controller, we consider the multi-agent systems
with more followers. Figures 5 and 6 show the trajectories of the multi-agent system with
six followers and eight followers, respectively. We can see that the followers can also track
the formation well when the number of followers increases.
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Figure 5. Trajectories of multi-agent systems with 6 followers. Red balls denote the leaders and blue
balls denote the followers.

Figure 6. Trajectories of multi-agent systems with 8 followers. Red balls denote the leaders and blue
balls denote the followers.
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4.2. Comparison with Existing Results

Since the fault-tolerant affine formation control problem of multi-agent systems with
double-integrator dynamics has not been considered in the literature, we compare the
proposed controller with controller (25) in [16] in a fault-free manner. Let θ∗ = 1, ε̃i = 0,
and controller (21) becomes controller (20), which is a fault-free version of controller (21).

Figure 7 shows the formation tracking error ∥ δ(t) ∥ using controller (25) in [16], and
controller (20) proposed in this paper with T equal to 2, 10 and 20, respectively. It can
been seen that controller (25) in [16] needs about 20 s to stabilize the tracking error. As
a comparison, using controller (20) proposed in this paper, the tracking error converges
within prescribed time. Therefore, the proposed algorithm can guarantee faster convergence
than controller (25) in [16]. It can also be seen that, when the prescribed time is 10, the
tracking error converges within 5 s. Therefore, the prescribed time convergence does not
mean that the tracking error will converge to zero until the prescribed time. It can converge
much earlier than that time.

Since Figures 4 and 7 show the fault-tolerant case and fault-free case of the same multi-
agent systems, we can compare them to see the effect of actuator faults. By comparison,
we can see that the tracking error is smaller when no actuator fault occurs. This confirms
that the increased tracking error during formation changing is mainly caused by the
actuator faults.
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Controller(25) Zhao S. 2018
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Figure 7. Tracking error ∥ δ(t) ∥ of controller (25) in [16]) (red solid line) and controller (20) proposed
in this paper with T = 2 (dashed line), T = 10 (dotted line), T = 20 (dash-dot line).

5. Conclusions

This paper proposes a fault-tolerant affine formation control algorithm for double-
integrator multi-agent systems with partial loss of efficiency and bias faults. Firstly, an
acceleration observer is proposed for each follower to estimate its ideal acceleration. It is
proved that the estimation error can converge to zero in a prescribed time T. Then, based
on the acceleration estimator, a control algorithm is proposed to solve the fault-tolerant
affine formation control problem. A Lyapunov function candidate is constructed to analysis
the convergence of tracking errors of the followers. Theoretical analysis shows that, if
parameters in the algorithm are properly chosen, the formation tracking error can converge
to zero within a user appointed time, and remain in a small region near zero after that
time. Finally, a numerical simulation is given to show the effectiveness of the proposed
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algorithm. Comparison with existing results is also made by a simulation. The simulation
result shows that, by using the algorithm proposed in this paper, the formation tracking
error converges faster than the existing results.

This paper provides an efficient attempt on fault-tolerant affine formation control
of multi-agent systems with double-integrator dynamics. There are several meaningful
research directions for the future. For example, the results derived in this paper can
be further extended by investigating multi-agent systems with directed communication
topologies [36], collision avoidance [37] and input saturation [38]. In addition, in this paper,
we consider the double-integrator multi-agent systems with partial loss of efficiency and
bias faults only. Therefore, it is also a research direction to investigate the effect of other
type of faults such as sensor faults, communication failures and so on.

The algorithm proposed in this paper can be applied to formation control of omnidi-
rectional mobile robots. It can also be applied to the position loop of formation controllers
for multiple quadrotors. The future work can also be focused on testing the proposed algo-
rithm by formation control experiments using omnidirectional mobile robots, quad-rotors
or other types of robotics.
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