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Abstract

:

The integrated circuit (IC) supply chain has become globalized, thereby inevitably introducing hardware Trojan (HT) threats during the design stage. To safeguard the integrity and security of ICs, many machine learning (ML)-based solutions have been proposed. However, most existing methods lack consideration of the integrity of HTs, thereby resulting in lower true negative rates (TNR) and true positive rate (TPRs). Therefore, to solve these problems, this paper presents a HT detection and diagnosis method for gate-level netlists (GLNs) based on ML and graph theory (GT). In this method, to address the issue of nonuniqueness in submodule partition schemes, the concept of “Maximum Single-Output Submodule (MSOS)” and a partition algorithm are introduced. In addition, to enhance the accuracy of HT diagnosis, we design an implant node search method named breadth-first comparison (BFC). With the support of the aforementioned techniques, we have completed experiments on HT detection and diagnosis. The HT implantation examples selected in this article are sourced from Trust-Hub. The experimental results demostrate the following: (1) The detection method proposed in this article, when detecting gate-level hardware trojans (GLHTs), achieves a TPR exceeding 95%, a TNR exceeding 37%, and F1 values exceeding 97%. Compared to existing methods, this method has improved the TNR for GLHTs by at least 25%. (2) The TPR for diagnosing GLHTs is consistently above 93%, and the TNR is 100%. Compared to existing methods, this method has achieved approximately a 4% improvement in the TPR and a 15% improvement in the TNR for GLHT diagnosis.
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1. Introduction


Nowadays, the globalization of the integrated circuit (IC) industry chain has led to increased convenience, but it has also introduced vulnerabilities. These vulnerabilities can be exploited by attackers to implant a malicious module known as a hardware Trojan (HT) into an IC module [1,2]. Security attacks on the IC industry pose serious threats to people’s privacy and national security. Therefore, it is crucial to address this issue to ensure the continued reliability, security, and privacy protection of ICs.



The concept of HTs was first introduced in 2007 by Agrawal et al. [3]. In 2009, Jin et al. [4] specified the definition and composition of HTs. Subsequently, a series of HT detection methods have been presented one after another, such as side-channel analysis (SCA) [3,5,6,7], logic testing (LT) [8,9,10,11], formal verification (FV) [12,13,14], and gate-level feature extraction (GLFE) [15,16,17,18,19,20,21,22,23,24,25,26,27]. However, existing methods have several limitations. (1) GLFE needs golden GLN designs as reference. (2) SCA fails to detect small HTs because they are vulnerable to process variations and environmental noise. (3) LT requires a significant amount of time for design or enumeration. (4) For complex circuits, building an FV model is very challenging. Taking everything into account, we choose GLFE as the detection method and gate-level hardware trojan (GLHT) as the test HT. Firstly, GLFE tends to incorporate machine learning (ML) and has achieved good results. Secondly, GLHTs can be diagnosed through changes in the structure of the circuit diagram. However, most of the existing GLFE methods detect each node in the netlist directly, which can directly complete the diagnosis, but lack consideration for the integrity of the HTs, thus leading to the following problems: (1) Easily misjudging non-HT nodes with features similar to HT nodes, thereby resulting in low true negative rates (TNRs). (2) Easily missing HTs that only show relevant features on the whole, thereby resulting in low true positive rates (TPRs). (3) Some methods may partition submodules differently, thereby resulting in a decrease in the detection accuracy of the entire netlist.



Based on the issues summarized above, this paper presents an HT detection and diagnosis method for gate-level netlists (GLNs) based on ML and graph theory (GT). The main process is as shown in Figure 1. Firstly, we partition the circuit diagram of a netlist into several maximum single-output submodules (MSOSs) and extract 24 HT-related features. Then, the chi-square tests and variance filtering methods are utilized to filter the features of each MSOS and adjust the hyperparameters until achieving the best balanced accuracy. We repeat this process for the sample to construct a specific supervised learning model. After that, we can use this learning model to make label predictions and obtain a detection report. Subsequently, by comparing the circuit diagram structures of the target netlist and the GLN, the additional nodes implanted in the target netlist can be accurately identified. Finally, we take the intersection of the nodes detected using ML and the additional implanted nodes found in the previous step to obtain the diagnosis report.



The contributions of this paper are summarized as follows:




	(1)

	
An HT detection and diagnosis method for GLN based on ML and GT is proposed.




	(2)

	
This paper, for the first time, proposes the concept and partition algorithm of MSOS to address the issue of nonunique submodule partition.




	(3)

	
A total of 24 HT-related features are selected and extracted, including circuit diagram structure and static circuit attribute features.




	(4)

	
We present a GT-based GLHT diagnosis method, which takes into account the comprehensiveness of HTs to fine-grain discover their locations.




	(5)

	
In the implanted node search experiment, we propose the breadth-first comparison (BFC) algorithm, thereby increasing the diagnosis success rate.









The structure of this article is arranged as follows: Section 2 discusses the related work on GLFE. Section 3 elaborates on the research of GLHT detection methods based on ML. Section 4 presents the GT-based diagnosis method for GLHT. Section 5 presents the experimental process and analyzes the results. Section 6 makes a conclusion of this paper.




2. Related Work


GLFE is a type of method to complete nondestructive HT detection. Early GLFE methods directly compared the features with HT-related feature thresholds to complete HT detection. Waksman et al. [15] proposed a method for the functional analysis of HT structures by quantifying and evaluating the impact of inputs on outputs. Building on the study of Waksman et al., Fyrbiak et al. [16] proposed a reverse engineering (RE)-based method by introducing Boolean functions and graph structure neighborhood analysis. This approach reduced the detection error rate, but could only handle some less-frequent types of time-based HTs. Oya et al. [17] proposed a method to distinguish HTs by comparing scores calculated from HT templates and circuit simulation. This method could identify combinational or time-based HTs with relatively high accuracy. However, it was time-consuming due to the need for circuit simulation.



In recent years, there has been a trend to incorporate GLFE-based methods with ML to achieve better detection effects [22]. Hasegawa et al. [18,19,20] have successively employed supervised learning models such as the support vector machine (SVM) and random forest (RF) for GLHT detection. They have attempted various approaches to optimize supervised learning models with multiple HT features, thereby achieving high detection accuracy. However, the applicable GLHT types are too limited. Salmani et al. [21] applied unsupervised learning models within GLHT detection and proposed controllability and observability for hardware Trojan detection (COTD) method. This method, in conjunction with K-means and density-based spatial clustering of applications with noise (DBSCAN) algorithms, can effectively reconstruct and eliminate the entire HT module. Yan et al. [24] proposed a feature expansion algorithm based on the nearest neighbor unbalanced data classification algorithm, which improved the detection accuracy by increasing the sample feature set. Zhang et al. [25] proposed a mixed mode GLHT detection method based on the XGBoost algorithm. For the first time, the static and dynamic features were combined for multilevel HT detection, which effectively improved the detection accuracy. Li et al. [26] proposed an idea of using natural language processing to solve the problem of complex netlist structures that are difficult to analyze. They combined the netlist analysis methods of XGBoost, then converted the netlist into a sequence of logical structures and classified each logical structure according to its vector form, thus simplifying the detection process of GLHTs. Shi et al. [27] proposed a GLHT detection method based on a graph neural network. They used the graph sampling aggregation algorithm to learn the high-dimensional graph features and corresponding node features in the netlist, and they realized GLHT detection without using the golden netlist as a reference.



The combination of ML and GLFE can improve the accuracy and efficiency of HT detection, but it cannot diagnose HTs directly. At present, the diagnosis of HTs has gradually become the mainstream trend. Based on the study of Hasegawa et al., Du et al. [23] proposed an HT detection and diagnosis method based on “cone partition”, K-nearest neighbor (KNN), naive Bayes, and other supervised learning models. By changing the classification object from node to cone, the differences in the structures of centralized and distributed GLHTs were additionally considered. They partitioned the circuit into multiple cones and extracted the HT feature values of that method, and they then diagnosed the location of the HT circuits. Huang et al. [28] presented an HT detection and diagnosis method for GLNs based on different ML models. They classified all the circuit cones of the target GLN using different ML models; they then determined whether each circuit cone was HT-implanted through the label. This method had a good detection effect, but it could only roughly diagnose the location of the HT implantation.



With regard to detecting GLHTs, compared to earlier methods, current methods have achieved higher accuracy and broader applicability in both detection and diagnosis. However, most existing methods directly detect each node in the netlist. While this allows for direct diagnosis, it lacks a holistic consideration of HTs, thereby resulting in lower TPRs and TNRs. Additionally, certain methods may face the issue of nonuniqueness in the partition of the submodule, thereby affecting the overall detection accuracy of the entire netlist. The method we propose addresses these two issues, thereby leading to improved effectiveness in GLHT detection and diagnosis.




3. HT Detection Method for GLN Based on ML


Aiming at the problem that the submodule partition scheme of the netlist is not unique, this paper proposes the concept and partition algorithm of the MSOS. A total of 24 HT-related features were chosen and extracted, including a circuit diagram structure and static circuit attribute features. On this basis, this paper studied an HT detection for GLNs based on ML models, and the main steps are shown in Figure 2:




	(1)

	
MSOS partition: We partitioned the circuit diagram of the gate-level netlist into several MSOSs.




	(2)

	
Feature extraction of MSOSs: We calculated and collected node information, and we then extracted HT-related features from the MSOSs.




	(3)

	
Feature filter: We used chi-square tests and variance filtering methods to filter features of the MSOSs.




	(4)

	
Model training: We trained a specific supervised learning model with optimized hyperparameters.




	(5)

	
MSOS label prediction: We input the filtered features extracted from the MSOS into a specific supervised learning model for prediction.




	(6)

	
Detection report: We reported whether the gate-level netlist contains an HT based on the labels.









3.1. MSOS Partition


In essence, the MSOS is a subcircuit diagram composed of several nodes and their corresponding units in the netlist. Specifically, considering the situation when the netlist contains or does not contain a ring structure, the MSOS is composed of several strongly connected components (SCCs) of nodes and their corresponding units.



Algorithm 1 is designed for the partition of each MSOS of the gate-level netlist. The search rule in step 10 can ensure that the MSOS has convergence, as well as a single-output and maximization at the same time. A simple example of MSOS partition is shown in Figure 3, in which the content in each rectangle box (because there is no ring structure, and one node corresponds to one SCC) is an MSOS.



	Algorithm 1: MSOS partition.
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According to Figure 3 and Algorithm 1, it is not difficult to deduce that the partitioning of the MSOSs is similar to performing a DFS on all the SCCs. The only difference lies in step 10, where a single-output property check is required to add the input SCC (which can be achieved with the help of an SCC marking array). Therefore, the time complexity to partition MSOSs is proportional to the sum of the total number of SCCs, which is the total fan-in of the SCCs and the total fan-out of the SCCs. This is similar to O(  V + E  ) in GT. Since the partitioning mainly involves creating independent marking arrays for each SCC, its space complexity is proportional to the square of the total number of SCCs, which is similar to O(  V 2  ) in GT.



The GLHT detection method based on ML studied in this paper needs to solve the problem that the submodule partition scheme is not unique. At the same time, the MSOS partition is exactly unique, because there is only one scheme for any netlist to partition the MSOS. This is equivalent to there being no common SCC between any two different MSOSs. The partition of the MSOS is unique, which can be avoided when both submodules contain HT nodes. However, the influence of the HT nodes on the features is different, thereby resulting in a submodule being judged as “with” or “without” HTs. In addition, the feature extraction process of each MSOS will not affect each other, and this can be executed in parallel to improve efficiency.




3.2. Feature Extraction of MSOS


According to the analysis of other GLHT detection methods based on ML, the selection of HT-related features directly affects the detection accuracy. The relevant features of HTs selected by existing methods can be mainly partitioned into the following categories: circuit diagram structure, static circuit attributes, and dynamic circuit attributes.



For the MSOS, this paper selected 24 HT-related features of the circuit diagram structure and the static circuit attribute at the same time, and these features were mostly the maximum, minimum, average, and other statistical indicators. On the one hand, the changes in circuit structure features can show that additional modules are implanted in the MSOS, and the static circuit attribute features can further confirm whether the additional module contains HT nodes. On the other hand, the circuit structure- and static circuit attribute-related features can be obtained only using static analysis of the netlist, which takes less time. However, dynamic feature extraction requires providing specific test vectors, which is time-consuming and only effective for explicit HTs. Moreover, of all the circuit structure-related features, the 24 ones we selected have significant impacts on the feature values when an HT is implanted. Even with a slight modification to the MSOS, the values of the 24 HT-related feature will vary greatly in comparison to other features. Thus, we chose the 24 HT-related features from the circuit diagram structure and static circuit attributes, as shown in Table 1.



3.2.1. Structure Class Features of Circuit Diagram


For each MSOS, the structure features of the 12 specific circuit diagrams selected in this paper are as follows:




	
Node fan-in indicator: the maximum, minimum, and average value of the number of nodes entered by a node.



	
Node fan-out indicator: the maximum, minimum, and average value of the number of nodes output by a node.



	
SCC size indicator: the maximum, minimum, and average value of the number of nodes contained in the SCC to which the node belongs.



	
Module fan-in: the number of input nodes when the entire MSOS is regarded as a single node.



	
Module fan-out: the number of output nodes when the entire MSOS is regarded as a single node.



	
Total number of nodes: the number of nodes contained in the MSOS.








Figure 4 is an example of the MSOS without an HT implanted.



Figure 5 is an example of the entire HT implanted in an MSOS. The red portion is where the HT is implanted. The circuit diagram structure features underwent significant changes, such as average node fan-in and maximum node fan-out.



Because the circuit diagram structure features of Figure 4 were determined after parsing the netlist into the circuit diagram, it was only necessary to traverse all the nodes in the MSOS and produce statistics according to the corresponding conditions during extraction. The SCC size index needed to decompose the netlist circuit diagram first, and all the nodes in the same SCC needed to have the same SCC size; the module fan-in and module fan-out counted the number of input and output nodes, not the number of MSOSs of the input and output.




3.2.2. Attribute Class Features of Static Circuit


For each MSOS, the features of the 12 specific static circuit attributes selected in this paper are as follows:




	
Combinational 0-controllability (CC0) index: the maximum, minimum, and average value of node CC0.



	
Combinational 1-controllability (CC1) index of node combination 1: the maximum value, minimum value, and average value of node CC1.



	
Combinational controllability (CC) index: the maximum, minimum, and average value of node CC.



	
Combinational observability (CO) index of the nodes: the maximum, minimum, and average of node CO.








Compared with the circuit diagram structure feature, the static circuit attribute feature itself is more closely related to the HT, and it can be directly used to determine the existence of the HT. To extract the above static circuit attribute features, it is necessary to calculate the CC0, CC1, CC, and CO of all the nodes in the netlist in advance, and then count the CC0, CC1, CC, and CO of all the nodes in the MSOS.





3.3. Model Training and Label Prediction


After MSOS partitioning and feature extraction, variance filtering and chi-square tests were performed on the data set of the netlist to complete the feature selection. Then, the data texts of all the gate-level netlists were merged into the final data set. After that, we divided the final data set into a training data set and a testing data set. Hyperparameter tuning of the model was also performed using a crossvalidated grid parameter search method on the training data set. Finally, the ML models (i.e., KNN, RF, and the SVM) were obtained on the training data set using the selected hyperparameters.



The hyperparameter tuning results for the KNN, RF, and the SVM models are presented in Table 2, Table 3, and Table 4, respectively. The balanced accuracy (i.e., the arithmetic means of the TPRs and TNRs) serves as the metric for evaluating the predictive performance during crossvalidation. From these results, it can be observed that, with the optimal hyperparameters selected, the KNN, RF, and SVM models achieved balanced accuracies exceeding 80% on the training dataset.



After completing the training of the ML models, we used the testing data set to verify the trained KNN, RF, and SVM models to predict the label of each data set (corresponding to an MSOS).





4. HT Diagnosis Method for GLN Based on GT


The existing GLHT diagnosis methods are relatively small in number, and the diagnosis was generally completed by detecting the HT nodes in the netlist. The main drawback was still a lack of consideration for the overall HTs, thereby resulting in a low diagnosis accuracy problem. On this basis, this article studied a GLHT diagnosis method based on GT. As shown in Figure 6, the main steps are summarized as follows:




	(1)

	
GLHT detection: We used the GLHT detection method based on the ML models studied in this article.




	(2)

	
Implanted node search: By comparing the circuit diagram structure of the target netlist and the GLN, we identified additional implanted nodes in the target netlist relative to the GLN.




	(3)

	
Intersection of suspicious nodes (i.e., HT node localization): We intersected the nodes contained in the MSOS of the “HT” detected in step (1) and the nodes obtained from the implanted node search.




	(4)

	
Diagnosis report: We reported the obtained node intersection as an HT node set.









Essentially, the netlist is a circuit diagram consisting of nodes and their corresponding cells. A netlist diagram can be further abstracted as a weighted directed graph: nodes are vertices, cells are edges, and the type of cells is the weight of the edge.



After abstracting the netlist circuit diagram into a weighted directed graph, the diagnosis of HTs at the gate-level can be transformed into a vertex search problem: finding the vertices in the graph that satisfy the features of the HTs. Compared with existing methods based on HT libraries and subgraph isomorphism, the GLHT diagnosis method studied in this paper avoids the need for further HT verification by intersecting the implanted node with an MSOS that has been detected as an “HT”.



4.1. Implanted Node Search Based on BFC


Firstly, we designed an algorithm that is independent of the specific circuit and compares the size relationship between any two nodes. Then, the node comparison algorithm was applied to sort and subtract the nodes in the target netlist and GLN to obtain candidate implantation nodes. Finally, we filtered out nonimplanted nodes from the candidate implanted nodes. Based on the above ideas, we designed an input-side BFC method and implemented an implanted node search algorithm based on the BFC method. As shown in Figure 7, the steps are summarized as follows:




	(1)

	
Input nodes reordering: We determined the size relationships between nodes using an input-side BFC algorithm, and we then sorted the input nodes of all the nodes in the target netlist and GLN.




	(2)

	
Internal netlist nodes sorting: We sorted the nodes of the target netlist and GLN.




	(3)

	
Subtracting nodes between netlists: Sequentially, we compared the nodes in the target netlist and GLN to identify all the differing nodes, which were considered as candidate implanted points.




	(4)

	
Nonimplanted nodes filtering: We filtered the nonimplanted nodes among the candidate implanted nodes based on the structure features and implantation ways of the GLHTs.













4.1.1. Input-Side BFC Algorithm


In a netlist, two nodes may be identical (requiring the same type of corresponding unit, number of input nodes, and number of output nodes), but the sequence of input-side BFC nodes and output-side BFC nodes of two nodes cannot be completely identical (requiring the nodes in both sequences to be exactly the same in dictionary order). Therefore, this article determined the size relationship of the nodes by comparing their input-side BFC node sequences, as shown in Algorithm 2.



This algorithm performs a BFC on the nodes. The number of iterations in the loop depends on the size of the queue and the comparisons between nodes. The overall time complexity reaches O(  N 2  ) in the worst case, where N is the total number of input nodes. The overall space complexity of the algorithm is O(N) in the worst case, where N is the total number of input nodes.



Figure 8 compares the nodes corresponding to the G1 and G6 units according to Algorithm 2. The nodes that have been compared in this figure are colored: green represents the same, while red or blue represents those that are different. It can be seen that, according to the breadth-first rule, when comparing the nodes corresponding to the G5 and G9 units, the nodes corresponding to the G1 unit were smaller because the former had a smaller number of input nodes.




4.1.2. Nonimplanted Node Filtering Algorithm


After using the input-side BFC algorithm for node sorting and subtraction, there were still some nonimplanted nodes among the candidate implanted nodes obtained. In order to filter out these nonimplanted nodes, this article mainly utilized the feature wherein the HTs only had a single load node (which was common in the HT implantation samples selected in this article, while the HTs in other samples could be split into sub-HTs of multiple single load nodes), as shown in Algorithm 3. This algorithm has a loop that runs for (  D − ▵  ) iterations in the worst case. Each topological sorting iteration takes O  ( V + E  ) time, so the overall time complexity is O(  ( D − ▵ ) ∗ ( V + E )  ). The space complexity is O(  D + V + E  ).




4.1.3. Input Node Reordering Algorithm


When comparing nodes, there may be an issue of input node disorder; in order to prevent the disorder of input nodes from interfering with node comparison, it is necessary to reorder the input nodes of all the nodes in the target netlist and GLN, as shown in Algorithm 4. In this algorithm, the time complexity of topological sorting is O(  V + E  ). The ‘for’ loop runs V times, and the time complexity of Algorithm 2 is O(  N 2  ). Therefore, the overall time complexity of the Algorithm 4 is O(  V + E   +   V ∗  N 2   ). The space complexity is O(  V + E  ). However, topological sorting is only applicable to a directed acyclic graph, and there may be cyclic structures in the netlist circuit diagrams. Therefore, this article designed another input node reordering algorithm for the netlist containing circular structures, as shown in Algorithm 5. After analysis, the time complexity was determined to be O(   ( V + E )  + K ∗  N 2   ), where V is the number of nodes in the netlist, E is the number of edges, and K is the number of SCCs. The space complexity is O(  ( V + E ) + N  ).



	Algorithm 2: Input-side BFC algorithm.
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4.2. Intersection of Suspicious Nodes


After the implant node search, we obtained the suspicious nodes (possibly HT nodes). Then, the intersection between the suspicious node and all the nodes of the MSOS detected in step (1) of Figure 6 was computed. At this point, we obtained the HT node set. It is necessary to know that if the target netlist is detected to contain HTs, then the nodes additionally implanted relative to the golden netlist must inherently contain nodes of the HTs. Therefore, the method described in this article searched for the nodes implanted in the target netlist relative to the golden netlist, and it then intersected them with the nodes in the MSOS. This process can avoid the requirement for further HT validation. Figure 9 presents an example of a netlist circuit diagram with a GLHT implanted. In particular, the red color represents the HT nodes obtained after the intersection.



	Algorithm 3: Filtering of nonimplant nodes.
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	Algorithm 4: Filtering of nonimplant nodes.
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	Algorithm 5: Filtering of nonimplant nodes.



	[image: Electronics 13 00059 i005]








5. Experiments and Results


This section describes the experimental procedure, results, and comparative analysis of our presented method.



5.1. Evaluation Measures


GLHT detection was used to determine whether there were HTs in the netlist. GLHT diagnosis was used to identify the HT nodes in the netlist. Therefore, the essence of GLHT detection and diagnosis is a binary classification problem, and they can be evaluated using relevant assessment metrics. The evaluation metrics for binary classification problems can be computed using the confusion matrix shown in Table 5. Several commonly used metrics are presented in Table 6.




5.2. HT in GLN Detection Experiment


The CPU used in this experiment is the AMD Ryzen 5 3600, and the main frequency is 3.6 GHz. The memory is 16G DDR4, and the frequency is 3.2 GHz. In this paper, modern C++ was employed to construct and analyze the circuit netlist structure through independently designed graph structures and algorithms. To enhance the research efficiency, Python 3 was utilized, coupled with the open-source ML library “scikit-learn”, to implement the training and application of the supervised learning models.



The GLHT implantation example selected in this paper is from Trust-Hub and was generated using automated methods by the authors’ team mentioned in [29]. By varying the number of HTs, their functionalities, etc., a total of 914 GLHTs implantation instances were generated. According to whether the HT is a sequential circuit or a combinational circuit, these examples can be partitioned into two series: trit_tc series and trit_ts series. In this study, all the netlists were initially grouped based on their original design names and the number of HT instances. Then, within each group, the netlists were randomly split in a 7:3 ratio for training and testing purposes. Firstly, each netlist was partitioned into several MSOSs, and then 24 HT-related features corresponding to the MSOSs were extracted. Subsequently, these features were input into the ML models for label prediction. Here, we only selectively display the labels (as shown in Table 7), circuit structure-related features (as shown in Table 8), and static circuit attribute-related features (as shown in Table 9) of all the MSOSs in the s1423 and s1423_T002 netlists. The part marked in red means that the HT has been implanted.



The “number” refers to a specific MSOS. Based on the tables above, it can be concluded that, compared to the s1423 netlist, the fifth MSOS of the s1423_T002 netlist experienced changes in some features because it contained the entire HT implant. On the other hand, the other MSOSs, which were not implanted with any HT nodes, had all of their features remain unchanged. This proves the effectiveness of our method.



For all the testing data set, the detection results of the HTs in the MSOSs are shown in Table 10. According to the analysis of these results, the detection effects of the KNN, RF, and SVM models were good enough, the RF model was the best, and the KNN model was the second best. In terms of HT detection in the netlist, all the models had TPRs over 95%, TNRs over 37%, and F1 scores over 97%.



The comparative object selected in this article was the method studied in [23]. Compared with the other GLHT detection-based ML methods, this method not only had better detection performance, but was also closer to the method studied in this article. The GLHT detection results of the method in [23] are shown in Table 11.



By analyzing Table 11, we can obtain the comparison results of the GLHT detection performance outcomes between the method proposed in this paper and the method proposed in [23] when using the KNN, RF, and SVM models. Although the method described in this paper took more time for detection (on the one hand, the number of MSOSs in the same netlist was generally much greater than the number of cones; on the other hand, the feature dimension of the MSOS was three times that of the cone), the overall detection performance was better, especially with a TNR improvement of at least 25%.



For another comparative experiment, we chose [28], which implemented GLHT detection using ML with different models and achieved good results. Table 12 shows the comparative detection results; it is evident that, although the TNR in this article was lower compared to [28], the F1 score generally tended to be higher than that of [28]. The results suggest that the model has a good trade-off between correctly identifying positive instances (precision) and capturing all positive instances (recall).




5.3. HT in GLN Diagnosis Experiment


The results of the GLHT diagnosis for all test netlists are shown in Table 13. It can be seen from the analysis of the results that using the KNN, RF, or SVM models, coupled with the implanted node search method based on BFC, could achieve average TPRs exceeding 93% and average TNRs of 100% in diagnosing HT nodes in the netlists.



For comparison with the GLHT diagnosis results, this study selected a method proposed in [30], which uses adversarial learning (called “R-HTDetector”). Compared to the other methods, this method is not only the latest research achievement of the pioneering team that applied ML models to GLHT detection and diagnosis, but it also achieves significant improvements in accuracy and applicability by conducting adversarial learning on automatically generated GLHT variants. For the testing netlists selected by the R-HTDetector method, the GLHT diagnosis results using the R-HTDetector method and the method proposed in this article are shown in Table 14. From the analysis of Table 14, it can be observed that, compared with the R-HTDetector method, the method proposed in this paper achieved an improvement of approximately 4% and 15% in the average TPR and TNR values of the GLHT diagnosis, respectively.



For another comparative experiment, we chose [23,28], as shown in Table 15. In [23], the authors partitioned the circuit into multiple sectors and extracted the HT feature values of those sectors to complete the diagnosis. In [28], the authors completed the diagnosis by obtaining the primary output of the netlist. Although they could complete the diagnosis, it was not accurate enough. Our method accurately located the location of the HT by searching each node.





6. Conclusions


This paper focused on an HT detection and diagnosis method for GLN based on ML and GT. To address the issue of nonunique submodule partition schemes in netlists, we proposed the concept and partition algorithm of the MSOS, and we extracted 24 HT-related features based on the circuit structure and static circuit attributes of the MSOS. We conducted data extraction, model training, and GLHT detection experiments on the trit_tc and trit_ts series of the GLHT implantation examples. Table 11 and Table 12 show that our method has good detection performance in GLHT detection, and this was improved significantly compared to the existing methods. In additional, to improve the accuracy of GLHT diagnosis, we proposed an implant node search method based on BFC. Table 14 and Table 15 also show that our proposed approach has good diagnosis performance for GLHTs and this was improved significantly compared to the existing methods. However, there are some drawbacks to our method, such as the inability to avoid the reference to golden GLN designs. We will try to solve this problem in the future work.
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Figure 1. Flow of the proposed HT detection and diagnosis method. 
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Figure 2. ML-based GLHT detection method. 
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Figure 3. Example of MSOS partition. 
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Figure 4. An example of the MSOS without HT implanted. 






Figure 4. An example of the MSOS without HT implanted.



[image: Electronics 13 00059 g004]







[image: Electronics 13 00059 g005] 





Figure 5. An example of an HT with the complete implantation of an MSOS. 
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Figure 6. GLHT diagnosis method based on GT. 
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Figure 7. Implanted node search method based on BFC method. 
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Figure 8. An example of BFC on the input side. 
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Figure 9. Netlist circuit diagram with a GLHT implanted example. 
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Table 1. The 24 HT-related features.
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Features






	
Circuit structure features

	
Maximum node fan-in

	
Minimum node fan-in

	
Average node fan-in




	
Maximum node fan-out

	
Minimum node fan-out

	
Average node fan-out




	
Largest SCC size

	
Smallest SCC size

	
Average SCC size




	
Module fan-in

	
Module fan-out

	
Total number of nodes




	
Static circuit attribute features

	
Maximum CC0

	
Minimum CC0

	
Average CC0




	
Maximum CC1

	
Minimum CC1

	
Average CC1




	
Maximum CC

	
Minimum CC

	
Average CC




	
Maximum CO

	
Minimum CO

	
Average CO











 





Table 2. The hyperparameter tuning results for the KNN model.
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Weighting Strategy

	
K-Value

	
Minkowski Distance Exponent






	
Optional values

	
Uniform weighting/distance weighting

	
1/2/3/4/5

	
1/2/3




	
Selected values

	
Uniform weighting

	
1

	
2




	
Optimal balanced accuracy

	
81.2%











 





Table 3. The hyperparameter tuning results for the RF model.
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Number of Decision Trees

	
Maximum Depth of Decision Trees






	
Optional values

	
10/20/30

	
1 to 10




	
Selected values

	
20

	
7




	
Optimal balanced accuracy

	
95.5%











 





Table 4. The hyperparameter tuning results for the SVM model.






Table 4. The hyperparameter tuning results for the SVM model.





	

	
C

	
Gamma






	
Optional values

	
1/10/100

	
0.01/0.1/1




	
Selected values

	
100

	
1




	
Optimal balanced accuracy

	
84.2%











 





Table 5. Confusion matrix for binary classification.
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	Predicted Positive Result
	Predicted Negative Result





	Positive Result
	True Positive (TP)
	False Negative (FN)



	Negative Result
	False Positive (FP)
	True Negative (TN)










 





Table 6. Common binary classification evaluation metrics.
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	Metric
	Calculation Formula





	Accurracy
	    T P + T N   T P + T N + F P + F N    



	Precision
	    T P   T P + F P    



	Recall (TPR)
	    T P   T P + F N    



	TNR
	    T N   T N + F P    



	F1 Score
	    2 × P r e c i s i o n × R e c a l l   P r e c i s i o n + R e c a l l    



	Balanced Accuracy
	    T P R + T N R  2   










 





Table 7. Labels of all the MSOSs in the netlist of s1423 and s1423_T002.
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Label

	
Number

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9




	
Netlist

	






	
s1423

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
s1423_T002

	
0

	
0

	
0

	
0

	
1

	
0

	
0

	
0

	
0











 





Table 8. Circuit structure features of all MSOSs in the s1423 and s1423_T002 netlists.
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Feature

	
Value

	
Number

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9




	
Netlist

	






	
Maximum node

fan-in

	
s1423

	
0

	
1

	
0

	
0

	
5

	
5

	
4

	
2

	
0




	
s1423_T002

	
0

	
1

	
0

	
0

	
5

	
5

	
4

	
2

	
0




	
Minimum node

fan-in

	
s1423

	
0

	
1

	
0

	
0

	
0

	
1

	
2

	
2

	
0




	
s1423_T002

	
0

	
1

	
0

	
0

	
0

	
1

	
2

	
2

	
0




	
Average node

fan-in

	
s1423

	
0

	
1

	
0

	
0

	
2.4

	
2.7

	
2.7

	
2

	
0




	
s1423_T002

	
0

	
1

	
0

	
0

	
2.4

	
2.7

	
2.7

	
2

	
0




	
Maximum node

fan-out

	
s1423

	
20

	
18

	
138

	
138

	
17

	
1

	
1

	
0

	
0




	
s1423_T002

	
20

	
18

	
138

	
138

	
17

	
1

	
1

	
0

	
0




	
Minimum node

fan-out

	
s1423

	
20

	
18

	
138

	
138

	
1

	
0

	
0

	
0

	
0




	
s1423_T002

	
20

	
18

	
138

	
138

	
1

	
0

	
0

	
0

	
0




	
Average node

fan-out

	
s1423

	
20

	
18

	
138

	
138

	
1.9

	
0.8

	
0.8

	
0

	
0




	
s1423_T002

	
20

	
18

	
138

	
138

	
1.9

	
0.8

	
0.8

	
0

	
0




	
Largest SCC

size

	
s1423

	
1

	
1

	
1

	
1

	
523

	
1

	
1

	
1

	
1




	
s1423_T002

	
1

	
1

	
1

	
1

	
532

	
1

	
1

	
1

	
1




	
Smallest SCC

size

	
s1423

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
s1423_T002

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
Average SCC

size

	
s1423

	
1

	
1

	
1

	
1

	
500.1

	
1

	
1

	
1

	
1




	
s1423_T002

	
1

	
1

	
1

	
1

	
509.1

	
1

	
1

	
1

	
1




	
Module fan-in

	
s1423

	
0

	
1

	
0

	
0

	
308

	
11

	
11

	
2

	
0




	
s1423_T002

	
0

	
1

	
0

	
0

	
308

	
11

	
11

	
2

	
0




	
Module fan-out

	
s1423

	
20

	
18

	
138

	
138

	
19

	
0

	
0

	
0

	
0




	
s1423_T002

	
20

	
18

	
138

	
138

	
19

	
0

	
0

	
0

	
0




	
Total number

of nodes

	
s1423

	
1

	
1

	
1

	
1

	
547

	
6

	
6

	
1

	
1




	
s1423_T002

	
1

	
1

	
1

	
1

	
556

	
6

	
6

	
1

	
1











 





Table 9. Static circuit attribute features of all MSOSs in the s1423 and s1423_T002 netlists.
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Feature

	
Number\Value\Netlist

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9






	
Maximum CC0

	
s1423

	
1

	
2

	
1

	
1

	
372

	
14

	
237

	
12

	
1




	
s1423_T002

	
1

	
2

	
1

	
l

	
372

	
14

	
237

	
12

	
l




	
Minimum CCO

	
s1423

	
1

	
2

	
1

	
1

	
1

	
3

	
10

	
12

	
1




	
s1423_T002

	
1

	
2

	
1

	
1

	
1

	
3

	
10

	
12

	
1




	
Average CC0

	
s1423

	
1

	
2

	
1

	
1

	
32.2

	
9.7

	
88

	
12

	
1




	
s1423_T002

	
1

	
2

	
1

	
1

	
31.8

	
9.7

	
88

	
12

	
1




	
Maximum CC1

	
s1423

	
1

	
2

	
1

	
1

	
219

	
77

	
258

	
14

	
1




	
s1423_T002

	
1

	
2

	
1

	
l

	
237

	
77

	
258

	
14

	
l




	
Minimum CC1

	
s1423

	
1

	
2

	
1

	
1

	
1

	
21

	
11

	
14

	
1




	
s1423_T002

	
1

	
2

	
1

	
1

	
1

	
21

	
11

	
14

	
1




	
Average CC1

	
s1423

	
1

	
2

	
1

	
1

	
26.9

	
33.5

	
61.2

	
14

	
1




	
s1423_T002

	
1

	
2

	
1

	
1

	
27.7

	
33.5

	
612

	
14

	
1




	
Maximum CC

	
s1423

	
1.4

	
2.8

	
1.4

	
1.4

	
372.1

	
77.1

	
258.2

	
18.4

	
1.4




	
s1423_T002

	
1.4

	
2.8

	
1.4

	
1.4

	
372.1

	
77.1

	
258.2

	
18.4

	
1.4




	
Minimum CC

	
s1423

	
1.4

	
2.8

	
1.4

	
1.4

	
1.4

	
22.9

	
24.2

	
18.4

	
1.4




	
s1423_T002

	
1.4

	
2.8

	
1.4

	
1.4

	
1.4

	
22.9

	
24.2

	
18.4

	
1.4




	
Average CC

	
s1423

	
1.4

	
2.8

	
1.4

	
1.4

	
50.9

	
35.5

	
138.9

	
18.4

	
1.4




	
s1423_T002

	
1.4

	
2.8

	
1.4

	
1.4

	
51.2

	
35.5

	
138.9

	
18.4

	
1.4




	
Maximum CO

	
s1423

	
28

	
47

	
23

	
16

	
321

	
73

	
45

	
0

	
>1000




	
s1423_T002

	
28

	
47

	
23

	
16

	
353

	
73

	
45

	
0

	
>1000




	
Minimum CO

	
s1423

	
28

	
47

	
23

	
16

	
0

	
0

	
0

	
0

	
>1000




	
s1423_T002

	
28

	
47

	
23

	
16

	
0

	
0

	
0

	
0

	
>1000




	
Average CO

	
s1423

	
28

	
47

	
23

	
16

	
120.2

	
27.2

	
35.2

	
0

	
>1000




	
s1423_T002

	
28

	
47

	
23

	
16

	
122.8

	
27.2

	
35.2

	
0

	
>1000











 





Table 10. Detection results of HTs in MSOSs.
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Value

	
Evaluation Metrics

	
TP

	
FP

	
TN

	
FN

	
TPR

	
TNR

	
F1




	
ML Mode

	






	
KNN

	
287

	
5

	
3411

	
16

	
94.7%

	
99.9%

	
96.5%




	
RF

	
296

	
2

	
3414

	
7

	
97.7%

	
99.9%

	
98.5%




	
SVM

	
285

	
20

	
3396

	
18

	
94.1%

	
99.4%

	
93.7%











 





Table 11. Comparison of hardware Trojan detection results.
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ML Mode

	
TP

	
FP

	
TN

	
FN

	
TPR

	
TNR

	
F1

	
Time Consumption (ms)






	
Our method

	
KNN

	
281

	
4

	
4

	
11

	
96.2%

	
50.0%

	
97.4%

	
21,648




	
RF

	
287

	
4

	
4

	
5

	
98.3%

	
50.0%

	
98.4%

	
21,765




	
SVM

	
280

	
5

	
3

	
12

	
95.9%

	
37.5%

	
97.0%

	
21,832




	
[23]

	
KNN

	
283

	
6

	
2

	
9

	
96.9%

	
25.0%

	
97.4%

	
3258




	
RF

	
286

	
8

	
0

	
6

	
97.9%

	
0

	
97.6%

	
3034




	
SVM

	
275

	
8

	
0

	
17

	
94.2%

	
0

	
95.7%

	
3197











 





Table 12. The GLHT detection results in this article and [28].
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Value

	
Evaluation Metrics

	
TPR

	
TNR

	
F1




	
Method

	






	
Our RF-based method

	
98.3%

	
50.0%

	
98.4%




	
Our KNN-based method

	
96.2%

	
50.0%

	
97.4%




	
Our SVM-based method

	
95.9%

	
37.5%

	
97%




	
KNN-based method [29]

	
90.9%

	
93.1%

	
79.7%




	
DT-based method [29]

	
86.4%

	
98.6%

	
83.6%




	
NB-based method [29]

	
100%

	
65.2%

	
34.7%











 





Table 13. Results of GLHT diagnosis.
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TPR, TNR

	
ML Mode

	
KNN

	
RF

	
SVM




	
Search Method

	






	
BFC

	
97.3%, 100%

	
97.7%, 100%

	
93.4%, 100%











 





Table 14. GLHT diagnosis results of R-HTDetector and the method described in this article.
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Value

	
Evaluation Metrics

	
TPR

	
TNR




	
Netlist

	






	

	
R-HTDetector

	
Our Method

	
R-HTDetector

	
Our Method




	
c2670_T000

	
100%

	
100%

	
85.9%

	
100%




	
c2670_T001

	
100%

	
100%

	
84.0%

	
100%




	
c2670_T002

	
75.0%

	
80.0%

	
90.9%

	
99.9%




	
c3540_T000

	
100%

	
100%

	
93.5%

	
100%




	
c3540_T001

	
100%

	
100%

	
64.6%

	
100%




	
c3540_T002

	
100%

	
100%

	
68.0%

	
100%




	
c5315_T000

	
87.5%

	
100%

	
78.4%

	
100%




	
c5315_T001

	
77.8%

	
100%

	
86.3%

	
100%




	
c5315_T002

	
100%

	
100%

	
71.0%

	
100%




	
s1423_T000

	
100%

	
100%

	
90.8%

	
100%




	
s1423_T001

	
83.3%

	
100%

	
91.9%

	
100%




	
s1423_T002

	
100%

	
100%

	
86.9%

	
100%




	
s13207_T000

	
100%

	
100%

	
96.2%

	
100%




	
s13207_T001

	
100%

	
100%

	
96.1%

	
100%




	
s13207_T002

	
100%

	
100%

	
95.5%

	
100%




	
Average

	
94.9%

	
98.7%

	
85.3%

	
100%











 





Table 15. Comparison of GLHT diagnostic results.
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	Diagnosis Method
	Diagnosis





	Our method
	Search nodes
	1



	[23]
	Partition sectors
	1



	[29]
	Extract primary output
	1
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of nin ascending order;
5 | end
¢ end
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Input: netlist M
Output: none
1 Partition all the nodes in M into multiple SCC, and perform a topological sort on
these SCC with input-side SCC appearing before the output-side SCC in the
sequence. The resulting sequence is S;
d

2 foralls € S do

4 if the only node n in s ha

s | if Thesizeof sis 1
s input nodes that are unordered and not less than 2 in
number th
following Algomhml use the QuickSort algorithm to sort n'
nodes in ascending order;

s input

6 end

7 end

8 else

9 while there exists unstable nodes in s do
10 forall node n € s do

if The input nodes of n are unordered and not less than 2 in number then
using the QuickSort algorithm according to Algorithm 2 o sort
s input nodes in ascending order;
if the order of n's input nodes has changed then
mark 1 as an unstable node;

end
else
| mark 1 as a stable node;
end
end
else
| mark n as a stable node;
end
end
end
end
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Input: netlist M

Output: set of M
1 Decompose M into lhe set S of SC
2 forall s € S do

5 | if s did not output SCC then

1 | Integrate s into the set T, which includes the convergence of SCC;
5 | end

& end

7 while T has been incorporated into the new merged SCC do
s | forallt € Tdo
5 Construct an incomplete MSOS U using f;

Perform Depth-First Search (DFS) starting from : find the first input SCC
of I that does not belong to LI, denoted as i. If all output SCC of i belong to
U, incorporate i into U and recursively search. Otherwise, add i to the
collection of candidate SCC, C;

r

n forall ¢ € C do

2 ifc ¢ U then

13 | Incorporate c into T;
1 end

15 end

1 Incorporate U into O;

7 | end
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Input: node n1,node n2
Output: Integer r, where -1 represents n1 < 2, 0 represents n1 = 12, and 1
represents nl > n2
1 Initialize r to 0;
2 1( 1 and n2 correspond to cells of different types then
Update  to-1 or 1 based on the relative sizes of the corresponding cll types,
and end the algorithm;

4 end

s if nl and n2 have different numbers of input nodes then

Update r to -1 or 1 based on the relative sizes of the number of input nodes,
and end the algorithm;

6

s Marknl and n2 as compared;
5 Initialize node ueues Q1 and Q2 with the input nodes of 11 and 12 respectively;
0 wlule QU is not empty do
Dequeue the head nodes g1 and g2 from Q1 and Q2 respectively;
12 | forall node i1 € the input nodes of g1, and i2 € the input nodes of 42 do
5 if i1 and i2 have been compared then
1 continue comparing without i1 and i2;

15 end

16 if i1 and i2 correspond to cells of different types then

% Update r to -1 or 1 based on the relative sizes of the corresponding cell
types, and end the algorithm;

1 end

1 if i1 and i2 have different numbers of input nodes then

0 Updater to -1 or 1 based on the relative sizes of the number of input
nndes, and end the algorithm

2

2 Mark il and i2 as compared;

n Enqueue i1 and i2 into Q1 and Q2 respectively;

u | end

25 end
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Input: The set of candidate implant nodes D
Output: The set of actual implant nodes D'
while The size of D is greater than the difference in the number of nodes between target
netlist and GLN(i.c., ) do
forall node n € D do
re

if There exists an output node n that is not a member of D then
Add 1 into the non-implant node set U;

end

if U ds an empty set then

Break the loop;

end
else
Perform topological sort on the nodes in D so that all input-side nodes
precede the output-side nodes, and select the first A nodes in D to form
D';
d
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