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Abstract: In this paper, a buck DC-DC converter with the proposed twin frequency control scheme
(TFCS) and accurate load current sensing (ALCS) was designed and implemented with 0.18 µm
CMOS technology for a supply voltage ranging from 2.0 to 3.0 V, which is compatible with state-
of-the-art batteries (NiCd/NiMH: 1.1–2 V, Li-Ion: 2.5–4.2 V). The proposed converter yields a peak
efficiency of about 92.7% with a load current of 30 mA. Furthermore, it only occupies a silicon area of
1.3 mm2. The proposed buck converter is dedicated for smartphone applications whereby it spends
most of its time in idle, low load conditions.

Keywords: DC-DC converter; twin frequency control; load sensing; buck converter; smartphone
application

1. Introduction

Modern 4G smartphones are embedded with a high-speed multi-core processor, gi-
gabytes of flash memory, high-resolution color display, 3G/4G and Bluetooth wireless
communication devices [1]. Therefore, the quiescent power consumption of a smartphone
is comparable to a laptop or a handheld tablet. Furthermore, new modern applications
such as live video streaming require a constant utilization of an LED backlight display
or cloud computing services, which will no doubt increase the total power consumption
drastically [2]. All of the above enhanced functionalities of a 4G smartphone will heighten
the pressure on the battery lifetime and escalate the urgency for a more efficient power
management system [3]. However, the NiCd/NiMH and Li-ion batteries, which are widely
used to provide a source of power, are very limited in supplying the energy and power
demands for the wide variety of applications found in a smartphone. This is supported by
a recent research study which has shown that its energy density has only doubled over the
past decade from 300 to 600 Whr/liter [4]. Hence, the viable solution is to reduce the overall
battery power consumption by improving the power efficiency of the power management
unit (PMU) in a smartphone.

For the past few years, there have been numerous interesting research works [5,6]
which have presented various power consumption usage models for 3G/4G smartphones.
Modern power management systems in smartphones [7] are used to generate a constant or
variable output voltage supply from battery sources which have a wide input range varia-
tion, e.g., NiCd/NiMH, 1.1–2 V, or Li-Ion, 2.5–4.2 V [8,9]. Power converters (buck/boost)
are indispensable building blocks found in a part of the power management unit (PMU) of
a smartphone, as shown in Figure 1. Their objectives are to supply a well-regulated supply
voltage to the different group core modules [1] found in a smartphone. A full illustration of
the PMU of a smartphone can be found here [10].
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Figure 1. A vital part of the 3G/4G smartphone power management unit (PMU). 

The key to prolonging the battery lifetime is to improve the power efficiency of the 
DC-DC converter. Since a smartphone spends most of its time in the low load condition 
[2], numerous research works [11–14] have already aimed to improve the light-load effi-
ciency as the core priority. Though the new circuit implementation is novel, improve-
ments in power efficiency are minimal, and the proposed circuit techniques are relative-
ly complex. One of the more interesting works proposed [15] a width-switching scheme 
whereby the width of the respective power transistors can be altered according to the 
load current demand. However, the light-load efficiency falls below 80% for <20 mW of 
load power. In another study [16], pulse-skipping modulation (PSM) was added in be-
tween PWM and PFM to ensure a seamless transition of the power efficiency curve from 
a low to high load current. This technique is well known as the tri-hybrid mode convert-
er, which can deliver high efficiency for a wide load range. On the other hand, it has 
drawbacks, too. Whenever it transits to PSM mode, load regulation is always sacrificed, 
and the power conversion efficiency is only maximized in several load conditions. Last-
ly, tri-hybrid mode control requires several modulators with complex-mode switching 
circuits, which may lead to stability issues, e.g., inductor runaway. 

Hence, in this current research work, a twin frequency control scheme (TFCS), to-
gether with an accurate load current sensing block (ALCS), are proposed to achieve high 
efficiency under a low load condition (<50 mW) regardless of the process/power transis-
tor variation as well as the source voltage or load current variation. This is compatible 
with the fact that smartphones drive these ranges of power load levels during their idle 
conditions. For proof of concept, a monolithic buck converter with the proposed TFCS 
and ALCS are implemented and tested. Furthermore, a conventional PWM/PFM buck 
controller is implemented to provide a good comparison with our proposed work. The 
design and measurement details are presented in this paper in the following structure: 
Section 2 discusses the operation of the system and block level design. Section 3 presents 
the experimental results, followed by a discussion and comparison with the state-of-the-
art works, as summarized in Table 1. Finally, the conclusion will be shown in Section 4. 
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Figure 1. A vital part of the 3G/4G smartphone power management unit (PMU).

The key to prolonging the battery lifetime is to improve the power efficiency of the
DC-DC converter. Since a smartphone spends most of its time in the low load condition [2],
numerous research works [11–14] have already aimed to improve the light-load efficiency
as the core priority. Though the new circuit implementation is novel, improvements in
power efficiency are minimal, and the proposed circuit techniques are relatively complex.
One of the more interesting works proposed [15] a width-switching scheme whereby the
width of the respective power transistors can be altered according to the load current
demand. However, the light-load efficiency falls below 80% for <20 mW of load power. In
another study [16], pulse-skipping modulation (PSM) was added in between PWM and
PFM to ensure a seamless transition of the power efficiency curve from a low to high load
current. This technique is well known as the tri-hybrid mode converter, which can deliver
high efficiency for a wide load range. On the other hand, it has drawbacks, too. Whenever
it transits to PSM mode, load regulation is always sacrificed, and the power conversion
efficiency is only maximized in several load conditions. Lastly, tri-hybrid mode control
requires several modulators with complex-mode switching circuits, which may lead to
stability issues, e.g., inductor runaway.

Hence, in this current research work, a twin frequency control scheme (TFCS), together
with an accurate load current sensing block (ALCS), are proposed to achieve high efficiency
under a low load condition (<50 mW) regardless of the process/power transistor variation
as well as the source voltage or load current variation. This is compatible with the fact
that smartphones drive these ranges of power load levels during their idle conditions.
For proof of concept, a monolithic buck converter with the proposed TFCS and ALCS
are implemented and tested. Furthermore, a conventional PWM/PFM buck controller is
implemented to provide a good comparison with our proposed work. The design and
measurement details are presented in this paper in the following structure: Section 2
discusses the operation of the system and block level design. Section 3 presents the
experimental results, followed by a discussion and comparison with the state-of-the-art
works, as summarized in Table 1. Finally, the conclusion will be shown in Section 4.
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Table 1. Performance summary and comparison.

Unit TPEL [17] JSSC [18] TCAS I [19] This Work

Year - 2017 2018 2022 2023

Technology µm 0.13 (CMOS) 0.13 0.18 (BCD) 0.18 (CMOS)

Input Voltage V 2.2~3.3 1.8~3.3 2.7~4.7 2.0~3.0

Output Voltage V 1.7 1.2 1.6 1.25

Peak Efficiency@Load Current % 90.4@10 mA 84.0@100 µA 92.1@10 mA 92.7@30 mA

External Inductor µH 3.0 18 4.7 47.0

External Capacitor µF 3.0 0.056 4.7 10.0

Frequency kHz 2500 3000–5500 4000 250

Chip Silicon Area mm2 0.656 0.2576 0.55 1.3

Power Transistors Implemented in This Work:

Size Unit MN
21,168 m
0.35 m MP

35,672 m
0.30 m

Finger Width µm 19.6 - 19.6 -

No. of Fingers - 60 - 91 -

Multiplier - 18 - 20 -

Channel Resistance mΩ Ron,n 80 Ron,p 95

Bonding Wire Resistance 1 mΩ Rbond,n 200 Rbond,p 200

Total Resistance 2 mΩ Roverall,n 280 Roverall,p 295

Total Gate Capacitance 3 pF Cgn 477.8 Cgp 574.3
1 Wire bonding performed using A*STAR IME—Au (Gold) Wire (1 mil diameter and 650 mA/cm). 2 Impedance
and inductance for a bonding wire per unit cm are 1 Ω and 10 nH, respectively. 3 Post layout extraction, including
bond pads (performed using Calibre). Other remarks: process has 6 metal layers (EMI: M1–M5 → 1 mA/µm,
M6 → 5.34 mA/µm at 30 ◦C).

2. Proposed Twin Frequency Control DC-DC Buck Converter

Our proposed work, shown in Figure 2, consists of a twin frequency control scheme
(TFCS), an accurate load current sensing (ALCS) block, a switched capacitor (SC) integrator,
two deadtime controllers and the power train stage. In general, the output voltage, Vout,
gives important information about the load current, and this will be sensed by the proposed
load current sensing block to produce a sensing voltage, Vsense. Furthermore, this voltage,
in turn, is compared with a 4-bit thermometer code ADC to produce a 4-bit signal (S0,
S1, S2 and S3). This gives an accurate indication of the load current level drawn by the
output of the DC-DC converter. The 4-bit signal goes through the TFCS, which yields two
non-overlapping clocks to control the switches in the switched-capacitor integrator and
also a clock frequency to reset the integration cycle. In other words, it is meant to define the
switching period of the buck converter. The integrated voltage, Vint, monitors Vx, which
gives an indication of the output load current and its corresponding voltage level. The
integrated voltage, Vint, can be derived as follows:

Vint =
1

ReqC2

T∫
0

Vxdt (1)

= fϕA/B ·
C1

C2

Int1Ts∫
0

Vxdt (2)

∴ Vint = fϕA/B ·
C1

C2
· VBATT · Int1 · TS (3)
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where Vint is the integrated voltage and the output of the SC integrator. f∅A/B is the fre-
quency of the switches in the SC integrator, and C1

C2
is the ratio of the capacitor, which gives

the gain of the amplifier. VBATT refers to the input voltage of the DC-DC buck converter.
Int1 and Ts refer to the integration and switching period of the converter, respectively.
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Figure 2. Proposed twin frequency control DC-DC buck converter using accurate load current
sensing technique.

With reference to Equation (3), it is evident that the ratios of capacitors are constant
under any circumstances such as heavy or light load. The remaining parameters, except
VBATT , are variables which will change according to the DC load power drawn by the
output of the converter. Specifically, in a light load condition, the above-mentioned 4-bit
signal (S0, S1, S2 and S3) will activate the proposed TFCS. This will alter the switching
frequency of the DC-DC converter and the corresponding switches in the SC integrator.
Hence, the switching losses of the buck converter will be significantly reduced in a low
current load condition. This will improve the power efficiency for the load range (<50 mW)
where the smartphone is idling.

2.1. Proposed Accurate Load Current Sensing (ALCS) Block

The proposed ALCS, shown in Figure 3, is an extension and improvement to a prior
work [20]. A more in-depth analysis with regard to the prior work of current sensing
techniques will be presented in Appendix A. It is used to sense the load current and
gives an output sense voltage, Vsense, via the sensing resistor, Rsense. This voltage level is
proportional to the load current level. Transistors MP1–MP4 and MN1–MN3 form a current
conveyor structure where negative feedback is employed, which forces the node voltage
V1 to be equal to V2 at a balanced state equilibrium. If the V2 node increases, the drain
voltage of the MP3/the gate voltage of MP1 will increase since the transistor MN1 will force
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the mirrored current going through MN3 to be the same. This action allows for a larger net
current to go through MP2, which becomes mirrored over to MP3. Hence, the gate voltage of
MP3 decreases, which pulls node voltage V3 down. This constitutes negative feedback and
forces V2 to be equal to V1. At the same time, the cascode pair, MP5 and MP6, is included
to increase the output impedance of the current mirror formed by MP7 and MP8. This will
ensure a more accurate mirroring of the current, behaving more like an ideal current source.
Thus, transistors MN6–MN7 are stacked on top of MN4–MN5 to form a diode-connected
configuration. This is at the expense of MN4–MN5 being biased in the linear triode region,
with a larger transistor length value.

IS =
Vout − V1

RS
(4)

IS1 =
Vout − V2

Rload1
(5)
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Assume V1 to be equal to V2:

IS =
IS1 · Rload1

RS
(6)

ILoad = IS + IS1 (7)

Substitute Equation (6) into (7) to obtain

ILoad = IS1[1 +
Rload1

RS
] (8)

The output voltage, Vout, can be derived as follows:

Vout = IS1 · {Rload1 + Rload2 −
Rload1

RS
· Rload2} (9)
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If the ratio of the resistance Rload1/RS << 1, Equation (8) becomes

ILoad ≈ IS1 (10)

At the same time, Equation (9) is simplified as

∴ Vout ≈ ILoad · Rload,total (11)

whereby Rload,total = Rload1 + Rload2.
The above derivation proves that the two passive resistors, Rload1 and Rload2, contribute

to the total load resistance without excessive power dissipation, which will degrade the
power efficiency of the overall DC-DC buck converter. Furthermore, the current, Is, going
through Rs is negligible, having minimal impact on the overall power efficiency. Hence,
the sense voltage, Vsense, can be derived to be

Vsense =
1
2
· IS · Rsense (12)

Substituting Equation (6) into (12) obtains the following:

Vsense =
1
2
· [Rsense · Rload1

RS
] · IS1 (13)

If the ratio of the resistance Rload1/RS = N1,

Vsense = A1 · ILoad (14)

where A1 = 1
2 · N1 · Rsense is a constant.

The above derivation of the sense voltage, Vsense, can be used to provide a voltage
that is proportional to the load current. The power dissipation across the passive sensing
resistor, Rsense, is negligible as the current, Is, going through it is minimal. However, this
sensing technique may have some drawbacks.

The above derivation and working operation assume that the output voltage, Vout,
is a constant value. But, in fact, there are some AC ripples riding on it. This is caused by
the product of the inductor current ripple and the ESR of the output filtering capacitor.
Thus, to ensure a more accurate load current sensing capability, the inductor value is made
relatively larger to reduce the ripples riding on the output voltage. Furthermore, trimming
techniques are employed for the resistor, Rsense, as its value may differ by ±20% after the
process of die fabrication. Therefore, careful consideration has to be taken into account
when designing the next block as the resistor’s value due to the process, and the voltage
supply and temperature (PVT) variation should never exceed the 1-bit resolution of the
ADC stage. The W/L sizing of each transistor is shown in Table 2.

Table 2. Transistor Sizing (W/L) Ratio.

Transistor No W/L Sizing

MP1 to MP4 4 µm/10 µm

MN1, MN2, MN3 2 µm/10 µm

MN4, MN5, MN7 1 µm/5 µm

MN6 1 µm/20 µm

MP5 to MP8 2 µm/10 µm

2.2. Four-Bit Thermometer Code ADC

The 4-bit thermometer code ADC, shown in Figure 4, is employed to compare the
sense voltage, Vsense, with four voltage levels (Vr0, Vr1, Vr2 and Vr3) to generate a 4-bit
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thermometer code signal (S0, S1, S2 and S3). This gives vital information about the current
load level. There are basically four different levels (0001, 0011, 0111 and 1111) which
correspond to four different light load conditions. The resolution of the load current level
can be improved at the expense of increasing the no. of comparators in the ADC, which will
increase conduction and switching losses that may degrade the power efficiency. Hence,
there exists a tradeoff between better resolution and power efficiency.
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2.3. Proposed Twin Frequency Control Scheme (TFCS)

The proposed TFCS, shown in Figure 5, is used to progressively alter the switching
frequency of the buck controller and the integration cycle according to the load current,
which is embedded in the 4-bit signal level (S0, S1, S2 and S3). There are only four possible
signal levels (0001, 0011, 0111 and 1111) which correspond to four different load current
levels in the light, idle condition of a smartphone (<40 mA). As mentioned, the resolution
of the load current level can be improved further, but at the expense of increased power
consumption. Hence, there exists an optimum value for the no. of levels of load current
associated with the signal generated by the thermometer code ADC.
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2.4. Power Train

The power train consists of one PMOS (MP) and NMOS (MN) device, as shown in
Figure 2. Both are 3.3 V transistors, which have a thicker gate oxide and occupy a much
larger area than a regular transistor. Considering the power NMOS transistor, MN, the total
power loss comprises the sum of the switching and conduction loss as follows:

Ptotal_loss = Cgdn · WN · V2
N · fS + Cgsn · WN · V2

N · fS

+(Cgdn + Cdbn) · WN · V2
BATT · fS +

I2
N ·Ron,N

WN

(15)

whereby Cgdn, Cgsn and Cdbn refer to the respective parasitic capacitance per unit width
of the device, VBATT is the input voltage to the buck converter, fs refers to the switching
frequency of the power train, Ron,N/WN is the on-resistance per unit width, IN refers to its
RMS current and VN is the gate voltage of the power NMOS transistor. Thus, the optimum
width, Wopt,N, can be calculated when the switching loss is equal to the conduction loss,
given by

Wopt,N =

√
I2
N · Ron,N

Cgdn · V2
N · fS + Cgsn · V2

N · fS + (Cgdn + Cdbn) · V2
BATT · fS

(16)

The optimized width for both the power NMOS and PMOS is shown in Figure 6,
where the graph of the switching loss intersects the conduction loss. The graph plot is
based on the highest load current of 40 mA and a switching frequency of 1 MHz. The
aspect ratio and the on-resistance of the power transistors are shown in Table 1. In addition,
the on-resistance and input parasitic capacitance required to calculate the conduction
and switching loss, respectively, are the sum of the simulation results and a theoretical
calculation of the resistance/capacitance of metal routing/contact/via and the silicon area
occupied by the layout of the power train. Since the optimized width was finalized, it is
now vital to find the best layout structure of the power train for our research application.
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The efficiency of the power train is vital and depends largely on the layout structure,
which is a compromise between the total gate charge (Qg) and the on-resistance (Ron)
of the power transistors [21]. This is because the area (W·L) of the power transistor is
proportional to the total gate capacitance but inversely proportional to the on-resistance
of the power transistor. Recent research [22] proves that power transistors, which do not
take into account the resistance and parasitic capacitance of metal routing, will have an
error variation of more than 50% in the calculation of Qg and Ron. This is because the
impact of the parasitic capacitance and resistance from layers of metal interconnection is
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extremely dependent upon the layout style of the power transistors and the positioning of
its external source/drain connections. At the same time, the Ron value is greatly affected by
the distributed parasitic resistance associated with metal interconnects to the source and
drain terminals. Many past research efforts [23–25] aimed at improving and optimizing the
layout of the power transistor to minimize the parasitic resistance and capacitance.

Traditionally, power transistors were designed with a multi-finger layout structure to
maximize the channel width per unit area, which increases the current handling capability.
On the other hand, a regular waffle layout structure was introduced [24] to further optimize
the width per area ratio by having four neighboring transistors, enclosing a centralized
localized one. However, the above-mentioned layout structure does not yield the best
optimum tradeoff between the total gate capacitance (Qg) and the on-resistance (Ron). Thus,
in a recent research work, there was an interesting proposal for a hybrid waffle layout
structure [26,27], which proves that it can best optimize the tradeoff between the area, total
gate charge and on-resistance.

However, in this research work, the above-mentioned hybrid waffle layout may not
be suitable, as this buck converter is not operating at an extremely high frequency (>100
MHz). Hence, our proposed layout is a tapered/matrix structure, as shown in Figure 7,
as it can provide a more uniform distribution of the DC current among the fingers of the
transistor. In addition, the fingers of the power transistor are designed in a diagonal way,
which will reduce the on-resistance and equalize the flow of current on the opposite side of
the device. Furthermore, the nos. of fingers and multipliers for each power transistor are
optimized, as shown in Table 1, so as to balance the tradeoff between the total gate charge
and parasitic interconnection resistance. One of the drawbacks is that there is a “hotspot” at
the corner, furthest away from the center of the power train. During measurement testing,
this “hotspot” may increase the on-resistance of the power transistor, leading to an increase
in the heat dissipation and ultimately degrading the power efficiency. Therefore, the die
package must be thermally enhanced to avoid the overheating of the silicon die chip or
create other reliability issues. However, for our work, it focuses on a smartphone idling
state (low load power); hence, the above-mentioned drawback may not be significant.
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3. Experimental Results

A buck DC-DC converter with the proposed TFCS and ALCS was implemented with
0.18 µm 1P6M CMOS technology with an area of 1.3 mm2. The micrograph of the chip
is shown in Figure 7. The 2~3 V input and 1.25 V output buck converter utilizes an off-
chip SMD 47 µH inductor (Coilcraft Shielded 1812PS Series) with a DCR of <1.0 Ω and a
self-resonant frequency (SRF) of 17 MHz. A relatively larger value of an inductor value is
selected to reduce the inductor ripple to <50% of the maximum load current. Furthermore,
an output off-chip SMD ceramic 10 µF filtering capacitor (AVX Hi-Cap MLCC) has an
estimated ESR of ~0.5 Ω. The capacitor type is chosen to be an SMD ceramic capacitor
since it is the most inexpensive type compared to tantalum or aluminum electrolytic ones.
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However, the tradeoff comes with the relative larger value of ESR, which will lead to
a larger peak-to-peak ripple riding on the output voltage of the buck converter. Thus,
relatively larger values of the inductor and capacitor are chosen so as to mitigate the ripple
problem. Furthermore, this helps to yield a more accurate sensing of the load current, as
previously mentioned. Take note that the choice for the type of capacitor varies, depending
on the application specification. A prototype of the buck converter with the TFCS and
ALCS chip is also presented in Figure 8. It can be observed that our proposed work uses
the DIP package with 48 leads. During testing, this is held tightly by the adjustable socket
shown in Figure 8.
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The performance evaluation is carried out in three general steps: (1) the performance of
our proposed TFCS and ALCS is examined in light loading conditions, (2) a comparison of
the power efficiency is made between our proposed work and the conventional PWM/PFM
controller and (3) the design specification and performance comparison are summarized in
Table 1. The proposed TFCS and ALCS allow the frequency to be reduced under different
low load conditions. It achieves a peak efficiency of 92.7%, operating at 250 kHz with
VBATT = 2 V, VOUT = 1.25 V and ILOAD = 30 mA, as shown in Figure 9. The top waveform
is the voltage Vx, while the bottom one shows the integrated voltage Vint. This proves
that our proposed TFCS and ALCS buck converter is stable and achieved high efficiency
under the low load condition. However, taking a closer look at the Vx waveform, there
is a significant interval whereby there are body diode conduction losses which degrade
the power efficiency. This is because our proposed buck converter uses a fixed deadtime
controller. One of our current and future works has therefore included a novel deadtime
controller. Furthermore, from Figure 9, it is evident that our proposed controller does not
enter DCM operation in a light load condition. The rationale is that for DCM operation,
the node, Vx, will oscillate when both the power transistors are idling. This is due to
the existence of the LC tank formed by the inductor and the parasitic capacitance at that
node. Thus, this will incur additional power losses. Recent research efforts have included
another free-wheeling switch [9,28,29] to dampen the sub-harmonic oscillation. However,
this will incur an additional silicon area, as the aspect ratio of the additional switch is
comparable to the size of a power transistor. Furthermore, it adds complexity to the circuit
design, as another control signal has to be included to determine the turning on/off of
this free-wheeling switch. Therefore, our proposed work uses a relatively larger inductor
value to reduce the ripple at the output voltage of the buck converter while operating in
CCM mode. This will allow the proposed ALCS to work ideally, as any undesirable voltage
ripple will cause inaccuracies in the sense voltage, Vsense. This can be considered a minimal
tradeoff for our proposed TFCS and ALCS buck converter compared to other research
studies in the literature.
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Figure 9. Peak efficiency achieved—waveform of Vx and Vint (VBATT = 2 V, Vout = 1.25 V,
Freq = 250 kHz and Iload = 30 mA).

Figure 10 shows the power efficiency between our proposed TFCS and ALCS converter
and a conventional PWM/PFM controller under varying load conditions. A peak efficiency
of about 92.7% can be achieved when our proposed buck converter is operating at 250 kHz
with a 2.0 V input voltage and a 30 mA load current. It can be observed that the efficiency
degrades when the input voltage is higher. This is because the buck converter has to
dissipate more energy to bring it down to the same output voltage.
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conventional PWM/PFM controller under different loading conditions (P—Proposed Work;
C—Conventional Work).

The efficiency improvement graph, shown in Figure 11, compares our proposed
work with the latest state-of-the-art work [28]. This shows that our improvement in
power efficiency ranges approximately from 4 to 6% across a 10~50 mA load current. Our
proposed specification and performance are summarized in Table 1. It clearly shows that
the proposed TFCS and ALCS technique yields an improvement in the power efficiency
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(4~6%) compared to some of the latest state-of-the-art research work [17–19]. However,
one drawback is the fact that the external inductor and capacitor are relatively larger in
our proposed work so as to achieve a smaller peak-to-peak output voltage ripple for a
more accurate sensing of the load current. The measured line and load regulation for our
proposed work are about 21 mV/V and 0.53 mV/mA, respectively. The output voltage
recovery time subjected to a sudden load change from no load to full load is <20 µs.
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Figure 11. Efficiency improvement of the proposed TFCS and ALCS buck converter compared to the
latest state-of-the-art work [28].

4. Discussion and Conclusions

One area of improvement is to use the MOSFET segmentation technique proposed
in [30–32], which can help to further improve the power conversion efficiency. At the
same time, our proposed work is not optimized for deadtime control; hence, there is
ongoing current research into designing a deadtime controller to minimize body diode
conduction loss, which will improve efficiency. This ongoing work into deadtime control
is a continuation of this proposed work. In addition, the simulation results for the power
efficiency of our proposed work are about 2~3% better than our testing results. The
rationale for this margin is due to the power loss in the resistance of the Au (Gold) wire
bonding, the DIP package leads and the resistance in the traces of the PCB board. Careful
consideration, recommended by [33], has been taken into account when designing the PCB
board so that important power/ground lines have as short but as wide a trace as possible to
minimize unnecessary power losses. Overall, our proposed TFCS and ALCS indeed yield
an efficiency improvement over some of the latest research works, though with a relatively
larger external inductor and filtering capacitor. At last, a buck DC-DC converter with the
proposed TFCS and ALCS has been designed and implemented with 0.18 µm 1P6M CMOS
technology, occupying an area of 1.3 mm2. It yields a peak efficiency of about 92.7% when
the buck converter is operating at 250 kHz with a 2.0 V input voltage and a 1.25 V output
voltage with a load current of 30 mA. The proposed buck converter is implemented and
dedicated for smartphone application, whereby it spends most of its time under idle, low
load conditions.

5. Future Work

One aspect of future work is to design and implement envelope tracking, which
is important for smartphone applications, whereby it uses 3G/4G technology. For the
proposed work in this thesis, it focuses more towards achieving higher power efficiency by
optimizing body diode conduction, reverse inductor current and better delivery for a wide
range of load currents. The next aspect of future work includes working on the circuit block
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of the battery charger, which comprises the detection mechanism for a low battery shelf
life. Another aspect of future work will focus on the safety aspect of the DC-DC converter,
which consists of over-current and over-voltage protection circuits. In addition, since the
power transistors are drawing a huge amount of current and causes the overheating of
the PCB board, thermal management has to be employed to ensure long-term reliability.
This also includes employing on-chip temperature sensors to detect hot-spots during chip
measurement. The final aspect of future work is to design on-chip LDO regulators, which
can be used for silicon-on-chip (SoC) integration and yet be able to yield high PSR values
at frequencies above 10 MHz.
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Appendix A

Sensing the inductor current in a buck converter is an important function of the DC-DC
controller. Its current-sensing circuit should be easy to implement without increasing the
form factor. Furthermore, the current sensor has to be fast for a high-switching frequency
DC-DC converter in order to reduce the inductor size. Past research works yielded many
interesting current sensing techniques. One of them is to sense the on-resistance of the
power transistor directly [34], but the drawback lies in the fact that the resistance value
may change significantly by ±30% due to the PVT variation during the fabrication of the
die. Hence, this technique is unreliable. Another work [35] instead proposed a novel
self-learning technique to sense the instantaneous induct current via the parasitic resistance
(DCR) of the inductor. One of the benefits include minimal power losses and thus makes it
applicable to varying loading conditions. In addition, it completely eliminates unnecessary
losses by not introducing any additional passive components in the power line. However,
it requires a very complex circuit implementation, which occupies a large silicon area
overhead. At the same time, the more widely used approach is based on the sensing of the
current [36–38] that passes through the power transistor. It employs the use of matched
current mirrors and a high gain amplifier to mirror a fraction of the current going through
the respective power transistor to the sensing transistor. However, one of its disadvantages
is that its accuracy is poor, as it depends heavily on the matching performance of the
current mirror in the ohmic region. Furthermore, channel-length modulation and process
mismatch will induce an error of >15% [39]. On the other hand, there is a proposed use
of a current offset cancellation technique [40] to further improve the accuracy of current
sensing. However, one of its minor drawbacks is the relatively larger quiescent current
required to provide the driving capability, which leads to a degradation in the power
efficiency. Hence, it suffers an imminent tradeoff between speed and accuracy. Some other
techniques employ the advantage of the availability of a bipolar transistor in the BiCMOS
process [41] to enhance the accuracy of its current sensing capability. This, however, proves
to be too costly to implement. There is also a filter approach, which senses the current
in a continuous mode [42] by applying an inductor voltage across a tuned low-pass filter
and by sensing the filter current. One of its advantages is that it has minimal switching
noise, but its inherent accuracy is highly dependent on the DCR of the inductor and the
tuning accuracy of the filter, which may lead to a variation of >±20%. One of the more
recent works [19] uses a tri-mode operation (PFM, PWM and DGM) to handle a 100,000×
load range. It works on the fact that by reducing the comparator current, a delay-based
hysteresis window adaptive to the load current is generated, thereby reducing the total
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switching power loss. However, this converter is implemented in 0.18 um BCD technology,
which is too costly for us to handle, and the power efficiency seems to degrade drastically
under very light load conditions (<100 µA). At the same time, there are other converters
which are capable of providing a wide load range with good efficiency and consuming
a very low quiescent current, which will no doubt be the major power consumption in
sensing or low load mode [17,18,43–48].

However, in our proposed TFCS and ALCS DC-DC buck converter, it employs a very
accurate ALCS circuit, which is an extension and improvement to the prior work [20]. It
is able to achieve high accuracy in the current sensing at the tradeoff of a slightly higher
quiescent power consumption and a larger inductor value so as to minimize the output
voltage ripple, which will lead to inaccuracies in the sensing voltage, Vsense.
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