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Abstract: The current audio single-mode self-supervised classification mainly adopts a strategy based
on audio spectrum reconstruction. Overall, its self-supervised approach is relatively single and cannot
fully mine key semantic information in the time and frequency domains. In this regard, this article
proposes a self-supervised method combined with knowledge distillation to further improve the
performance of audio classification tasks. Firstly, considering the particularity of the two-dimensional
audio spectrum, both self-supervised strategy construction is carried out in a single dimension
in the time and frequency domains, and self-supervised construction is carried out in the joint
dimension of time and frequency. Effectively learn audio spectrum details and key discriminative
information through information reconstruction, comparative learning, and other methods. Secondly,
in terms of feature self-supervision, two learning strategies for teacher-student models are constructed,
which are internal to the model and based on knowledge distillation. Fitting the teacher’s model
feature expression ability, further enhances the generalization of audio classification. Comparative
experiments were conducted using the AudioSet dataset, ESC50 dataset, and VGGSound dataset.
The results showed that the algorithm proposed in this paper has a 0.5% to 1.3% improvement in
recognition accuracy compared to the optimal method based on audio single mode.

Keywords: audio classification; comparative learning; knowledge distillation; masked auto-encoder;
self-supervision; transformer

1. Introduction

In recent years, with the rapid development of mobile multimedia technology, the
exponential growth of audiovisual data have increased the demand for the capability of
audio classification [1]. Audio classification, incorporating relevant technologies from
machine learning and signal processing, plays a crucial role in applications such as speech
recognition, sound event detection, emotion analysis, music classification, and speaker
recognition. The objective of audio classification is to accurately categorize audio signals
into predefined classes, facilitating the identification and understanding of different sound
sources for improved downstream applications.

Although supervised audio classification methods have demonstrated effectiveness
in many scenarios, they heavily rely on extensive labeled data, leading to increased costs
in practice. Simultaneously, in numerous experiments, it has been observed that directly
applying label-based discrete learning to audio information processing can result in classi-
fication bias [2]. The reason is that although the audio signal is continuous, the duration of
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the same sound event varies in different situations. Uniform discretization learning can
easily lead to learning bias. In other words, supervised discrete learning fails to effectively
elicit advanced semantic features from continuous audio and discard redundant details.

The reconstruction aspect can be divided into two major categories: spectrogram
reconstruction and feature reconstruction. For the former, considering the two-dimensional
specificity of audio spectrograms, self-supervised strategies can be constructed in a single
dimension of time or frequency or jointly in the time-frequency dimension. For the latter,
model-internal or teacher-student model learning strategies based on knowledge distillation
can be constructed. By conducting more comprehensive self-supervised learning from
these two dimensions, the recognition ability of audio single-modal classification is further
optimized.

In light of the comprehensive analysis above, this paper introduces an innovative
algorithm for audio classification, termed ACM-SSKD (Audio Classification Method based
on Self-Supervised and Knowledge Distillation). The proposed method offers the follow-
ing advantages:

(1) Multifaceted Self-Supervised Learning Mechanisms: Introducing various self-
supervised learning mechanisms based on spectrograms in audio classification, we
construct two self-supervised strategies: time-frequency random masking and spectro-
gram block random masking. Through contrastive learning, we achieve discriminative
feature learning, and by self-learning information reconstruction through masking,
we effectively capture intricate details in the audio spectrum.

(2) Feature Reconstruction Strategies: In the realm of feature reconstruction, two teacher-
student learning strategies are devised. Leveraging knowledge distillation learning
mechanisms, these strategies enhance model feature representation, leading to rapid
convergence and efficient learning.

(3) Experimental Validation: Experimental results demonstrate the effectiveness of com-
bining spectrogram-based self-supervised strategies for learning intricate audio fea-
tures. Furthermore, feature reconstruction enhances model learning, yielding excellent
results in multiple publicly available audio classification test sets. Notably, in pure
audio recognition on the AudioSet-2M, ESC-50, and VGG Sound datasets, the pro-
posed method achieves accuracy rates of 49.9%, 98.7%, and 61.3%, respectively. These
results surpass the current state-of-the-art single-modal methods by 1.3%, 0.6%, and
0.5%, respectively.

2. Related Work

Over the past few years, supervised audio classification methods have demonstrated
excellent performance in various publicly available datasets [1,3–7]. In the specific model-
ing process, supervised learning for audio classification assigns a discrete label or category
to a segment of continuous audio information. The audio information is then projected
through the model to generate feature vectors with rich audio semantics, which are sub-
sequently mapped to discrete labels, ultimately achieving the goal of classification. AST
(Audio Spectrogram Transformer) [5], utilizing audio spectrograms as input, employs two-
dimensional convolution to extract serialized features, followed by cascaded operations of
multiple transformer blocks to obtain global features of the audio sequence and improve
recognition performance significantly. Panns [1] leverages the large-scale audio dataset
AudioSet for training, exploring various aspects of audio classification effects, such as
depth, feature dimensions, dropout ratios, and spectrum generation methods, proposing
high-quality models. Considering that CNN (Convolutional Neural Network) [8,9] focuses
on the local context, PSLA (Pretraining, Sampling, Labeling, and Aggregation) [10] intro-
duces a pooling attention mechanism for feature enhancement to capture global audio
information and improve classification performance. To effectively enhance supervised
audio classification, Khaled Koutini et al. [11] decomposes audio Transformer position
encoding into temporal and frequency components, supporting variable-length audio
classification. Arsha Nagrani [12], combining Transformer modeling, promotes the model’s
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learning ability through an intermediate feature fusion approach. Ke Chen [13] introduces
a hierarchical audio Transformer with a semantic module that combines with input tokens,
mapping the final output to class feature maps and enhancing classification performance.
Eranns [14] reduces computational complexity by introducing model scale hyperparame-
ters. By utilizing optimal parameter values, computational efficiency is improved, leading
to potential savings or performance enhancement.

Additionally, to fully leverage the benefits of supervised pre-training and further
enhance the effectiveness of audio classification, many methods employ model weights
from the image domain. AST [5] initializes its model based on the pre-trained model on
ImageNet using VIT [15], effectively boosting model performance. Hts-at [13] utilizes pre-
training weights from the Swin Transformer [16] on image datasets, significantly improving
audio classification results. PaSST [11] incorporates pre-training weights from DeiT [15].
To effectively confirm the appropriate number of hidden layer nodes in the neural network,
Xuetao Xie [17] using the L1 regularization method proposes several effective methods to
determine the optimal number of hidden nodes for a perceptron network.

From another perspective, advanced semantic abstraction of continuous audio can be
achieved through signal autoencoding-decoding reconstruction. This technique is a power-
ful means of self-supervised learning. Compared to supervised learning, self-supervised
learning does not require a large number of labeled samples. From this perspective, self-
supervised data are easily obtainable. Similar to other self-supervised learning methods,
self-supervised audio training typically aims to learn its representations through contrastive
learning or reconstruction.

Self-supervised techniques have found numerous applications in recent years in audio
classification [18–23]. Concurrently, various studies [24–29] indicate that reconstruction-
based self-supervised techniques are not only effective for speech but also exhibit robust
learning capabilities in modeling information such as video images and multimodal fusion.

Considering that audio often encompasses a variety of environmental events, such as
speech, ambient sounds, and musical beats, often accompanied by considerable ambient
noise, this poses significant challenges for universal audio classification modeling. In
response, approaches like Dading Chong et al. [18] and Hu Xu et al. [19] apply masking
operations to spectrograms, in the pre-training stage, and self-supervised acoustic feature
reconstruction is used as the pre-training target. COLA [30] to achieve good pre-training
results, during the pre-training period, comparative learning is performed on the audio
dataset, assigning high similarity to data from the same audio segment, and low simi-
larity to data from different segments. Eduardo Fonseca et al. [31] enhance sound event
learning through different view-enhanced learning tasks, demonstrating that unsupervised
contrastive pre-training can alleviate the impact of data scarcity and improve general-
ization. For more effective contrastive learning, Clar [32] proposes several efficient data
augmentation and enhancement methods. Luyu Wang [33] introduces a contrastive learn-
ing method with audio samples in different formats, maximizing consistency between
original audio and its acoustic features. To enhance generalization and obtain a robust
audio representation, Daisuke Niizumi [34] trained and learned different audio samples
using mean square error loss and exponential moving average optimization strategies. A
patch-based self-supervised learning method is proposed by Ssast [24] for pre-training and
achieving good performance. Mae-ast [35], based on the Transformer encoding-decoding
structure, reconstructs pre-training tasks where the decoder is used for masked reconstruc-
tion, demonstrating excellent recognition performance in multi-audio classification tasks.
Andrew N Carr [36] sequentially shuffles input audio features, implementing end-to-end
model pre-training with a differentiable sorting strategy, and exploring self-supervised
audio pre-training methods with masked discrete label prediction targets. In order to
effectively distinguish unsupervised features, AARC [37] integrates the selection of unsu-
pervised features and the determination of network structure into a unified framework,
while adding two Group Lasso losses to the objective function.
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Although self-supervised spectrogram pre-training strategies have shown good results
in audio classification, some methods argue that this self-supervised reconstruction is
relatively singular and can only restore low-level time-frequency features, with weaker
capabilities in advanced audio semantic abstraction [38,39].

3. Multi-Dimensional Self-Supervised Learning

Figure 1 illustrates the training process for audio recognition in this paper, emphasiz-
ing two key components: Multi-Dimensional Self-Supervised Learning (Multi-SSL) and
Knowledge Distillation.
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Figure 1. Workflow of the Proposed Method ACM-SSKD.

Initially, one-dimensional audio signals are transformed into two-dimensional Mel
spectrograms. During training, in the first iteration, audio samples undergo Multi-SSL
operations to acquire detailed internal descriptions through information reconstruction.
This forms the basis for training the discrete-label audio classification task, enhancing
training efficiency and model generalization through knowledge distillation. The model
from the first iteration is used as the initialization, undergoing Multi-SSL training once
again to create a new self-supervised model with audio knowledge extraction capabilities.
This iterative process is repeated through knowledge distillation training, demonstrating
its effectiveness in improving classification outcomes. The detailed algorithm process is
shown in Algorithm A1 in Appendix A.

Figure 2 outlines the modeling process for the proposed Multi-Dimensional Self-
Supervised Learning model, comprising three main parts: self-supervised information
construction, self-supervised modeling, and information reconstruction with feature fitting.
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3.1. Self-Supervised Information Construction

The conversion of one-dimensional audio information into two-dimensional spec-
trograms facilitates its treatment as an image. Simultaneously, owing to the temporal-
frequency transformation during spectrogram conversion, the horizontal axis of the spec-
trogram can be interpreted as the time dimension, while the vertical axis represents the
frequency dimension. Building upon these considerations and drawing inspiration from
AST [5], this paper introduces a framework for Multi-Self-Supervised Learning (Multi-SSL).
Through the establishment of a time-domain-frequency-domain masked self-supervision
mechanism (as depicted in Figure 3), the model learns the inter-domain relationships be-
tween different features. Concurrently, with the spectrogram block masked self-supervision
technique (illustrated in Figure 4), the aim is to harness minimal domain knowledge to
achieve robust representational capabilities—a strategy validated in image self-supervised
modeling [40].
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In the construction of the time-domain-frequency-domain mask (intra-patch mask),
technical details from audio processing are incorporated [41]. In contrast to random
masking between the two domains, a departure is made to align with the spectrogram
block corresponding to the transformer. Random masking is implemented within each
patch, as illustrated in Figure 3.

During the spectrogram block masking (inter-patch mask) phase, the entire spectro-
gram is treated as a whole, enabling reconstruction learning through masking of the entire
patch (Figure 4). This approach, proven effective in image recognition [40] and multimodal
modeling [25], takes into account the impact of the underlying distribution of low-level
image features on mask selection. As depicted in Figure 5, this paper randomly samples a
hundred instances from the Audio Set dataset and calculates the distribution of Histogram
of Oriented Gradients (HOG) features within each patch. Notably, key audio events often
concentrate in positions with high feature distribution variance. Consequently, considering
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this variance during random sampling proves meaningful, a notion validated in subsequent
ablation experiments, as expressed in Formula (1).

Spatch_mask = 1/e
(x−µ)2

σ2 (1)

Drawing on the mean and variance of HOG feature values within each patch, we
construct sampling probabilities. The hypothesis is that events representing sound should
exhibit a Gaussian distribution within a certain time step. Accordingly, the closer a sample
is to the mean, the higher its sampling probability. In Formula (1), x denotes the gradient
mean within each patch, µ signifies the mean gradient across all patches, and σ represents
the gradient variance across all patches.
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3.2. Multi-Dimensional Self-Supervised Modeling

During the inter-patch mask phase, as the remaining image blocks decrease in size after
random masking, an additional encoding module is introduced. In this regard, the paper
draws inspiration from the strategy employed in Image MAE (Masked AutoEncoders) [40].
This modeling process yields the encoding features of the spectrogram blocks (inter-patch
feature).

Within the self-supervised modeling framework, the time-frequency-domain mask
(intra-patch mask), original information (block segmentation without masking), and spec-
trogram block encoding features (inter-patch feature) are simultaneously input. Through
the Audio Feature Transformer, three serialized features representing the audio are
obtained—the feature of the intra-patch mask, the feature of the inter-patch mask, and
the feature of the patch raw. Simultaneously, a series of perceptron layers decode the fea-
tures, resulting in corresponding reconstructed spectrograms (restored image of intra-patch,
restored image of raw, restored image of inter-patch).

3.3. Information Reconstruction and Feature Fitting

The subsequent step involves constructing self-supervised losses, encompassing spec-
trogram reconstruction and feature reconstruction. For the reconstructed spectrograms
(restored image of intra-patch, restored image of inter-patch), mean squared error recon-
struction (MSE loss) is employed. Similar to the construction of the spectrogram block
mask (inter-patch mask), The HOG gradient prior is considered during loss calculation.

Lintra−patch_mask
restore =

1
M

M

∑
m=1

W

∑
w=1

H

∑
h=1

(
1

e(x−µ)2/σ2

(
xpre − xgt

)2
)

(2)

Lintra−patch_mask
restore denotes the intra-patch spectrogram reconstruction loss, where xpre

signifies the predicted pixel values, and xgt represents the true values of the spectrogram
pixels. Similarly, the inter-patch spectrogram reconstruction follows the same approach and
can be represented as Linter−patch_mask

restore . The overall reconstruction loss is as in Formula (3).
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Lall
restore = Lintra−patch_mask

restore + Linter−patch_mask
restore (3)

In terms of feature reconstruction, given that transformer serialized modeling involves
multiple sets of features and includes a single sequence feature for final classification
(utilizing AVG pooling in this paper), reconstructed serialized features (feature of intra-
patch mask, feature of inter-patch mask, feature of patch raw) are fitted using a combination
of mean squared error and KL divergence.

Lintra−patch_mask
mse =

1
M

M

∑
m=1

W

∑
w=1

H

∑
h=1

(
( f pre − fraw

)2
)

(4)

Lintra−patch_mask
KL =

1
M

M

∑
m=1

W

∑
w=1

H

∑
h=1

(
φ( fraw)

φ( fraw)

φ
(

fpre
) ) (5)

Lintra−patch_mask
mse illustrates the use of MSE loss for intra-patch feature reconstruction to

fit the overall feature. To bring each dimension of intra-patch features closer to the true
values in the distribution, Lintra−patch_mask

KL KL loss is introduced, as outlined in Formula (5).
fpre denotes the features obtained after audio feature transformer operation for intra-patch,
while fraw represents the features acquired from patch raw. It is noteworthy that the features
obtained from the image block without masking are treated as the fitting target, aiming
to further restore and reconstruct at the feature level. A similar approach is adopted for
inter-patch feature reconstruction, with MSE loss represented as Linter−patch_mask

mse , and KL
loss represented as Linter−patch_mask

KL . The overall feature minimization reconstruction loss is
expressed in Formula (6).

Lall
mse = Lintra−patch_mask

mse + Linter−patch_mask
mse (6)

Formula (7) represents the distribution minimization reconstruction loss for features.

Lall
KL = Lintra−patch_mask

KL + Linter−patch_mask
KL (7)

The final feature for audio classification is a single sequence feature obtained through
AVG pooling. To enhance discriminability, contrastive learning (Contrast loss) is employed.

Lcontrast(pre, y) =
1
B

B

∑
b=1

log
exp(C(preb, yb)/τ)

B
∑

k=1
exp(C(preb, yk)/τ)

(8)

Formula (8) outlines the contrastive learning strategy adopted in this paper. Here,
C(preb, yk) = preT

b yk/
∥∥preT

b

∥∥∥yk∥ indicates comparison through cosine similarity between
the predicted feature preb and the fitted feature yk, τ denotes the temperature control
parameter, B represents the batch size during training, and Lcontrast denotes the modeled
contrast loss.

In specific experiments, intra-patch and inter-patch are considered as data augmenta-
tions for patch raw. The constructed contrastive loss function is expressed in Formula (9).

Lall
contrast = Lcontrast

(
preintra−patch, prepatch−raw

)
+ Lcontrast

(
preinter−patch, prepatch−raw

)
(9)

In summary, this paper’s self-supervised approach involves two functionalities (spec-
trogram reconstruction and feature fitting) and three types of loss functions (MSE loss, KL
loss, and Contrast loss). Considering the task’s relevance in specific experiments, similar
learning tasks are assigned equal weights. Thus, the eight loss functions can be consolidated
into three groups, as outlined in Formula (10).
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Ltotal = α
(

Lall
restore + Lall

mse

)
+ βLall

KL + Lall
contrast (10)

In the above equation, α and β, respectively represent the weights assigned to each
group of loss functions.

3.4. Knowledge Distillation

As shown in Figure 6, knowledge distillation based on the teacher model, can be
regarded as an expedient means to accelerate iterations, leveraging the exemplary BEATS
model [21] as the target for feature fitting in the context of supervised learning with
discrete labels.
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During training, to guide the network towards a more stable convergence, the supervised
cross-entropy classification loss and the self-supervised feature fitting loss are combined.

Lcls = LCE(Fcls, Fteacher) (11)

Lregress = Lmse(Fcls, Fteacher) (12)

L = Lcls + γLregress (13)

Here, Lcls represents the classification cross-entropy loss, Lregress is the feature regres-
sion loss, Fcls denotes the features obtained through the audio feature transformer network
mentioned in Section 3.2, and Fteacher signifies the features being fitted, obtained through
BEATS. The parameter γ serves as the loss weight control factor.

4. Experiments

To assess the effectiveness of the proposed method in this paper, three datasets Au-
dioset [42], VGGSound [27], and ESC-50 [43], were employed for evaluation. AudioSet is
a large-scale audio classification dataset comprising over two million 10-s YouTube clips,
spanning 527 audio categories. Each sample contains one or more audio categories, and
the dataset is partitioned into class-balanced sets (22 K samples), class-imbalanced sets
(2000 K samples), and an evaluation set (20 K samples). To address the temporal nature
of YouTube videos, this study downloaded and parsed 20 K class-balanced sets, 1900 K
class-imbalanced sets, and 18 K evaluation sets, aligning with prior work [21]. VGGSound
encompasses 200 K 10-s audio-video clips with 309 audio categories, featuring 183 K train-
ing samples and 15 K testing samples. ESC-50, an environmental sound classification
dataset, includes 2000 5-s audio samples across 50 audio categories.
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4.1. Impact of Multi-Dimensional Self-Supervised Tasks on Classification

To further elucidate the universality of incorporating self-supervised tasks in classifica-
tion recognition, this paper conducts experiments on both the intra-patch self-supervision
strategy (intra-SS) itself and the corresponding improvements and combinations of loss
functions. Similarly, experiments are conducted on the inter-patch self-supervision strategy
(inter-SS) itself and the corresponding combinations of loss functions.

In the experiments on the intra-patch feature map self-supervision strategy (intra-
SSR), concerning all sequence blocks of the spectrogram, this paper sets the number of
spectrogram blocks masked in each iteration to not exceed 50% of the total patch count.
Within each masked spectrogram block, there is a 30% probability of temporal masking, a
30% probability of frequency masking, and a 40% probability of joint temporal-frequency
masking. The range of frequency-domain and temporal-domain masking does not exceed
25% of each spectrogram block.

The notation “Audioset 20K” denotes that, during the discrete label training phase,
20,000 samples are randomly extracted from the Audioset dataset for training, with 10,000 sam-
ples used for evaluation. Similarly, “VGGSound 20K” indicates that, during the discrete label
training phase, 20,000 samples are randomly selected from the VGGSound training set for
training, and 10,000 samples are randomly selected from the test set for evaluation.

In Table 1, “Base” represents the baseline effect without an intra-patch self-supervision
strategy. After the incorporation of the self-supervision strategy (intra-SSR), there is a
gain of 0.3% and 0.5% in Audioset and VGGSound, respectively. By introducing HOG
feature priors in the reconstruction loss function (intra-SSR and HOG weight), further
improvements are observed in terms of accuracy.

Table 1. Impact of Intra-Patch Spectrogram Reconstruction on Classification Performance.

Comparison Metrics Base +Intra-SSR +HOG Weight

Audioset 20K 0.371 0.374 0.377
VGGSound 20K 0.537 0.542 0.544

When validating the intra-patch feature reconstruction self-supervision strategy (intra-
SSF), the experimental data, input spectrogram settings, and “Base” representing the
baseline results are consistent with Table 2. Incorporating the feature fitting MSE loss yields
varying degrees of improvement on both datasets. The addition of feature distribution
learning KL loss does not manifest improvement conclusions in the Audioset 20K dataset,
while a gain of 0.2% is observed in VGGSound 20K, suggesting that the generalizability of
feature fitting in audio classification tasks may not be consistent but potentially lacks side
effects. The improvement is relatively pronounced after introducing the contrast loss.

Table 2. Impact of Intra-Patch Feature Reconstruction on Classification Performance.

Loss Terms Audioset 20K VGGSound 20K

Base 0.377 0.544
+intra-SSF & mse 0.383 0.549
+intra-SSF & KL 0.383 0.551

+intra-SSF & cont 0.391 0.557

In the experiments on the inter-patch feature map self-supervision strategy (inter-SSR),
the initial exploration focused on the impact of varying proportions of masking in the
MAE encoding module on the ultimate classification performance. Table 3 showcases the
influence of different masking proportions within the MAE module on classification results,
revealing optimal stability at a masking ratio of 75%. This proportion was subsequently
employed in the specific classification experiments.
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Table 3. Impact of Inter-Patch Mask Ratios on Classification Performance.

Mask Ratios 45% 55% 65% 75% 85%

Audioset 20K 0.353 0.361 0.363 0.365 0.364
VGGSound 20K 0.526 0.539 0.541 0.542 0.542

Within the context of the inter-patch feature map self-supervision strategy (inter-SSR),
experiments were conducted using the Audioset and VGGSound datasets. In order to
visually observe the differences in HOG features in two-dimensional spectrograms of
different categories, we randomly selected four scenarios: train, machine, ship, and pigeon,
as shown in Figure 7, from top to bottom, they represent video images, one-dimensional
audio raw data, two-dimensional audio spectrograms, and spectrograms extracted through
HOG features. From the fourth line, we can see that after introducing HOG features prior
in the spectrogram highlight key regions and enhance the ability to distinguish between
different categories.
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Table 4 demonstrates the impact of incorporating the spectrogram HOG prior as
a weight in the training loss for audio classification. The results indicate further im-
provements in recognition metrics following the introduction of inter-patch feature map
self-supervision and the HOG feature prior.

Table 4. Impact of Inter-Patch Spectrogram Reconstruction on Classification Performance.

Loss Functions Base +Inter-SSR +HOG Weight

Audioset 20K 0.371 0.379 0.382
VGGSound 20K 0.537 0.544 0.546

When validating the inter-patch feature reconstruction self-supervision strategy (inter-
SSF), the experimental data and input spectrogram settings remained consistent with
Table 5. “Base” represents the baseline results based on inter-patch spectrogram recon-
struction. The incorporation of MSE loss for feature fitting resulted in varying degrees
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of improvement on both datasets. The addition of feature distribution learning KL loss
yielded slight gains on both datasets, further emphasizing the role of feature fitting in
audio classification tasks. The improvement was more pronounced after introducing the
contrast loss.

Table 5. Impact of Inter-Patch Feature Reconstruction on Classification Performance.

Loss Functions Audioset 20K VGGSound 20K

Base 0.382 0.546
+inter-SSF & mse 0.387 0.551
+inter-SSF & KL 0.389 0.552

+inter-SSF & cont 0.394 0.561

To further assess the benefits of jointly modeling intra-patch and inter-patch features
for audio classification results, this paper conducted corresponding explorations. Results in
Table 6 show that the combination of both approaches can further enhance the effectiveness
of audio classification.

Table 6. Impact of Multidimensional Self-Supervision on Classification Performance.

Self-Supervision Approaches Audioset 20K VGGSound 20K

Base 0.371 0.537
intra-SS 0.391 0.557
inter-SS 0.394 0.561

intra-SS & inter-SS 0.402 0.566

To validate the efficacy of the proposed multi-dimensional self-supervision, experi-
ments in multi-dimensional self-supervised training were conducted based on random
initialization for all aforementioned self-supervision experiments. To investigate the po-
tential enhancement in final results by utilizing pre-trained weights from existing models,
this paper explored the use of pre-training weights from ViT on ImageNet as initialization
parameters in subsequent experiments, as indicated in Table 7. “Random Init” denotes
the initial use of random initialization during self-supervised training, while “ImageNet
Init” signifies the use of pre-training weights from ViT on ImageNet. Results suggest the
effectiveness of employing weights from different domains for audio classification.

Table 7. Influence of Existing Weight Initialization on Multidimensional Self-Supervision.

Initialization Methods Audioset 20K VGGSound 20K

Random Init 0.402 0.566
ImageNet Init 0.404 0.570

4.2. Impact of Audio Knowledge Distillation on Classification

To further enhance the effectiveness of audio classification, we incorporated knowl-
edge distillation based on state-of-the-art models in addition to training with discrete labels.
In our specific experiments, we initialized the process with various parameters, includ-
ing AST [5], BEATS [21], and SPFA (Self-supervision with Parameter-Free Attention) [44],
aiming to validate the improvement in audio classification by employing different teacher
models as fitting targets. As shown in Table 8, the inclusion of teacher models resulted
in a notable enhancement in recognition performance, with higher-performing teacher
models yielding greater improvements in our algorithm. It is essential to note that, for a
more objective comparison, and to validate the effectiveness of our algorithm framework,
AST [5] was chosen as the teacher model in the knowledge distillation process during the
specific experiments.
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Table 8. Impact of Different Teacher Models on Classification Performance.

Teacher Model Categories Audioset 20K VGGSound 20K

None 0.402 0.566
AST 0.405 0.568
SPFA 0.406 0.571

BEATS 0.409 0.575

As previously described, this paper leveraged multidimensional self-supervision to
obtain pre-trained models. The audio classification was carried out through an alternating
process involving knowledge distillation and discrete label learning. Consequently, we
explored the impact of different iteration counts in these two distinct phases on recognition
results. In this experiment, BEATS was employed as the teacher model, and the results
in Table 9 indicate that multiple iterations of alternating training contribute to further
improvements in outcomes.

Table 9. Effect of Different Iteration Counts on Classification Performance.

Iteration Counts Audioset 20K VGGSound 20K

iter1 0.409 0.575
iter2 0.415 0.583
iter3 0.417 0.586

4.3. Comparative Analysis of Classification Results Using Different Methods

When evaluating the recognition performance among various methods, this study con-
ducted experiments on the aforementioned three datasets. Table 10 presents a comparative
analysis of the ACM-SSKD method proposed in this paper and various other methods on
the Audioset dataset. It is noteworthy that, for a more objective comparison, AST [5] was
chosen as the teacher model in the knowledge distillation process, and in the table, iter1–3
represents the number of iterations in the alternating training of multidimensional self-
supervision and knowledge distillation. The results indicate that under the same number
of iterations, our approach achieves recognition metrics 0.3–0.8% higher than the BEATS
method. Ensemble refers to the fusion of results from the three models in the experiment,
following a fusion approach consistent with AST.

Table 10. Comparative Performance of Different Methods on the Audioset Dataset.

Method Model Param Pre-Trained Data Audioset

PANN [1] 81M - 0.431
PSLA [10] 14M ImageNet 0.444

ERANN [14] 55M - 0.450
AST [5] 86M ImageNet + AudioSet 0.459

PaSST [11] 86M ImageNet + AudioSet 0.471
Hts-at [13] 31M ImageNet + AudioSet 0.471

MaskedSpec [18] 86M AudioSet 0.471
CAV-MAE [45] 94M ImageNet + AudioSet 0.449

SPFA (Single) [44] 87M - 0.464
BEATS (iter1) [21] 90M AudioSet 0.479
BEATS (iter2) [21] 90M AudioSet 0.481
BEATS (iter3) [21] 90M AudioSet 0.480

BEATS (iter3+) [21] 90M AudioSet 0.486
ACM-SSKD (iter1) 92M ImageNet + AudioSet 0.483
ACM-SSKD (iter2) 92M ImageNet + AudioSet 0.486
ACM-SSKD (iter3) 92M ImageNet + AudioSet 0.492

ACM-SSKD (Ensemble) 92M ImageNet + AudioSet 0.499
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The Model Parameters column in Table 10 represents the number of modeling param-
eters, and it can be seen that the parameter quantity in this paper is slightly higher than
BEATS and lower than CAV-MAE. The Pre-training Data column represents the dataset
used during pre-training. Combined with the weight initialization experiment in Table 7 of
this paper, it can be inferred to some extent that pre-trained with image modality data can
also promote the improvement of classification performance, similar conclusions can also
be drawn from Tables 11 and 12. From the perspective of correlation, imagenet does not
have a strong correlation with the current audio dataset, but pre-training based on it can
still improve the effectiveness. If combined with the video content of the audio itself, we
think it may have better results, which is also the direction we want to continue exploring.

Table 11. Comparative Performance of Different Methods on the VGGSound Dataset.

Method Model Param Pre-Trained Data VGGSound

VGGSound [27] 81M - 0.488
CAV-MAE [45] 87M ImageNet + AudioSet 0.595

MBT [12] 87M ImageNet 21K 0.523
Aud-SlowFast [46] - - 0.501

MAViL [25] 87M ImageNet + AudioSet 0.608
ACM-SSKD (iter1) 92M ImageNet + AudioSet 0.579
ACM-SSKD (iter2) 92M ImageNet + AudioSet 0.588
ACM-SSKD (iter3) 92M ImageNet + AudioSet 0.605

ACM-SSKD (Ensemble) 92M ImageNet + AudioSet 0.613

Table 12. Comparative Performance of Different Methods on the ESC-50 Dataset.

Method Model Param Pre-Trained Data ESC-50

PANN [1] 81M - 0.947
AST [5] 86M ImageNet 0.956

ERANN [14] 55M AudioSet 0.961
Audio-MAE [19] 86M AudioSet 0.974

Ssast [24] 89M AudioSet + LibriSpeech 0.888
MaskedSpec [18] 86M AudioSet 0.896

Mae-ast [19] 86M AudioSet + LibriSpeech 0.900
SPFA [44] 87M - 0.968

BEATS (iter3) [21] 90M AudioSet 0.956
BEATS (iter3+) [21] 90M AudioSet 0.981
ACM-SSKD (iter1) 92M ImageNet + AudioSet 0.962
ACM-SSKD (iter2) 92M ImageNet + AudioSet 0.975
ACM-SSKD (iter3) 92M ImageNet + AudioSet 0.984

ACM-SSKD (Ensemble) 92M ImageNet + AudioSet 0.987

Table 11 displays the comparative results of our method on the VGGSound dataset
against other methods. The experimental setup aligns with that of the audioset experiment.
As our approach is based on modeling the audio single modality, the results demonstrate a
noticeable improvement compared to VGGSound [27], CAV-MAE [31], MBT [12], and Aud-
SlowFast [46]. However, even in comparison with the audio-visual multimodal approach
of MAViL [25], our single-model approach exhibits a recognition difference of 0.3% in
iter3, highlighting the effectiveness of joint modeling of audio-visual multimodalities, an
optimization direction for future exploration. Nevertheless, through ACM-SSKD (ensemble)
joint recognition, our paper achieves the best results, further confirming the effectiveness
of joint recognition.

Table 12 presents a comparative analysis of our method on the ESC-50 dataset against
other methods. Similarly, AST [5] was selected as the knowledge distillation teacher model.
The results reveal that under the same number of iterations, our approach outperforms the
BEATS method in recognition metrics. Following ensemble result fusion, there is a further
enhancement in recognition results.
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5. Conclusions

This paper, grounded in the context of audio single modality, explores a novel frame-
work that integrates self-supervision with knowledge distillation to enhance the perfor-
mance of audio classification tasks. In the realm of self-supervision, we construct temporal
and frequency domain random masks, coupled with spectrogram block random masks
for information reconstruction. This approach facilitates effective learning of intricate
details and crucial discriminative information in audio spectra through contrastive learning
and feature distribution fitting. To enhance training efficiency, knowledge distillation is
employed to emulate the feature expression capabilities of a teacher model.

Multiple ablation experiments were conducted on publicly available datasets, includ-
ing intra-patch spectrograms and feature reconstruction, inter-patch spectrograms and
feature reconstruction, multidimensional self-supervision, pre-training weight loading,
and audio knowledge distillation based on teacher models. The results indicate that the
proposed ACM-SSKD algorithmic framework, as presented in this paper, through a multi-
dimensional self-supervised strategy based on audio spectrograms combined with teacher
distillation can effectively learn and distinguish complex audio features. Advanced re-
sults have been achieved in pure audio recognition on three publicly available datasets,
AudioSet-2M, ESC-50, and VGG Sound.

Although this paper attains commendable results in audio classification, it acknowl-
edges the associated challenges of increased training costs and operational complexity
in the two-stage training process. Simultaneously, our research reveals that exploring
the realm of audio-visual multimodal joint modeling holds promising implications for
advancing the effectiveness of audio classification. These two aspects serve as directions
for ongoing optimization and improvement in future research endeavors.
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Appendix A

In our experiments, one-dimensional audio was initially transformed into two-
dimensional spectrograms. For a T-second audio signal, computations were performed
with a 25ms calculation window and a 10ms step size. The quantized feature dimension was
set to 128, resulting in a two-dimensional spectrogram feature. Following these operations,
a 10-s audio yielded a resolution of 1024 × 128 for the two-dimensional spectrogram, while
a 5-s audio produced a resolution of 512 × 128. Similar to the approach in VIT [15], the
two-dimensional audio spectrogram is decomposed into non-overlapping 16 × 16 image
patches. Considering the practical significance of the two-dimensional spectrogram in
time and frequency, this can be understood as sampling with a step size of 16 in both
dimensions. Consequently, for a 10-s video, a sequence length of 512 and a feature length
of 256 were obtained as input; for a 5-s video, a sequence length of 256 and a feature length
of 256 were obtained.

https://research.google.com/audioset/download.html
http://www.robots.ox.ac.uk/~vgg/data/vggsound/
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When implement the pre-training algorithm in this paper, the AudioSet 2M dataset is
used. Similar to the AST [5] and BEATS[q0] models, the ACM-SSKD model has 12 encoder
layers based on the Transformer, with a hidden state dimension of 768 and 12 attention
heads. Adding two layers of perceptrons (768, 1536) and (1536, 768) to the last layer, and
the total model parameter approximately 92 M.

We use 32 V100 GPUs for training, and the dataset we used is AudioSet-2M. At each
iteration, the batch size is 256, and the learning rate is 0.00015. After each iteration, the learn-
ing rate decayed by 20%. The total training time for each iteration is approximately 28 h,
which includes multidimensional self-supervision and distillation based on teacher models.
For each audio sample, we randomly sample the start time and loop to extract 10 s of audio.
And the Algorithm A1 describes the training process of this article using pseudocode.

Algorithm A1 ACM-SSKD Pseudocode of this paper in a PyTorch-like style

# spectrograms: Convert audio signals into two-dimensional spectrogram image.
# intra_patch, patch, inter_patch: Blocking and masking operations.
# AFT: Audio feature Transformer, as shown in Figure 2.
# MAE: Audio mask auto encoder, as shown in Figure 2.
for iter in iters: # iters represents the number of iterations
for x in batch: #x is one-dimensional audio raw data

x_spec = spectrograms(x) # x_spec is two-dimensional spectrogram image
x_raw = patch(x_spec) # patch raw, as shown in Figure 2
x_imtra = intra_patch(x_raw) # intra-patch mask, as shown in Figure 2
x_inter = intra_patch(x_raw) # intra-patch mask, as shown in Figure 2

# Multi-SSL process, res * and fea *, respectively, represent reconstructed images
# and features extracted through networks

res_raw, fea_raw = AFT(x_raw)
res_intra, fea_intra = AFT(x_intra)
res_inter, fea_inter = AFT(MAE(x_inter))
#restore spectrogram image, WMse as shown in Formula (3).
l_spec_res = WMse(res_intra, res_raw) + WMse(res_inter, res_raw)
# restore the features generated from the patch raw, MSE as shown in Formula (6).
l_fea_mse = Mse(fea_intra, fea_raw) + Mse(fea_inter, fea_raw)
# restore the features generated from the patch raw, KL as shown in Formula (7).
l_fea_kl = KL(fea_intra, fea_raw) + KL(fea_inter, fea_raw)
# comparative learning of features, Cont as shown in Formula (9).
l_fea_cont = Cont(AVG(fea_intra), AVG(fea_raw)) + Cont(AVG(fea_inter), AVG(fea_raw))
l_multi_ssl = α × (l_spec_res + l_fea_mse)+ β × l_fea_kl + l_fea_cont
#end for Multi-SSL

# Knowledge distillation process.
# CE as shown in Formula (11), Reg as shown in Formula (12).
# fea_cls is generated by AFT network after Multi-SSL operate.
# fea_teacher is generated by teacher model.
l_cls = CE(fea_cls, fea_teacher)
l_res = Mse(fea_cls, fea_teacher)
l_kd = l_cls + γ × l_res
# end for Knowledge distillation
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