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Abstract: AIS ship-type code categorizes ships into broad classes, such as fishing, passenger, and
cargo, yet struggles with finer distinctions among cargo ships, such as bulk carriers and containers.
Different ship types significantly impact acceleration, steering performance, and stopping distance,
thus making precise identification of unfamiliar ship types crucial for maritime monitoring. This
study introduces an original classification study based on AIS data for cargo ships, presenting a
classifier tailored for bulk carriers, containers, general cargo, and vehicle carriers. The model’s efficacy
was tested within the Changhua Wind Farm Channel using eight classification algorithms across
tree-structure-based, proximity-based, and regression-based categories and employing standard
metrics (Accuracy, Precision, Recall, F1-score) to assess the performance. The results show that
tree-structure-based algorithms, particularly XGBoost and Random Forest, demonstrated superior
performance. This study also implemented a feature selection strategy with five methods, revealing
that a model trained with only four features (three ship-geometric features and one trajectory behavior
feature) can achieve high accuracy. Conclusively, the classifier effectively overcame the challenges of
limited AIS data labels, achieving a classification accuracy of 97% for ships in the Changhua Wind
Farm Channel. These results are pivotal in identifying abnormal ship behavior, highlighting the
classifier’s potential for maritime monitoring applications.

Keywords: ship-type classification; machine learning; AIS data; offshore wind farm channel

1. Introduction

Offshore wind power is an eco-friendly and sustainable energy source that aids in
cutting carbon emissions, mitigating climate change, and conserving natural resources.
Taiwan’s western coast offers ample wind energy resources, ideal for offshore wind power
generation. This could potentially replace nuclear and thermal power generation and be
a key focus in future energy supply development. The Changhua Offshore Wind Farm
is located in the maritime region adjacent to Changhua, situated north of the Pescadores
Channel (Penghu Channel), known for its significant maritime traffic. The competent
authority delineated the ship’s navigation channel through the Changhua Offshore Wind
Farm, instituted a traffic separation scheme, and established a Ship Traffic Service (VTS) for
effective monitoring and management. The VTS offers real-time wind farm data to ships,
monitors ship navigation, issues early crisis alerts, and provides guidance when needed,
ensuring coordinated navigation and preventing ship collisions.

To enhance maritime traffic management, the International Maritime Organization
(IMO) made it mandatory in 2004 for international sailing ships with 300 gross tonnage or
more and all passenger ships to install AIS (Automatic Identification System) equipment.
AIS is an automated tracking system on ships that identifies and shares data with nearby
ships, AIS shore stations, satellites, and other equipment. This data enables ships and coast
stations to access navigation information about all ships in the monitored waters. AIS
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data aids in offering navigation guidance, ensuring ships follow safe routes and maintain
distances from each other while avoiding collisions with offshore wind power facilities.
This is accomplished using automatic ship alerts or intervention by VTS operators.

In recent years, AIS spatio-temporal data has found extensive applications in maritime
traffic analysis, improving maritime safety, detecting atypical ship behavior, enhancing
situational awareness, aiding in rescue operations, monitoring marine pollution, and
supervising ships, among other related fields [1]. Real-time AIS data simplifies ship status
identification. Additionally, it can extract ship navigation traits from historical records to
construct crucial maritime traffic or ship behavior models for maritime monitoring and
abnormal behavior detection [2]. However, within extensive AIS records, anomalies and
inaccuracies often remain concealed. Notably, some ships intentionally evade detection
and engage in illicit activities, including disabling transponders, manipulating location
data, or sending false identification information, such as ship type [3]. Determining a ship’s
precise type in real-time or historical AIS data can be demanding, leading to challenges in
maritime surveillance and hindering subsequent data exploration and analysis.

AIS ship-type codes classify ships as fishing ships, passenger ships, cargo ships, or
tankers. In contrast, general merchant ships such as bulk carriers, container ships, general
cargo ships, and vehicle carriers are all grouped under the broad category of cargo ships
without further differentiation. Ship types have a substantial impact on maneuverability, in-
fluencing factors such as acceleration, heading stability, steering performance, and stopping
distance. For instance, container ships generally exhibit better maneuverability than bulk
carriers. This necessitates crew and Ship Traffic Service (VTS) operators to anticipate ship
behavior in busy and confined areas. Hence, accurate ship classification and identification
become vital [4].

Traditional maritime navigation supervision relies on charts and radar, driven by
the operator’s experience. In recent years, the development and innovation of artificial
intelligence (AI) technologies, including machine learning and deep learning, have supplied
advanced tools for AIS data mining. Utilizing AI algorithms to extract maritime traffic
features from AIS data and develop surveillance systems is a crucial research area. Some
studies have successfully employed machine learning methods for ship classification, such
as Support Vector Machine, K-Nearest Neighbor, and Convolutional Neural Networks.
Ship-type classification, as a foundational aspect of maritime supervision and safety, aids
in classifying ships and enhancing maritime surveillance applications.

This study aims to create a ship-type classifier for the Changhua wind farm channel
using AIS data, focusing on the early detection of abnormal ship behavior in the intelligent
maritime safety system. Key contributions of this study are the following:

1. In ship classification and identification, this study performed extensive feature ex-
traction on AIS data from the Changhua Wind Farm Channel. This process yielded
a set of 14-dimensional features, which encompassed various ship-geometric and
trajectory behaviors such as speed, heading, and lateral deviation distance. These
findings significantly enhanced the ship classification features, contributing to a more
comprehensive understanding of maritime activities in the specified area.

2. This study utilized machine learning algorithms on AIS data to develop a ship classifi-
cation framework, which included data collection, preprocessing, feature engineering,
and evaluation of classification algorithms with optimization. The evaluation results
showed that tree-structure-based classifiers, particularly XGBoost and Random Forest
algorithms, outperformed other methods in classification metrics for this problem.

3. This study also implemented a feature selection strategy using five different methods,
demonstrating that a ship classification model trained with just four features—three
ship-geometric features (width, perimeter, and bridge position ratio) and one trajec-
tory behavior feature (speed)—can achieve high classification accuracy.

4. This study explores the significance of the feature “Bridge Position Ratio (BP)” in
the context of ship classification, attributing its importance to the distinctive features
exhibited by bridges across different ship types.
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2. Related Work

According to the type of data used, there are two categories of research on ship-type
classification: one is based on image data, such as ship photos taken in ports, aerial or
satellite images, and the other is based on information such as speed and heading of AIS
data. The image-based ship-type recognition method [5–7] mainly uses unsupervised
learning convolutional neural networks (CNN) to identify the basic features of ship images.
However, optical sensors cannot be used at night or in bad weather conditions, and the
image-based ship-type recognition system has become ineffective. Xu et al. [7] classifying
ships based on Synthetic Aperture Radar (SAR) images is a complex fine-grained problem,
still lacking sufficient study and posing significant challenges. SAR image resolution still
makes it difficult to identify bulk carriers, container ships, and oil tankers with similar scale
and outline. Another approach focuses on the development of algorithms and models in
the field of ship classification based on AIS data. The data classifies ships according to their
ship-geometric and trajectory behavior features (such as time, trajectory coordinates, ship
length, ship width, draft, speed, course, etc.). The ship features contained in AIS data can
make up for the shortcomings of traditional radar and optical identification. However, ship
feature data also has problems, such as human errors (intentional or unintentional) and
missing ship-type information, which still need further research.

One of the features extracting the procedures of ship classification methods based on
AIS data is the conversion of the AIS spatiotemporal data of ship trajectories into graphic
data and the use of graphical recognition algorithms to train the ship-type recognition
system [8–10]. Luo et al. [8] introduced an image-based ship classification model that
visualizes latitude and longitude in a scatter plot, maps track point speeds to color, and
includes a coastline outline for trajectory image data. This model employs a deep residual
network for training and addresses a ship-type classification problem encompassing cargo
ships, fishing boats, container ships, oil tankers, and passenger ships. Experimental testing
achieved a 92% accuracy rate, surpassing other methods in classification performance.
Nevertheless, there remains potential for improvement in classifying passenger ships and
tankers. Referring to Li et al. [9], the ship trajectory data exhibits time–space domain fea-
tures and a non-Euclidean structure. This data is transformed into graph data with vertices
and edges, resulting in an 82.7% accuracy in classifying different ship types (fishing boats,
passenger ships, tankers, and containers) using trajectory graphic data. Yang et al. [10]
used AIS data to generate ship trajectory images, including static, normal navigation, and
maneuvering states. Apply a Convolutional Neural Network (CNN) for ship classification,
discerning eight ship types (fishing boats, tugboats, sailing boats, leisure boats, passenger
ships, cargo ships, crude oil/oil product ships, and others) based on ship track images. The
corresponding AIS ship-type codes are 30, 31, 36, 37, 60, 70, 80, and 90, achieving an 87.5%
accuracy rate.

Another method for feature extraction in ship classification directly derives geometric
and motion features from AIS static and dynamic data, bypassing the need for graphic
data conversion. Then, the features are used as learning data for the ship classification
model [1,2,4,11–13]. Wang et al. [12] utilized the original AIS static message, incorporating
six fields: A, B, C, D, draft, and the ship-type code. The data was used to derive ship
attributes, including length, width, draft, and geometric features such as aspect ratio,
perimeter, and area. Using the random forest method, five ship types—passenger ships,
tugboats, oil tankers, fishing boats, and cargo ships—were identified with an accuracy rate
of 86.14%. The results show that static trajectories and ship shape characteristics may be
similar between certain types of ships, such as cargo ships and cruise ships. Only extracting
static features is not enough to construct a classification model capable of distinguishing
five types of ships. The static and dynamic information of AIS data should be combined
to improve the performance of ship-type classification. Yan et al. [1] used space-borne
AIS data, which has the advantages of wide coverage, long tracking time, and rich ship
types. Static and dynamic information from AIS data were systematically extracted and
analyzed thoroughly. In addition to the ship’s length, width, and draft, static features refer
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to the geometric features proposed by Lang et al. [13], such as naïve perimeter, naïve area,
aspect ratio, and shape complex. Trajectory behavior features include ship position, voyage
distance, ship speed, and other feature quantities. Based on these two types of features, the
random forest model machine learning algorithm is used for five types of ships, including
cargo ships, oil tankers, fishing boats, passenger ships, and tugboats, with an accuracy rate
of 92.7%. The model test results show that the accuracy rate is improved by combining
geometric and trajectory behavior features.

Compared with the method of converting AIS ship trajectory spatiotemporal data into
graphic data, it is simpler, faster, and more efficient to extract geometric features and motion
behavior features from AIS data directly. It is suitable for real-time maritime navigation
safety monitoring systems. Baeg and Hammond [4] proposed a ship classification method
for AIS data in Danish waters to solve the problem of missing and tampering with type
information in AIS data. Static and dynamic features (ship geometry, motion features, and
time features) were extracted from AIS data, the features of the Danish water’s geographical
region were integrated, and the ink features of the sketch recognition design were proposed
to represent the ship trajectory type. There are a total of 39 features. Various classification
algorithms, such as random forests and decision trees, are used for performance comparison.
The results and discussion show that Random Forest outperforms other classifiers in
classifying AIS data. The classification accuracy of the four ship types can reach 84.05%.
In particular, the accuracies of fishing boats and passenger boats were 0.951 and 0.946,
respectively, confirming very high results. However, the practical features that distinguish
cargo ships from oil tankers must be further explored.

The above review and analysis show that the current research mainly solves the
problem of missing and tampering with type information in AIS data. The ship-type
classification method aims to confirm the classification of AIS ship-type codes. However,
the cargo ships that also belong to the AIS ship-type code 70 include bulk carriers, container
ships, general cargo ships, and vehicle carriers, and the ship-type code 80 includes crude
oil tankers and oil product tankers. The differences in the maneuverability of various types
of ships significantly affect the navigation behavior of ships. Prior to the development of
a maritime navigation safety monitoring system by the regulatory authorities, there was
an urgent need to develop a ship-type classifier for bulk carriers, container ships, general
cargo ships, vehicle carriers, crude oil tankers, or oil product tankers.

3. Data Preparation and Analysis

Due to the widespread use of AIS equipment, the long-term collection of AIS records
has become a valuable source of big data for maritime traffic analysis. The AIS data used in
this study is collected from AIS receiving stations along Taiwan’s coast, which are managed
by the Maritime and Port Bureau, Ministry of Transportation and Communications, Taiwan.
The AIS data cover the entire year of 2022, amounting to nearly six billion historical records
and a file size of approximately 2 terabytes (TB). However, AIS information is compressed
during transmission, and after decoding and restoration as numerical records, each AIS
record is discrete with no temporal and spatial connections. Additionally, each AIS record
is discrete. Without temporal and spatial connections, a single AIS record provides only
a ship’s state at a specific time, limiting its usefulness, which is regrettable. Hence, it is
crucial to investigate extracting valuable features from AIS records and converting them
into actionable knowledge for maritime decision-making.

3.1. AIS Pre-Processing

AIS is a system aiding ship navigation, with functions like ship identification, infor-
mation exchange, target tracking, and automatic calculation of CPA and TCPA, etc. These
functions enable authorities to monitor ship activity efficiently, improving maritime navi-
gation safety. According to Series [14], 27 distinct AIS information types are classified into
static, dynamic, and voyage categories, with the primary fields listed in Table 1. Among
these, MMSI is part of the static information category, and each AIS transceiver has a unique
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MMSI, enabling the identification of individual ships or devices. AIS data is transmitted
every few seconds via two specific digital VHF (Very High Frequency) channels within a
confined geographic area. The transmission frequency depends on ship speed and turning
rate, with faster and turning ships providing more frequent updates. AIS transponders
operate continuously, irrespective of a ship’s location, whether offshore, in coastal or inland
waters, or at anchor.

Table 1. AIS primary fields.

Static Information Dynamic Information Voyage Information

Ship name Position Draft
Call sign SOG ETA
IMO number COG Destination
MMSI True heading Route plan
Location of position fixing antenna on the ship ROT Hazardous cargo
Ship and cargo type Navigational status

The data quality of AIS significantly affects the performance of ship-type recognition
and the classification model. Referring to Tsou [15], this study utilizes big data analysis
to cleanse, store, and identify raw data, streamlining the extensive and disorganized
digital records. First, the data processing was conducted according to the AIS standard
of the International Telecommunication Union (ITU) [14]. The AIS data with apparent
abnormalities, such as longitude exceeding 180◦, latitude exceeding 90◦, etc., was cleared.
Secondly, the AIS data is sorted by MMSI and timestamp to obtain the trajectory information
for each ship. Next, if a ship lacks data for over 30 min, its speed drops below 1 knot,
or latitude and longitude change exceeding 0.01◦, the trajectory is split into two sub-
trajectories. Furthermore, AIS static and voyage information are prone to manual input
errors and omissions, which are more frequent than dynamic information directly sourced
from navigation instruments [16]. Consequently, in the data cleaning process, this study
must also verify the accuracy of static data. Finally, the static, dynamic, and voyage data of
ship platform shape and navigation parameters are extracted, which include MMSI that
can identify a single ship, navigation parameters (SOG, COG, THD, Longitude, Latitude),
ship-geometric parameters (A, B, C, D, Draught), and the “Record Time” that can create
AIS time–space sequences.

After data pre-processing, this study employed GIS to import AIS data into a map
platform, establishing ship navigation trajectories through spatial geometric calculations.
This provided a visual representation of the spatiotemporal aspects in AIS data, and spatial
statistical analysis was performed to create feature data for subsequent modeling. Figure 1
displays the distribution of AIS data points for ships in the waters around Taiwan on a
specific day in 2022. There is a noticeable concentration of AIS signals in the Taiwan Strait,
while the Eastern Pacific Ocean has fewer and less dense signals.
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3.2. The Changhua Wind Farm Channel

In line with government energy policies, substantial offshore wind farm development
is scheduled for Taiwan’s western waters. Changhua offshore waters are the first area
for large-scale construction. Therefore, the Changhua wind farm channel was officially
implemented in October 2021, the first wind farm channel in Taiwan, as shown in Figure 2.
The gray areas on both sides are wind farm locations. A traffic separation system is adopted,
according to International Regulations for Preventing Collisions at Sea (COLREGs) [17],
which consists of a southbound traffic lane, a northbound traffic lane, a separation zone,
and buffer zones on both sides. The width of the northbound and southbound channels is
2 nm.
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Changhua Offshore is a vital water area connecting Kaohsiung Port with Taipei and
Keelung Ports. It is also an international shipping route connecting Northeast Asia to South-
east Asia. Many ships pass through this area, and the traffic is very heavy. Figure 3 shows
the maritime traffic density map before and after the implementation of the Changhua wind
farm channel. Before the implementation of the channel, the ship tracks spread widely, and
the southbound and northbound tracks overlapped. After the channel implementation,
most ship tracks are concentrated in the southbound and northbound lanes, with only a few
offshore wind farm construction ships, maintenance ships, and some fishing boats crossing
these lanes. The Maritime and Port Bureau, MOTC, has established the “Changhua VTS” to
surveil and manage traffic lanes for safe navigation. On average, there are at least 150 ships
passing through this channel every day, and most of the ships can sail in compliance with
the channel regulations.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 22 
 

 

Changhua Offshore is a vital water area connecting Kaohsiung Port with Taipei and 
Keelung Ports. It is also an international shipping route connecting Northeast Asia to 
Southeast Asia. Many ships pass through this area, and the traffic is very heavy. Figure 3 
shows the maritime traffic density map before and after the implementation of the Chang-
hua wind farm channel. Before the implementation of the channel, the ship tracks spread 
widely, and the southbound and northbound tracks overlapped. After the channel imple-
mentation, most ship tracks are concentrated in the southbound and northbound lanes, 
with only a few offshore wind farm construction ships, maintenance ships, and some fish-
ing boats crossing these lanes. The Maritime and Port Bureau, MOTC, has established the 
“Changhua VTS” to surveil and manage traffic lanes for safe navigation. On average, there 
are at least 150 ships passing through this channel every day, and most of the ships can 
sail in compliance with the channel regulations. 

 
(a) (b) 

Figure 3. Traffic density before and after wind farm channel execution. (a) Traffic density before the 
wind farm channel execution; (b) Traffic density after the wind farm channel execution. 

To assist the Ship Traffic Service (VTS) operation, tracking ship behavior, anomaly 
detection, and warnings prediction are crucial topics in developing modern intelligent 
waterway systems [18]. Nevertheless, a prerequisite for setting up this system is compre-
hending ship types, their distinct maneuvering capabilities, and cargo characteristics 
across various ship types. This study primarily creates a ship classification algorithm for 
the Changhua wind farm channel, focusing on the cargo ship classification problem. The 
AIS trajectory data with ship-type codes between 70 and 79, indicating cargo ships, is ex-
tracted based on reporting lines on the north and south sides of the channel. Figure 4 
displays some ship trajectories along the southbound traffic lane. 

In order to analyze the navigation characteristics of ships in the channel effectively, 
the data representing the track line are normalized. Refer to Huang et al. [19] to create a 
set of analysis gate lines perpendicular to the southbound traffic lane in the head section 
of the channel. The distance between two adjacent crossing-line is taken as a constant of 
100 m, and there are 50 crossing-lines in total. Through the spatial analytical calculations, 
each trajectory passing through the channel intersects with the crossing lines. The ship’s 
lateral position, speed, and heading data, provided by the AIS information, are recorded 
at each crossing line so that the temporal and spatial distribution of the training data is 
consistent. 

Figure 3. Traffic density before and after wind farm channel execution. (a) Traffic density before the
wind farm channel execution; (b) Traffic density after the wind farm channel execution.

To assist the Ship Traffic Service (VTS) operation, tracking ship behavior, anomaly
detection, and warnings prediction are crucial topics in developing modern intelligent
waterway systems [18]. Nevertheless, a prerequisite for setting up this system is compre-
hending ship types, their distinct maneuvering capabilities, and cargo characteristics across
various ship types. This study primarily creates a ship classification algorithm for the
Changhua wind farm channel, focusing on the cargo ship classification problem. The AIS
trajectory data with ship-type codes between 70 and 79, indicating cargo ships, is extracted
based on reporting lines on the north and south sides of the channel. Figure 4 displays
some ship trajectories along the southbound traffic lane.

In order to analyze the navigation characteristics of ships in the channel effectively,
the data representing the track line are normalized. Refer to Huang et al. [19] to create a set
of analysis gate lines perpendicular to the southbound traffic lane in the head section of the
channel. The distance between two adjacent crossing-line is taken as a constant of 100 m,
and there are 50 crossing-lines in total. Through the spatial analytical calculations, each
trajectory passing through the channel intersects with the crossing lines. The ship’s lateral
position, speed, and heading data, provided by the AIS information, are recorded at each
crossing line so that the temporal and spatial distribution of the training data is consistent.
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In this study, a data-driven supervised learning approach is applied to differentiate
between four cargo ship types: container ships, bulk carriers, general cargo ships, and
vehicle carriers. Each ship’s registration ship type and ship dimensions (length and width)
were individually obtained from the internet using MMSI to create a training and testing
dataset for ship classification. The sample quantities for the four ship types are detailed in
Table 2.

Table 2. Number of cargo ship’s trajectories by the four types of ship.

Ship Type Bulk Carrier Container Ship General Cargo Vehicle Carrier Total

Quantity 4286 3896 1243 360 9785

3.3. Feature Extraction

Selecting the appropriate features is crucial for classifier performance and has a signif-
icant impact. Some papers have already introduced various features for classifying ship
types, including motion behavior and geometric features [4]. Kraus et al. [20] extracted
geographical features, such as the distance to the coast and to classify fishing boats, cargo
ships, and oil tankers. Yan et al. [1] extracted the ship geometric features like length,
width, and shape complexity to distinguish fishing boats, cargo ships, passenger ferries, oil
tankers, and tugs. Moreover, Sheng et al. [2] derived trajectory features from the kinematic
pattern to classify fishing boats and cargo ships. Baeg and Hammond [4] introduced an
innovative method using ink features designed for sketch recognition to quantify ship
trajectory characteristics, enabling the differentiation of fishing boats and cargo ships, as
well as passenger ferries and oil tankers.

Previous research results have indicated the potential of using multiple features for
ship-type classification. Some features and classifiers have been employed for classify-
ing diverse ship types, including fishing boats, tugs, cargo ships, passenger ferries, and
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oil tankers. These ship types in AIS data are distinguished by unique codes, such as 30,
31–32, 60–69, 70–79, and 80–89, respectively. To enhance the navigation safety and effi-
ciency of maritime supervision, this study aims to develop a ship-type classifier based
on normal navigation behavior models for specific cargo ships (bulk carriers, container
ships, general cargo ships, and vehicle carriers) within the cargo ship category numbered
70–79. Kraus et al. [20] classified ship types using ship-geometric and trajectory behavior
features from AIS data. Ship-geometric features include parameters like ship length, width,
perimeter, area, aspect ratio, and shape complexity extracted from AIS static information.
Trajectory behavior features encompass parameters related to ship movement, including
latitude, longitude, speed, heading, turning rate, and trajectory extracted from AIS dynamic
information.

One of the goals of this study is to test and select ship classification features based
on AIS static and dynamic data and suggest precise and efficient classification methods.
In AIS static information, the data fields A, B, C, and D represent the distances from the
antenna or reference point O to the bow, stern, port side, and starboard side of the ship,
as shown in Figure 5. Ship length and ship width features can be calculated using the
following equations: {

L = A + B
W = C + D

(1)

where L represents the ship’s total length, and W represents the ship’s width.
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Figure 5. Ship dimensions of AIS reference point.

The novel parameter introduced in this study, which represents the ratio of bridge
position to the ship’s length, has been named “Bridge Position Ratio”. Because most
antenna positions or reference O points are located on the bridge, this value can be obtained
from field A. This parameter is essential because, due to the influence of the shipbuilding
industry, large or ultra-large container ships (≥18,000 TEU) adopt the form of double
bridges, and the antenna or reference O point will be set on the front bridge, which is
different from traditional container ships. Generally, container ships still have space for
stacking containers behind the bridge. Still, the main loading positions of bulk carriers
and general cargo ships are in front of the bridge, so the value A of bulk carriers and
general cargo ships will be closer to the ship’s length. This study also encompasses
parameters such as perimeter, area, aspect ratio, and shape complexity, references employed
by Wang et al. [5], Lang et al. [13], and Yan et al. [1]. The definitions are provided in the
following equations: 

Ps = 2 × (L + W)
As = L × W
AR = W

L

Cs =
(L+W)2

L×W
BP = A

L

(2)

where Ps represents Naive Perimeter, As represents Naive Area, AR represents Aspect Ratio,
Cs represents Shape Complexity, and BP represents Bridge Position Ratio.

In addition to the seven ship-geometric features in this study, trajectory behavior
features were extracted from AIS dynamic information to enhance the accuracy of ship-type
classification. In processing dynamic information data, through the crossing-line method in
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Section 3.2, the dynamic information initially recorded on the AIS is converted to a specific
crossing-line dataset, and the coordinate data (longitude and latitude) are converted into
the lateral position of each crossing-line. With the centerline of the southbound lane as
the reference point, positive values signify a right-side deviation, while negative values
indicate a left-side deviation. In addition to reducing data dimensionality, this approach
establishes a consistent standard for subsequent training data. Fifty sample data points
were extracted from each ship’s trajectory, calculating six variables for each trajectory: the
median values of ship speed, course, and lateral position (denoted as Smed, Cmed, and Tmed,
respectively), as well as the interquartile range (IQR) (represented as Siqr, Ciqr, and Tiqr).
These variables capture the speed, course, and position deviation of each trajectory, with
their respective variability ranges representing the navigational characteristics of the ships.
Additionally, this study includes the ship’s draft as a feature. Due to their smaller size,
general cargo ships typically have shallower drafts compared to bulk carriers and container
ships. Moreover, container ships typically have significantly shallower drafts compared to
bulk carriers of similar length.

This study extracted a total of 14 features from 9785 ship trajectory samples. The
feature vector can be expressed as follows:

f =
[
L, W, Dr, Ps, As, AR, Cs, BP, Tmed, Smed, Cmed, Tiqr, Siqr, Ciqr

]
(3)

In the above formula, draft (D), median of Transverse deviation from channel central
line (Tmed), median of speed over ground (Smed), median of course over ground (Cmed),
Interquartile range of Transverse deviation (Tiqr), Interquartile range of speed over ground
(Siqr), Interquartile range of course over ground (Ciqr).

This study collected 9785 trajectory data points from ships navigating southbound
in the Changhua Wind Farm Channel since 2022. These ships are categorized into four
types: bulk carriers, container ships, general cargo ships, and vehicle carriers. Statistics for
ship-geometric and trajectory behavior features are detailed in Tables 3 and 4, respectively.

Table 3. Statistics of ship-geometric features.

L W Dr Ps As AR Cs BP

Mean 200.1 31.3 8.7 462.8 6838.3 6.39 8.55 0.79
std 64.6 9.5 2.1 147.4 4269.1 0.62 0.61 0.16

Minimum 40.0 4.0 2.0 96.0 228.0 3.33 5.63 0.00
25% 160.0 25.0 7.3 370.0 4004.0 6.00 8.17 0.78

50% (Median) 190.0 32.0 8.6 444.0 6048.0 6.26 8.42 0.85
75% 229.0 33.0 9.8 522.0 7425.0 6.57 8.72 0.87

Maximum 400.0 65.0 25.5 924.0 24,800.0 15.91 17.97 1.00

Table 4. Statistics of trajectory behavior features.

Tmed Smed Cmed Tiqr Siqr Ciqr

Mean −172 13.2 215.2 169 0.2 2.2
std 803 2.8 3.2 207 0.2 2.8

Minimum −10,773 2.6 193.9 1 0.0 0.0
25% −660 11.3 213.7 53 0.1 0.7

50% (Median) −170 12.9 215.0 113 0.1 1.3
75% 290 15.0 216.5 212 0.2 2.5

Maximum 3575 23.4 254.0 3298 9.3 45.2

Table 3 displays the statistical characteristics of ship-geometric features. The statistics
for the ship’s length show an average length of 200.1 m and a median length of 190 m. The
slightly lower median compared to the mean suggests that the distribution of the ship’s
lengths is relatively balanced, with no severe outliers significantly affecting the mean. The
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standard deviation (64.6 m) compared to the IQR (139 m) indicates a wide dispersion in the
ship’s lengths, and there is significant variability in the lengths of ships within the middle
50% of the data range. The statistics for draft reveal an average draft of 8.7 m, which is very
close to the median draft of 8.6 m. Most ships have draft depths falling within the range of
7.3 to 9.8 m. The similar IQR (2.5 m) and standard deviation (2.1 m) further suggest high
data centrality, with minimal differences in draft depths among the majority of ships. For
most geometric features of ships, there is only a slight difference between their mean and
median values. However, certain features such as W, As, AR, Cs, and BP exhibit smaller
interquartile ranges compared to the standard deviation, implying the presence of a few
outliers or anomalies that contribute to increased overall data variability.

Table 4 displays the statistical measures of trajectory behavior characteristics. The
trajectory speed (Smed) statistics show an average speed value of 13.2 knots, closely aligned
with the median of 12.9 knots. This indicates a relatively balanced distribution of sailing
speeds, with minimal impact from extreme values. The IQR of 3.7 knots, larger than the
standard deviation of 2.8 knots, suggests that most ship speeds are distributed within
a narrow range. The average speed variation range (Siqr) is 0.2 knots with a median of
0.1 knots and a standard deviation of 0.2 knots. The low average and standard deviation
indicate that most trajectories exhibit a very narrow range of speed variation, implying
stable speeds. The maximum value of 9.3 knots points to the presence of outliers, suggesting
more considerable speed variations under certain conditions or for specific ship types. The
trajectory course (Cmed) statistics show an average course value of 215.2 degrees, closely
matching the median of 215 degrees. The IQR of 2.8 degrees, nearly equivalent to the
standard deviation of 3.2 degrees, indicates high centrality in the dataset. This suggests
that most ships maintain a stable course with minimal directional changes, adhering to
navigation guidelines. The average course variation range (Ciqr) is 2.2 degrees with a
standard deviation of 2.8 degrees. The IQR of 1.3 degrees and a standard deviation of
2.8 degrees in Ciqr reflect a more comprehensive range of changes in some trajectories,
indicative of diverse navigational behaviors in complex channel environments or adverse
weather. Regarding the lateral offset position (Tmed), the average value is −172 m, and
the median is −170 m. This suggests that most ships’ lateral offsets are to the left of the
channel’s centerline within a relatively fixed range. The IQR of 950 m and a standard
deviation of 803 m show that ships effectively maintain their intended paths within the
2-nm-wide channel. However, extreme values (minimum −10,773 m, maximum 3575 m)
indicate significant lateral deviations in some cases, possibly due to emergency maneuvers,
strong wind and wave effects, or navigational errors. The average lateral offset variation
range (Tiqr) is 169 m with a standard deviation of 207 m, highlighting significant differences
in lateral deviation across trajectories. This variability may reflect responses to channel
width, traffic density, or environmental factors. The maximum value of 3298 m suggests
significant lateral deviations under special navigational circumstances.

In summary, the statistical data on speed, course, and lateral offset variations reveal
high consistency and predictability in ship speeds and courses on the channel. Most ships
maintain a stable course and lateral offset, indicating adherence to navigation guidelines
and channel stability. However, the data also imply potential speed and course variations
under specific conditions. These insights are crucial for channel management and maritime
safety strategy development, highlighting the need for tailored navigational protocols.

Subsequently, this study further divided the data into four ship types and created
box plots for comparative analysis. Figure 6 presents the ship-geometric features of these
four ship types, while Figure 7 illustrates their trajectory behavior characteristics in the
southbound traffic lane. Bulk carriers, container ships, and general cargo ships exhibit
significant differences in length, width, area, and perimeter. Bulk carriers, larger in tonnage,
typically show more extraordinary lengths and widths (approximately 180–300 m in length,
30–45 m in width), with outliers indicating the presence of smaller ships. In contrast, general
cargo ships, usually smaller in tonnage, display shorter lengths and narrower widths
(approximately 100–150 m in length, 15–25 m in width), clustering within a more compact
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range. The IQR and the distribution of outliers for general cargo ships are markedly
different from the other three ship types. Vehicle carriers, while similar in principal
dimensions to other types, differ distinctly in bridge position ratio (BP), with bridges often
located near the bow, as opposed to the stern placement in other cargo ships. Container
ships, typically medium-sized and concentrated in the 150–220 m range, include outliers
representing significantly larger ships, such as ultra-large container ships (≥18,000 TEU)
with double bridges. However, the aspect ratio (AR) and shape complexity (Cs), indicators
of ship maneuverability, overlap considerably among the four types.
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Regarding trajectory behavior characteristics, the speeds of container ships and vehicle
carriers mainly range between 14 and 18 knots, higher than the 9–13 knots range of bulk
and general cargo ships. However, the trajectory course and lateral position distribution
are similar among all four ship types, showing only minor variations. The majority of
ships maintain courses within a 2-degree deviation from the traffic lane direction, and their
lateral positions are within a 0.5 nm range on either side of the traffic lane’s centerline. This
distribution suggests that most ships adhere to channel navigation guidelines, with outliers
indicating anomalies in navigation characteristics such as speed, course, or position.
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4. Experimental Results and Discussion

All numerical experiments in this study were implemented using Python 3.8 under a
Windows 10 environment. The classification algorithm was provided by Scikit-learn Class
to evaluate the extracted features for ship-type classification. After calculating the statistical
measures detailed in the previous section, ship-geometric and trajectory behavior features
were extracted. Subsequently, normalization was applied to all samples using the quartiles
and the IQR for each feature. The lower quartile value was scaled to 0, while the upper
quartile value was scaled to 1. The classification target was then transformed into four
discrete values, with bulk carriers assigned 0, container ships given 1, general cargo ships
given 2, and vehicle carriers posted 3. Furthermore, this study employed standard classifier
evaluation metrics, including Accuracy, Precision, Recall, and the F1-score, to assess the
model’s performance in classifying the four ship types. The relevant calculation is shown
in Equation (4). Accuracy is the most frequently utilized metric in classification problems,
quantifying the proportion of correctly predicted instances out of the total predicted sam-
ples. Nevertheless, in the case of imbalanced datasets, relying solely on Accuracy can yield
misleading assessments, emphasizing the importance of considering additional scores.
Precision emphasizes evaluating how many of the actual positive instances are accurately
predicted among all the predicted positives. Conversely, Recall assesses how many positive
samples are correctly predicted as positive. The discussion in this chapter is as follows:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 − score = 2×Precision×Recall
Precision+Recall

(4)
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4.1. Classification Model

In the realm of machine learning, particularly in supervised learning, no single algo-
rithm can consistently excel in every problem, as its performance is contingent on data
features and structure. Hence, it becomes imperative to assess various algorithms for
a given problem and gauge their performance using test datasets to pinpoint the most
suitable one. In this study, to confirm the efficiency of the extracted features for ship
classification in AIS data, this study conducted experiments with eight well-established su-
pervised machine learning algorithms for evaluation: Logistic regression (LR) [21], Decision
Tree (DT) [22], K Nearest Neighbor (KNN) [23], Linear Discriminant Analysis (LDA) [24],
Gaussian Naive Bayes (GNB) [25], Support vector machines (SVM) [26], Random forest
(RF) [27], eXtreme Gradient Boosting (XGBoost) [28]. These algorithms have all been widely
used for classification problems.

The eight classification algorithms can be grouped into three main categories: tree-
structure-based, proximity-based, and regression-based. DT, RF, and XGBoost belong to the
category of tree-structure-based classification algorithms. DT utilizes a simple tree structure
with conditional classifiers to handle classification problems, constructed by successively
dividing the dataset based on feature criteria determined through information entropy and
information gain. Advantages of DT include minimal computation for data classification,
the ability to handle both continuous and discrete values, and ease of understanding and
interpretation. DT does not require feature normalization, can reasonably take missing
values, and is not significantly affected by outliers. However, it can be less effective with
too many categories and insufficient data and is prone to overfitting.

RF improves upon DT by generating multiple decision trees, each using a subset of
features and data, with the final result determined by majority voting. This approach
reduces overfitting and biases inherent in individual trees. Nevertheless, RF has higher
training or prediction time complexity than DT, but its efficiency is improved since each
tree can run in parallel. The space complexity also increases with the number of trees,
particularly when each tree is more complex. The space and time required for training
increase with the number of decision trees in the random forest. In contrast, XGBoost
builds sequential decision trees, learning from previous mistakes and increasing weight
in subsequent trees. It controls model complexity to prevent overfitting, with a higher
time complexity during training as trees are built sequentially. XGBoost performs pruning
during training, generally making it more efficient than RF. Its space complexity depends
on the number and size of trees built.

KNN is a classification algorithm based on proximity. It classifies or regresses a new
sample by finding the nearest K neighbors and establishing it on the labels of these neigh-
bors. It requires calculating the distance between the test sample and each training sample
and storing the entire training dataset. Its time and space complexity are proportional to
the number of training samples and features. GNB is a probabilistic classifier that assumes
features follow a Gaussian distribution. It uses Bayes’ theorem to compute each type’s prob-
ability of feature values. Then, the test sample is classified into the class with the highest
chance, which is the probability distribution closest to the model in terms of probabilistic
distance. Therefore, to some extent, GNB can be categorized as an algorithm based on
proximity. During the training phase, it calculates the mean and standard deviation for
each type, with time complexity linearly related to the number of features and data points,
and it predicts relatively quickly during the prediction phase. It only needs to store the
mean and standard deviation for each feature per category, making its space complexity
comparatively lower than KNN.

LR, LDA, and SVM are methods based on regression algorithms. LR, adapted from
statistics, calculates the probability of a sample belonging to a category and efficiently
classifies sample data with low time complexity, where computational time is linearly
related to the number of features and data points. LDA, a supervised learning method for
dimensionality reduction, aims to maximize inter-class differences and minimize intra-class
variances. Its time complexity is the order of O (nm2), where n represents a number of sam-
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ples and m represents the dimensions, primarily due to the computation of the covariance
matrix and its inverse, which becomes costly in high-dimensional data. SVM classifies data
by finding a hyperplane that maximizes the margin between classes. For linear SVM, the
time complexity is proportional to the number of features and samples, while the space
complexity is proportional to the number of features. All three methods apply to multi-class
problems, with LDA requiring more computation time in high-dimensional data, whereas
LR and SVM generally perform better in such settings.

In the numerical experiments, the dataset of 9785 ship samples was randomly split
into two parts: 75% for training data and 25% for testing data. Next, the classifier models
for bulk carriers, container ships, general cargo ships, and vehicle carriers were constructed
using eight classification algorithms. All models were trained with 14 features, including
both ship-geometric and trajectory behavior features of the ships, using the original default
parameters of the algorithms. Afterward, the accuracy, average precision, average recall,
and average F1 score of each classifier were computed using the test data, as detailed in
Table 5. The evaluation metrics are calculated with equal weights for different ship types.

Table 5. Comparison of classifier’s Accuracy, average Precision, average Recall, and average F1-score
(14 Features).

Metrics
Tree-Structure-Based Proximity-Based Regression-Based

XGBoost RF DT KNN GNB LR LDA SVM

Accuracy 0.964 * 0.963 0.912 0.850 0.888 0.852 0.801 0.893
Precision 0.957 * 0.955 0.892 0.832 0.886 0.826 0.795 0.891

Recall 0.953 * 0.952 0.889 0.817 0.852 0.840 0.825 0.869
F1-score 0.954 * 0.953 0.891 0.824 0.863 0.832 0.791 0.879

* represent the highest score among the eight methods.

Table 5 demonstrates that the proximity-based classification models, such as KNN
and GNB, as well as the regression-based models like LR, LDA, and SVM, have relatively
lower evaluation metrics. All these metrics fall below 0.9, with SVM having the highest
Accuracy and Precision, approximately 0.89, while GNB exhibits the lowest F1-score, falling
below 0.8. Tree-structure-based classifiers like DT, RF, and XGBoost generally achieve high
evaluation metrics. RF and XGBoost have accuracy above 0.96, with Precision and Recall
around 0.95. DT also has Precision above 0.91, while Precision and Recall are slightly below
0.89. The results of each classification algorithm indicate that XGBoost and Random Forest
algorithms are the most suitable for the cargo ship classification problem in this study.

Moreover, this study further examines the classification results of the four ship types.
Remarkably, XGBoost and RF algorithms exhibit nearly identical classification metric
scores, surpassing other algorithms. Hence, the subsequent discussion is grounded in the
outcomes of these two classification models. Figure 8 provides a visual representation of
the classification confusion matrices for XGBoost and Random Forest algorithms using
the test dataset. The “Actuals” represent the actual ship-type labels from the AIS dataset,
while the “Predictions” are the classification outcomes of the algorithms. Notably, general
cargo ships commonly encounter distinct challenges during the classification procedure,
often leading to misidentifications with bulk carriers or container ships; approximately
10% of them are misclassified as bulk carriers, and about 4% are misclassified as container
ships. Furthermore, about 2% of bulk carriers are misclassified as general cargo ships, and
around 1% are misclassified as container ships. This misclassification can be attributed to
the similarities in ship-geometric and trajectory behavior features between bulk carriers
and general cargo ships. Although the training and testing datasets for vehicle carriers are
the fewest among the four ship types, they have the highest classification metrics. These
high metrics can be attributed to the distinctive design of vehicle carriers, with the primary
feature being the bridge’s location at the bow of the ship, resulting in an Accuracy of
approximately 99%.
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4.2. Feature Selection

Feature selection involves reducing the number of input features when creating a
classification or prediction model. This process offers several advantages, including the
elimination of redundant data, the prevention of excessive noise during training, and a
reduction in the risk of overfitting. Reducing the number of features results in simpler
algorithms and more efficient model training. This step is essential in machine learning
and can substantially enhance models’ predictive or classification accuracy [29]. Table 6
presents the rankings of feature importance obtained through five methods: Variable
Ranking, Correlation Matrix, Built-in Feature Importance, Permutation Importance, and
Recursive Feature Elimination Cross-Validated (RFECV).

Table 6. Feature Importance Ranking.

Ranking Variable
Ranking

Correlation
Matrix

Built-In Feature Importance Permutation Importance RFECV

(RF) (XGBoost) (RF) (XGBoost) (RF) (XGBoost)

1 BP BP BP W BP BP

W, Ps, BP

L, W, AR,
As, Ps, BP,

Smed

2 Smed W W Ps W L

3 W Ps Ps Smed L AR

4 Ps L As BP Ps Smed As

5 L As Smed As As As Smed

6 As Smed L L Smed Ps AR

7 Dr Dr Dr AR Dr Dr Dr

8 AR Siqr Cs Dr AR W L Dr

9 Cs Ciqr AR Tmed Cs Tmed Tmed Tmed

10 Cmed Cmed Tmed Cmed Tmed Siqr Cs Cmed

11 Tmed Tiqr Ciqr Siqr Cmed Ciqr Cmed Tiqr

12 Siqr AR Cmed Ciqr Siqr Cmed Siqr Ciqr

13 Ciqr Cs Siqr Tiqr Ciqr Tiqr Tiqr Siqr

14 Tiqr Tmed Tiqr Cs Tiqr Cs Ciqr Cs

Feature importance is determined by scoring each feature in the dataset and arranging
them in order. Feature ranking involves sorting features based on scoring functions that
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assess their relevance. In this study, the “SelectKBest” function from Scikit-learn was
employed to rank input features using the F-value from linear regression. The feature
importance ranking, depicted in Table 6, is as follows: [BP, Smed, W, Ps, L, As, Dr, AR, Cs,
Cmed, Tmed, Siqr, Ciqr, Tiqr].

Feature selection based on correlations between features and their correlations with
the target is crucial. A lower correlation between features is preferred, while a higher
correlation between features and the target is desirable. Correlation can be visualized
using a heatmap. Figure 9 displays a heatmap generated using a program that calculates
correlations between features and utilizes the Seaborn heatmap function. In the heatmap,
stronger correlations are represented by higher values, and you can easily visualize the
relationships between features based on the different colors. Additionally, the target is
included as a feature in correlation calculations. Features with higher correlations to the
target are considered more important, which can establish the feature importance ranking,
as presented in Table 6, as follows: [BP, W, Ps, L, As, Smed, Dr, Siqr, Ciqr, Cmed, Tiqr, AR, Cs,
Tmed]. The Variable Ranking and Correlation Matrix methods rely solely on the sample data
and are not influenced by any classification algorithms. A comparison of the results reveals
that the top seven features are consistent in both methods, comprising BP, Smed, W, Ps, L,
As, and Dr, although their rankings may differ slightly. It is worth noting that among these
top seven features, only one is associated with the trajectory behavior feature [Smed], while
the remaining six pertain to ship-geometric features.
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Specific machine learning algorithms, particularly tree-structure-based, often calculate
feature importance, commonly known as “Built-in Feature Importance”. These scores
quantify the significance or relevance of each feature to the target. Higher scores signify
greater importance or relevance to the target. Scikit-learn’s decision tree-based classifica-
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tion methods, like Random Forest and XGBoost, employ gradient-boosting algorithms to
determine feature importance. They enhance performance metrics by assessing how much
each feature contributes at various split points within individual decision trees. Nodes
within these decision trees are responsible for weighting and recording the number of times
a feature contributes to improving a performance metric. In essence, features closer to
the root node are assigned higher importance (weight) if they substantially contribute to
performance metric enhancements. The more boosting trees choose a feature, the more
important it is considered. The performance metric used for evaluating the split points can
be Gini impurity or other measurement functions. Ultimately, a feature’s importance score
is calculated by taking the weighted sum of its results across all boosting trees and then
averaging them. The evaluation results of the Random Forest and XGBoost algorithms are
presented in Figure 10. These results consistently include the top six important features:
BP, W, Ps, As, Smed, and L, although their rankings may vary slightly.
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The Permutation Importance method assesses feature importance by training a model
and then randomly shuffling the order of a single feature variable. If mixing a feature
decreases the model’s predictive accuracy, it indicates that the feature is essential. In
Table 6, for the Random Forest classifier, the feature importance rankings obtained through
permutation importance are [BP, W, L, Ps, As, Smed, Dr, AR, Cs, Tmed], while the XGBoost
classifier yields rankings as [BP, L, AR, Siqr, As, Ps, Dr, W, Tmed, Siqr]. Both classifiers share
the same top eight features in their rankings.

Finally, Cross-Validated Recursive Feature Elimination (RFECV) is a classifier-specific
method that optimizes the model by performing cross-validation using various feature
combinations and recursively eliminating features based on a removal order. RFECV ranks
features according to the sequence of their elimination. Table 6 indicates that after feature
selection with RFECV, the random forest classifier identifies three features (W, Ps, and BP)
for optimal predictive performance. In contrast, the XGBoost classifier identifies seven
features (L, W, AR, As, Ps, BP, and Smed) to achieve the best classification performance.

Considering the comparison of various methods, we can clearly identify the important
features. In this study, we explored three feature selection scenarios:

1. Selecting the top four important features, namely W, Ps, BP, and Smed.
2. Choosing half of the important features, including L, W, As, Ps, BP, Smed, and Dr,

totaling seven features.
3. Excluding the least important four features (Tiqr, Ciqr, Siqr, Cs) and selecting L, W,

AR, As, Ps, BP, Smed, Dr, Tmed, and Cmed, totaling 10 features as the test features for
ship-type classification.
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The test results are presented in Tables 7–9. These metrics demonstrate that regardless
of whether they use four, seven, or ten features, the XGBoost and Random Forest classifiers
consistently outperform the other six algorithms regarding classification. When comparing
the results in Tables 5 and 7–9, the performance of both XGBoost and Random Forest
classifiers is similar. Specifically, the XGBoost classifier consistently achieves an accuracy of
over 96.5%, with its best performance using only four features, achieving an accuracy of
96.9%. On the other hand, the Random Forest classifier consistently achieves an accuracy
of over 96.0% and performs best when using 10 features, with an accuracy of 96.6%. The
number of features significantly impacts the analysis cost, and the study’s results emphasize
that a model trained with just four features can achieve an exceptionally high classification
accuracy. Interestingly, this minimal feature model outperforms models trained with more
features. This underscores the crucial importance of these four features (W, Ps, BP, and Smed),
including three ship-geometric features and one trajectory behavior feature, demonstrating
the potential for cost savings and efficiency in the classification process.

Table 7. Comparison of classifier’s Accuracy, average Precision, average Recall, and average F1-score
(4 features).

Metrics
Tree-Structure-Based Proximity-Based Regression-Based

XGBoost RF DT KNN GNB LR LDA SVM

Accuracy 0.969 * 0.962 0.947 0.846 0.923 0.828 0.849 0.894
Precision 0.964 * 0.952 0.938 0.829 0.909 0.806 0.814 0.875

Recall 0.960 * 0.949 0.935 0.817 0.891 0.816 0.851 0.881
F1-score 0.962 * 0.950 0.936 0.823 0.899 0.810 0.825 0.878

* represent the highest score among the eight methods.

Table 8. Comparison of classifier’s Accuracy, average Precision, average Recall, and average F1-score
(7 Features).

Metrics
Tree-Structure-Based Proximity-Based Regression-Based

XGBoost RF DT KNN GNB LR LDA SVM

Accuracy 0.966 * 0.963 0.937 0.852 0.922 0.850 0.804 0.899
Precision 0.959 * 0.957 0.923 0.829 0.909 0.822 0.794 0.879

Recall 0.954 * 0.949 0.927 0.815 0.887 0.841 0.824 0.882
F1-score 0.957 * 0.953 0.925 0.822 0.896 0.831 0.790 0.880

* represent the highest score among the eight methods.

Table 9. Comparison of classifier’s Accuracy, average Precision, average Recall, and average F1-score
(10 Features).

Metrics
Tree-Structure-Based Proximity-Based Regression-Based

XGBoost RF DT KNN GNB LR LDA SVM

Accuracy 0.967 * 0.966 0.922 0.855 0.917 0.850 0.813 0.904
Precision 0.961 * 0.960 0.901 0.839 0.909 0.824 0.803 0.897

Recall 0.956 0.957 * 0.911 0.822 0.888 0.840 0.832 0.884
F1-score 0.959 * 0.958 0.906 0.830 0.896 0.831 0.799 0.890

* represent the highest score among the eight methods.

5. Conclusions and Future Work

To improve maritime traffic management and surveillance, this study uses AIS data to
develop a machine learning-based ship-type classification model, explicitly focusing on
four cargo ship types (bulk carrier, container ship, general cargo ship, and vehicle carrier),
which have not been explored in the previous literature. Initially, the study gathered and
organized AIS ship trajectories from the Changhua Wind Farm Channel. A total of 9785 ship
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trajectories were employed for analysis. Subsequently, 14 features, incorporating ship ge-
ometry and trajectory behavior, were extracted from each trajectory for further examination.
Following the completion of data processing and feature extraction procedures, this study
employed eight machine learning methods, which can be classified into three main groups:
tree-structure-based, proximity-based, and regression-based algorithms, to evaluate the
performance of the ship classifier. The standard classifier evaluation metrics, including
Accuracy, Precision, Recall, and the F1-score, were employed to assess the model’s perfor-
mance in classifying the four ship types. The evaluation results show that the tree-based
classifier outperforms other methods in terms of classification metrics for this problem.
Therefore, it is recommended to use XGBoost and Random Forest algorithms. Furthermore,
this study employed five feature importance evaluation methods, conducting a compre-
hensive feature selection analysis from diverse perspectives. The results demonstrate that
a ship classification model trained with only four features, three ship-geometric features
[W, Ps, and BP], and one trajectory behavior feature [Smed], can achieve a remarkably high
classification accuracy. Assessing the importance of each feature enables the retention of
those that significantly enhance the model’s performance while discarding less influential
ones. This streamlines the model, expedites training, reduces computational expenses, and
minimizes the risk of overfitting. This underscores the crucial importance of these four
features and demonstrates the potential for cost savings and efficiency in the classification
process. Additionally, this study introduced the feature “Bridge Position Ratio (BP)”, which
holds considerable importance in ship classification owing to the distinctive characteristics
of various ship-type bridges.

In conclusion, applying ship-type classifiers to the Changhua wind farm channel,
specifically by extracting ship-geometric and trajectory behavior features from AIS data,
has significantly improved the classifier’s performance, achieving an accuracy rate of
nearly 97%. The cargo ship classification method proposed in this study addresses the
issue of insufficient ship-type information in AIS data. It also serves as vital information
for subsequent anomaly detection in ship navigation. Nonetheless, this study involved
the development of a ship classifier for AIS ship-type codes categorized within the 70–79
range (cargo ships), explicitly targeting a certain area. The proposed classifier framework is
tailored for this particular maritime domain, aligning with the classification needs of cargo
ship types. For other ship types, such as fishing ships or tugs, and in different operational
domains where trajectory behaviors vary, there is a need for classification or clustering
methods specific to these types and behaviors. Moreover, the eight algorithms evaluated in
this study are categorized into three distinct machine learning-based groups. Future work
will explore methods based on neural networks to develop more efficient and effective
classification algorithms.
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