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Abstract: Eye fatigue has a fatiguing effect on the eye muscles, and eye movement performance is a
macroscopic response to the eye fatigue state. To detect and prevent the risk of eye fatigue in advance,
this study designed an eye fatigue detection experiment, collected experimental data samples, and
constructed experimental data sets. In this study, eye-tracking feature extraction was completed, and
the significance difference of eye-tracking features under different fatigue states was discussed by
two-way repeated-measures ANOVA (Analysis of Variance). The experimental results demonstrate
the feasibility of eye fatigue detection from eye-tracking signals. In addition, this study considers the
effects of different feature extraction methods on eye fatigue detection accuracy. This study examines
the performance of machine learning algorithms based on manual feature calculation (SVM, DT,
RM, ET) and deep learning algorithms based on automatic feature extraction (CNN, auto-encoder,
transformer) in eye fatigue detection. Based on the combination of the methods, this study proposes
the feature union auto-encoder algorithm, and the accuracy of the algorithm for eye fatigue detection
on the experimental dataset is improved from 82.4% to 87.9%.

Keywords: eye tracking; feature analysis; eye fatigue; deep learning

1. Introduction

Eye fatigue is defined as eye and visual symptoms caused by prolonged use of digital
electronic display devices [1], such as sore eyes, swollen eyes, and red eyes, and is one of the
major global health problems. Studies have shown that using electronic screens for more
than two hours is enough to trigger the risk of eye fatigue [2]. For the different use scenarios,
eye fatigue is also known as digital visual fatigue [3]. With the increasing sophistication
of current digital electronic display terminal technology, the public’s daily life is deeply
bound to electronic devices. In addition, online lectures, online offices, and other behaviors
are widespread today. This situation further aggravates the public’s demand for the use
of the internet and electronic equipment. It has led to a large increase in the average time
spent on electronic devices.

One of the major direct effects of eye fatigue is damage to the eye’s regulatory mecha-
nisms [4,5]. The eye accommodation mechanism is the main mechanism of visual function,
which is related to binocular vision, such as the ability of binocular coordination and cooper-
ation. The eye accommodation mechanism contains light perception, color perception, and
contrast perception, which is significantly affected by eye fatigue. Another manifestation
of eye fatigue is damage to the circulatory mechanisms of the ocular surface, especially
direct damage to the tear film homeostasis. This kind of damage appear as symptoms
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such as eye dryness and redness, which can lead to ocular disorders such as dry eye and
blurred vision [6]. The tear film, as the first refractive medium on the ocular surface and
one of the important links in retinal imaging, consists of a lipid, aqueous, and mucin layer
7–40 µm thickness. As the tear film is exposed to air for a long period of time, it is highly
susceptible to alteration by air and external factors, and the human body maintains or
rearranges the tear film environment on the ocular surface by blinking. However, as the
time of electronic screen use and the degree of eye fatigue increases, the frequency of
human blinking decreases significantly [7].

In recent years, eye-tracking technology has emerged as a powerful tool in the study
of fatigue detection. Eye-tracking technology has multiple advantages over traditional self-
report methods and observational techniques, notably including objective and quantitative
assessment of fatigue. By precisely and non-invasively measuring eye movements, eye-
tracking provides detailed insights into visual and attention behavior during various
tasks [8]. This technology enables researchers to gain a deeper understanding of fatigue
and develop more effective detection and management strategies. However, within the
field of fatigue detection, many researchers have focused their use scenarios on driving
fatigue detection, and eye fatigue detection for daily environments is still at a relatively
initial stage.

The work content of this study can be divided into two points: 1. In this study, signif-
icant differences of eye tracking features in different fatigue states and the performance
of eye fatigue detection algorithms based on different feature extraction methods are thor-
oughly investigated based on eye tracking signal acquisition. 2. This study explores the
feasibility of completing eye fatigue detection through eye-tracking signals and combines
the performance of multiple algorithms to propose a feature union auto-encoder algorithm
used in eye fatigue detection.

2. Related Works

In studies using eye-tracking signals for fatigue detection, the main detection tools
available are video signals, electrooculography signals, and multimodal fusion meth-
ods. The study of electrooculography (EOG) has been an important aspect of eye fatigue
research [9–12]. The EOG signal is a measurement that uses electrodes placed in four
directions: above, below, to the left, and to the right of the eye. The purpose of this behav-
ior is to measure the change in the potential difference between different potentials and
reference points as a response to the direction and speed of eye movement, as shown in
Figure 1a. The degree of eye fatigue is determined by calculating the amplitude changes
in the horizontal and vertical electromyography of the eye, measuring the speed of eye
movements, and comparing the timing longitudinally [13]. Electrooculography plays a
crucial role in studies to reconstruct eye movement trajectories. Most fatigue-monitoring
algorithms based on electrical signals use blink frequency and mean eye closure time
as indicators to judge the state [14]. There are also studies that perform time-frequency
conversion of the acquired EOG signals to extract features from the frequency domain for
fatigue analysis [15–17]. However, the data quality of the EOG signals is severely affected
by the acquisition process. Any small body movement of the subject can lead to fluctuations
in signal quality, thus reducing the confidence and accuracy of the EOG signal. To improve
the accuracy and reliability of the eye fatigue detection task, researchers have conducted
a lot of studies on EOG-based multimodal fusion detection methods. These studies fuse
the EOG signals with electrocardiographic sensors, skin reflectance currents, and skin
temperature signals [18–22]. Furthermore, with the rise of brain–machine interface (BCI)
technology and the optimization of sensors, researchers have also used steady-state visual
evoked potential (SSVEP) methods [23–25] and electrocardiogram (ECG) measurements for
eye fatigue detection tasks [26–28]. Although these algorithms can improve the accuracy
of the detection task, their signal acquisition is rather difficult. The interpretability of the
signal is also poor.
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Figure 1. (a) Schematic diagram of EOG signal acquisition; (b) schematic diagram of the eye fatigue
experiment.

In contrast, video signals are much more convenient for information acquisition com-
pared to other physiological sensors, such as EOG. The interpretability of video signals is
also significantly better than that of signal sources such as EOG due to the close relationship
between the visualization features of video signals and the physiological structure of the
eye. However, in the current research on fatigue detection based on video eye-tracking sig-
nals, most studies are oriented towards driving fatigue and fatigue from the use of virtual
reality technologies [29–32]. These studies usually use only the number of blinks and mean
eye closure time as discriminators and do not delve into the effects of eye fatigue status on
eye movement. While most fatigue detection algorithms can demonstrate excellent fatigue
detection accuracy and reliability in driving fatigue detection, there is still less research
on eye fatigue detection in daily life. Previous studies have shown that eye movement
metrics are valuable for eye fatigue detection tasks [33]. Therefore, this study designs
an experiment to explore the small changes in eye movement features reflected by video
signals in different eye fatigue status. This study also completes eye fatigue detection on
this basis by deeply researching algorithms based on different feature extraction methods.

In conclusion, this paper will focus on the use of electronic screens in daily environ-
ments as the target scenario. The research objectives of this paper are to study the detection
methods of eye fatigue from the perspective of accommodation mechanism and circulatory
mechanism damage. Specifically, the research objective of this paper is to experimentally
verify the specific manifestations of the impairment of regulatory and circulatory mech-
anisms triggered by eye fatigue in the target scene. This research aims to verify and test
the response of eye-tracking features in the detection of eye fatigue and to propose a series
of complete, reliable, and interpretable eye fatigue detection features. This study designs
an automatic detection algorithm of eye fatigue to capture small changes in fatigue status
that are difficult for humans to detect and provide guidance and reference value for fatigue
research in other domains.

3. Methodology
3.1. Experimental Setup

In the process of eye movement signal acquisition, this research adopted a 1920 × 1080
resolution electronic display and used a self-developed desktop near-infrared eye tracker.
The eye tracker consists of an infrared camera and two sets of infrared fill-in lights placed
at ten centimeters on both sides of the camera. The eye-tracking system also adopts a
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nine-point calibration method. This system provides near-infrared images with a resolution
of 3840 × 2160 pixels and an acquisition frequency of 25 frames/second. The eye tracker
was placed horizontally below the electronic display during the experimental interval,
and subjects were required to face the camera and to minimize head rotation during the
experiment. In addition, the distance between the subject’s eyes and the eye-tracker was
strictly controlled to be between 50 and 60 cm. The calibration and eye-tracking signal
acquisition started from the end of the questionnaire and visual acuity test. A schematic
diagram of the experiment is shown in Figure 1b.

The Chinese Ethics Review Committee requires ethical approval for research activities
related to the prevention, diagnosis, treatment, and rehabilitation of diseases, as well as
interventional research involving the collection or storage of biological samples related to
the life sciences through epidemiological and sociological methods. Since this research only
use infrared cameras to collect subjects’ eye movements in our study, there was no contact
and intervention behavior, there was no harm to subjects, and it was not a disease-related
study, so this research did not need to apply for ethics committee approval. There are many
similar examples in previous experimental studies of eye tracking [34–36]. All experiments
in this study were conducted in strict accordance with the relevant laws and the principles
embodied in the Helsinki Declaration, and each participant personally signed an informed
consent form.

3.2. Feature Extraction

Based on the experimental design and task requirements, various features were ex-
tracted from different experiments to capture the overall characteristics. These features can
be categorized into three main aspects:

• Pupil-related features: number of blinks (BN), average duration of eye closures (BD),
maximum pupil sizes (PMAX), minimum pupil sizes (PMIN), mean velocity of pupil
change (PV), response time for the pupil to adjust to screen changes (PL);

• Eye movement features: number of fixations (FN), average duration of fixations (FD),
fixation as a percentage of total time (FR), number of saccades (SN), average distance
covered during saccades (SD);

• Task performance features: percentage of the duration of subjects’ fixation on the
search target during the search phase in relation to the duration of the entire search
phase in the visual search task (Target Fixation Ratio, TFR), response time for the
fixation point to move from the center of the screen to the area where the search target
is located after the start of the search phase of the visual search task (Target Search
Latency, TSL), percentage of experiments in which subjects’ fixation points were within
the target area at the end of the search phase of the visual search task (Task Success
Ratio, TSR), proportion of time subjects looked at the center of the screen in the FF, SF,
LG, and CF tasks as a proportion of the total time spent on each task (Center Fixation
Ratio, CFR).

3.3. Methods of Statistical Analyses
3.3.1. Two-Way Analysis of Variance (Two-Way ANOVA)

Two-way ANOVA generally defines the influencing factors in an experiment as fac-tor
A and factor B. In data processing, two-way ANOVA requires that the interrelationships
between factor A and factor B be presupposed before analyzing. The different analytical
ideas should be used for the data in which A and B do or do not have an interaction. The
former explores the influence of factor A and factor B on the experimental results and
the significance of the difference in the data. However, the latter is more concerned with
whether A and B produce a new effect that affects the experimental data by combining them.
The correspondence between the formulae for the source of variation and the interaction
for the two-factor ANOVA method is shown in the following equation.
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SSA =
1

2n

(
A1

2 + A2
2
)
− C (1)

SSB =
1

2n

(
B1

2 + B2
2
)
− C (2)

SSAB =
1
n

(
T12 + T22 + T32 + T42

)
− C − SSA − SSB (3)

In the above equation, A, B denote the influences; T denotes the sample group under
the joint influence of A, B; and C is a constant calculated by summing the squares of A and
B to correct for the effect of the interaction.

The hypothesis of no interaction between factors A and B was used in this study.
Fac-tor A indicates the difference between the subjects themselves currently participating in
the experiment, and factor B indicates the difference between the subjects’ eye fatigue status.
The focus of this study was on exploring the analysis of the between-group differences of
the different fatigue levels on eye movement features for the various tasks.

3.3.2. Repeated-Measures Analysis of Variance (RM ANOVA)

RM ANOVA methods are used by researchers to assess the effect of one or more factors
on a subject’s multiple measurements. This method compares the differences in the vari-
ables within each group as well as the differences in the variables between each group and
is a method of comparing the differences in the means of variables within multiple groups.
Unlike traditional ANOVA, repeated-measures ANOVA considers multiple measurements
of the same subjects and allows for a more accurate assessment of the effect of factors on the
measurements. In the present study, repeated-measures ANOVA was used in the analysis
of this part of the data due to the presence of multiple flicker trials in the fast flicker, slow
flicker, luminance gradient, color flicker, and visual search tasks.

3.4. Eye Fatigue Detection Algorithm

During the exploration of eye fatigue detection algorithms, this study explored both
machine learning algorithms for eye-tracking features and deep learning algorithms for
automatic feature extraction. For the machine learning algorithms of eye-tracking features,
this study successively used support vector machine (SVM), decision tree (DT), random
forest (RF), and extremely randomized trees (ET), and tested the performance for different
key parameters.

In the exploration of deep learning algorithms, this study tried three typical networks:
convolutional neural network (CNN), auto-encoder (AE), and transformer.

3.5. Auto-Encoder Feature Union Algorithm (AEFU)

Considering the interpretability of eye movement features in eye fatigue classification
tasks, this research deeply fused automatically extracted features and manually extracted
features. This research updated the network architecture to explore the fusion method
of automatically extracted features and manually extracted features. This research also
proposed a new eye fatigue detection algorithm based on feature fusion strategy based on
the auto-encoder algorithm, called the auto-encoder feature union algorithm.

This study continuously adapted the structure of the auto-encoder model. Under
the optimal performance, the structure of the auto-encoder model is a five-layer encoder
structure. The length of the output implicit feature variables is 128 dimensions. This study
used the implicit features as the output part of the auto-encoder algorithm. To combine the
manually extracted eye movement feature data and the feature data learned by the model
autonomously, we calculated the eye movement feature data in the deep learning dataset
using the experimental eye movement feature calculation method. The eye movement
feature computation used the standard definitions of fixation and saccade, using time data
and pupil size data to compute pupil-related features, and using time data and fixation
point data to compute eye movement features and task performance features. In the
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calculation of pupil-related features, we recorded the start of a blink as the time when the
pupil size plummeted below 200 pixel points. Based on this, we concatenated the two types
of feature data and used the auto-encoder model for further feature extraction and the eye
fatigue detection task, which had previously performed the best. We adjusted the structure
of the whole model, especially the auto-encoder structure at the back and the length of the
further extracted implicit feature vectors. Finally, we chose a two-layer auto-encoder with
64-dimensional implicit features, and its overall structure is shown in Figure 2.
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4. Experiments
4.1. Eye Detection Experimental Task
4.1.1. Fatigue Discrimination Questionnaire (T/CVIA-73-2019)

Considering the ease of use and relative objectivity, this study adopted the “Visual
Fatigue Testing and Assessment Methods for Display Terminals—Part 2 Scale Assessment
Methods” published by the China Video Industry Association (CVIA) on 19 July 2019 as
an eye fatigue assessment scale, No. T/CVIA 73-2019 [37]. This scale has been widely
used in fatigue studies at home and abroad and has performed well in terms of accuracy
and reliability. The scale contains a total of 20 questions covering the three major ocular
mechanisms of eye fatigue. The questionnaire focuses on the subjective perception and
visual condition of the eyes, including questions on eye fatigue, eye tightness, eye tearing,
dry eyes, eye pain, and blurred vision, supplemented by questions on vertigo, headache,
and neck pain, which are affected by extra-ocular mechanisms. In contrast, questions about
the attentional mechanisms caused by eye fatigue were answered by the subjects based
on their current sensations, such as difficulty concentrating, slow thinking, distraction,
unresponsiveness, and lethargy. To quantify and differentiate the level of fatigue of the
subjects in this paper, the scale gives five levels for each question for the subjects to choose
from, corresponding to a score of 0, 25, 50, 75, and 100, respectively.

A part of the scale content and the scatter plot of the scale scores is shown in Figure 3.
In this study, the average score of all questions was used as the scale outcome. To eliminate
the possible influence of subjectivity in the eye fatigue assessment scale and fit as closely
as possible the non-fatigued and fatigued states of the subjects, this research restricted the
experimental time by asking the subjects to conduct the experiment before they started and
finished working. From the results, the scale score of 15 is a clear cut-off between fatigued
and non-fatigued states.
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Figure 3. (a) Excerpts from the T/CVIA 73-2019; (b) scatter plot of fatigue scale.

4.1.2. Visual Acuity Test

The visual acuity test is used to check whether the current visual level and response
level of the subject is normal. As there were subsequent experimental tasks in which color
changes were the main stimulus, the visual acuity test also included a check of the subject’s
color vision level. The test was divided into two phases, as shown in Figure 4.
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Figure 4. Schematic diagram of the visual acuity test.

In the first phase, a circular pattern with colors was flashed on a white screen, and the
colors of the circular pattern were red, green, and blue randomly. The time that the circle
stayed on the screen decreased with the number of trials. The subjects were asked to choose
the color of the circle that had just appeared within 5 s after the circle disappeared. This
test was repeated 10 times. The second phase consisted of 36 trials. Each trial resulted in a
pattern of four squares, with a base color appearing on the screen. One of the squares was
marked with a grid of stripes of the corresponding number of items. Subjects were required
to correctly select the square with the grid within 10 s of the appearance of the square.
The number of stripes increased in this phase as the number of experiments increased.
Due to the limited resolution and refresh rate of the electronic monitors we used in our
experiments, and to ensure that the experiments were not too simple to avoid decreasing
the subjects’ attentional focus, we allowed for errors in the final stage of the visual acuity



Electronics 2024, 13, 1798 8 of 19

experiment. The subjects were required to achieve 90% and 85% correctness in the two
stages of the visual acuity test before their experimental data could be included in this study.

4.1.3. Flicker Test

In this study, a flash task was utilized to examine potential differences in eye-tracking
metrics across varying levels of fatigue. Previous research has indicated that the features
of blink and pupil changes are more pronounced in scenes with significant variations [38].
If the ability of the eye muscles to adjust during fatigue is diminished, the range of pupil
variation should narrow, and the response rate may decrease in an environment with
rapidly changing stimuli.

The study employed a four-part scintillation test, which consisted of the following
components: the fast flicker test (FF), slow flicker test (SF), luminance gradient test (LG),
and color flicker test (CF). Initially, participants underwent five fast flash tests. In each trial,
the screen rapidly blinked at a frequency of 5 Hz for ten seconds, with five seconds of rest
between groups. This procedure was repeated for a total of five sessions. Subsequently,
the slow flash test was conducted using the same timing and intervals, but with the screen
blinking at a frequency of 1 Hz.

The third part of the task involved stimuli that were significantly reduced compared
to the previous two parts. In this phase, the screen brightness changed from 0 to 255 at a
frequency of 20 Hz. Each experiment was repeated five times, with five seconds of rest
between groups.

The final part of the task examined the response of the eyes to different colors. The
screen cycled through the colors blue, green, red, yellow, magenta, and cyan at a frequency
of 1 Hz. Throughout the experimental phase, participants were instructed to focus their
gaze on a cross positioned at the center of the screen.

4.1.4. Visual Search Test

The test was referenced from a study on attention deficits by Rommelse [39]. Con-
sidering that the state of eye fatigue can have an impact on subjects’ attention, and to
complement the acquisition of pupil scaling in response to small changes in the screen, this
research modified and incorporated this task into the eye fatigue experimental paradigm.
This test was divided into three phases:

The first phase was the preparation phase of the test, in which the screen was black.
This phase consisted only of a yellow dot with a radius of 3 pixels in the center of the screen,
which lasted for 2 s and required the subject to look at the center of the screen.

The second phase was the pre-search stage, in which six red circles with a radius of
30 pixels and a thickness of 2 pixels were generated around the center dot, based on the
screen from the first stage. In this phase, subjects were still asked to look at the center of
the screen, and the focus of attention and pupil movements were examined for a total of 2 s
when the screen changed.

The third phase was a search phase, in which one of the six circles that appeared in
the second phase was randomly made to be filled with grey. In this phase, subjects were
asked to search for the location of the target circle and shift their fixation from the center
of the screen to the target circle within 1 s. The speed of the shift and the accuracy of the
search were analyzed as target features.

All three phases were used as one complete trial of the visual search test, and the
whole test flow is shown in Figure 5. Each group of experiments contained eight trials, and
other circles appeared as interference items in the third phase of the last four trials, while
they did not appear the first four times. The whole experiment went through five sets of
experiments, with a rest of 5 s between sets.
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4.1.5. Reading Test

The main role of the reading task is to simulate the daily use of an electronic screen
and to explore whether there are differences in subjects’ eye movement behaviors between
eye fatigue and non-fatigue states in a free eye movement environment. During this phase,
the screen presented a black-on-white text passage of approximately 500 words, which was
a partial excerpt from a well-known novel without emotional guidance. The subjects were
questioned about their reading before the start of the experiment to make sure that they
had no prior knowledge of the passage. The test lasted 60 s each time, with a 5 s break
between sets, and was administered three times.

4.2. Participants

A total of 19 participants, including 13 males and 6 females, were recruited for this
study, all of whom were enrolled in high school or master’s degree programs. All subjects
were fully informed of the purpose of this study before the experiment and signed a written
consent form before starting the experiment. The inclusion criteria for participant selection
were as follows: (a) refractive errors in the primary and nonprimary eyes that met specific
requirements for each group, with a cylindrical diopter of less than 0.50 D and an equivalent
spherical diopter difference between the eyes of less than 1.00 D; (b) corrected binocular
visual acuity of 1.0 or higher; (c) students between the ages of 14 and 26 years enrolled in
either a high school program or a master’s program; (d) normal performance on visual
acuity tests; and (e) use of electronic screens for a long time before the experiment with eye
fatigue status.

Participants with the following conditions were excluded from the study: (a) use
of medications that may affect changes in pupil size or mechanisms of ocular surface
regulation; (b) non-myopic eye diseases, such as retinal detachment and strabismus, that
can be corrected with lenses; (c) presence of hereditary developmental disorders or cognitive
impairments; or (d) history of alcohol consumption, drug abuse, or use of medications that
affect cognition, such as antiepileptics, antipsychotics, or anticholinergics.

4.3. Eye Fatigue Dataset

Since deep learning models usually require a large number of data, this research
performed data augmentation and constructed the dataset from the original collected eye
movement signal dataset, and the main process was as follows:

1. Normalization of each subject’s data. This research collected pupil data from each
subject in the resting state during the experiment preparation phase, taking the mean
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value as the pupil size benchmark. This research also calculated the pupil size change
throughout the trial phase sequentially as the ratio to the pupil size benchmark. The
differences in the features of the eyes themselves between different subjects were
reduced by normalization, which served as the basis for the subsequent construction
of the eye movement dataset for eye fatigue.

2. Sample slicing. We defined samples judged to be fatigued and non-fatigued as positive
and negative samples, respectively. All the positive and negative samples were
numbered separately, and the data were sliced according to the starting and ending
points of the test. The data of each sample were sliced into six segments, corresponding
to the six tasks of the fast flicker test, slow flicker test, luminance gradient test, visual
search test, color flicker test, and reading test in the eye fatigue experiment;

3. Random combination and generation of datasets. After slicing the sample, the random
sampling method was used for dataset construction. Positive and negative sample
data were obtained. Considering the practicality of the dataset, this research finally
generated 10,000 non-repeated data points for each of the positive and negative
samples as model training. The number of training, validation, and test sets used in
training was 8:1:1.

In the process of randomly generating the dataset, this research also recorded the
original sample number used for each piece of data so as to ensure that there were no
duplicate samples in the dataset.

5. Results
5.1. Feature Analysis

In the process of data analysis, this research carried out correspondence matching for
different stages of different tasks and corresponding features, and the results of the analysis
are shown in Tables 1–4. Table 1 presents the overall amount of eye fatigue and non-fatigue
sample data collected in this study. Table 2 shows the results of the analysis of BN and BD
in the whole test and other pupil-related features in the flicker test using the two-way RM
ANOVA. Table 3 shows the statistical analysis performance of eye movement features in all
tests under eye fatigue and non-fatigue. Table 4 presents the statistical analysis performance
of the full task performance features, including TFR, TSL, and TSL in the visual search test
and CFR in the flicker test.

Table 1. Number of tested samples for data analysis.

Tested Sample Positive (eye-fatigue) 18
Negative (non-fatigue) 20

Table 2. Data analysis of pupil-related features.

Statistical Magnitude Feature
Tasks

FF SF LG VS CF RT

Mean
Positive

BN

7.100 25.150 42.450 67.300 84.450 60.050

Mean
Negative 10.056 24.278 50.278 79.333 96.556 58.388

p 0.908 0.973 0.758 0.636 0.634 0.948
F 0.014 0.001 0.095 0.224 0.227 0.004

Mean
Positive

BD

5.600 12.700 25.900 47.700 30.556 38.950

Mean
Negative 8.500 13.889 31.389 51.167 27.350 37.722

p 0.803 0.953 0.636 0.765 0.782 0.916
F 0.063 0.004 0.224 0.089 0.076 0.011



Electronics 2024, 13, 1798 11 of 19

Table 2. Cont.

Statistical Magnitude Feature
Tasks

FF SF LG

Mean
Positive

PMAX
Bright

482.818 526.209 550.694

Mean
Negative 509.175 565.160 594.286

p 0.059 0.039 * 0.060
F 3.814 4.571 3.763

Mean
Positive

PMAX
Dark

488.442 540.845 543.968

Mean
Negative 519.402 580.475 584.265

p 0.023 * 0.046 * 0.080
F 5.655 4.255 3.248

Mean
Positive

PMIN
Bright

461.943 423.206 422.970

Mean
Negative 491.634 451.658 455.277

p 0.029 * 0.056 0.046 *
F 5.155 3.896 4.256

Mean
Positive

PMIN
Dark

466.053 414.568 408.962

Mean
Negative

496.686 439.468 441.652

p 0.024 * 0.071 0.054
F 5.591 3.468 3.960

Mean
Positive

PL
Bright

1.217 10.484 13.666

Mean
Negative

1.505 16.500 14.033

p 0.515 0.109 0.930
F 0.433 2.706 0.008

Mean
Positive

PL
Dark

1.332 16.969 42.384

Mean
Negative

1.606 18.559 43.350

p 0.553 0.618 0.856
F 0.359 0.253 0.034

Mean
Positive

PV
Bright

0.028 3.674 −0.799

Mean
Negative

0.231 4.061 −1.084

p 0.631 0.487 0.094
F 0.235 0.493 2.961

Mean
Positive

PV
Dark

−0.484 −4.342 0.914

Mean
Negative

−1.222 −5.038 1.164

p 0.235 0.301 0.195
F 1.457 1.100 1.747
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Table 3. Data analysis of eye movement features.

Statistical Magnitude Feature
Tasks

FF SF LG VS CF RT

Mean
Positive

FN

36.950 33.150 85.800 177.800 36.950 205.100

Mean
Negative 29.500 31.500 81.667 186.278 45.667 207.444

p 0.870 0.916 0.791 0.586 0.576 0.880
F 0.027 0.011 0.071 0.297 0.314 0.023

Mean
Positive

FD

3005.930 2147.282 1919.841 861.563 1837.863 469.763

Mean
Negative

2053.71 1950.482 1789.268 881.868 1533.476 817.670

p 0.655 0.715 0.809 0.970 0.573 0.519
F 0.200 0.133 0.059 0.001 0.319 0.417

Mean
Positive

FR

0.848 0.759 0.761 0.650 0.733 0.557

Mean
Negative

0.730 0.679 0.728 0.586 0.593 0.555

p 0.079 0.234 0.625 0.343 0.038 * 0.972
F 3.105 1.425 0.239 0.901 4.370 0.001

Mean
Positive

SN

25.950 32.150 84.800 176.800 35.950 204.100

Mean
Negative

28.500 30.500 80.667 185.278 44.667 206.444

p 0.870 0.916 0.791 0.586 0.576 0.880
F 0.027 0.011 0.071 0.297 0.314 0.023

Mean
Positive

SD

78.667 94.899 84.509 237.651 86.738 400.718

Mean
Negative

99.100 94.898 99.204 229.992 110.643 314.108

p 0.452 1.000 0.589 0.778 0.379 0.002 **
F 0.567 0.000 0.293 0.080 0.776 10.187

Table 4. Data analysis of task performance features.

Feature Task Mean
Positive

Mean
Negative p F

TFR
VS

0.466 0.385 0.069 3.508
TSL 264.483 289.306 0.519 0.423
TSR 0.868 0.714 0.043* 4.406

CFR
FF 0.610 0.514 0.337 0.927
SF 0.540 0.532 0.934 0.007
LG 0.524 0.484 0.688 0.161

From the results of data analysis, among the pupil-related features, PMAX and PMIN
showed significant differences in all tasks, PL in the bright stage of SF and PV in all stages of
FF. In contrast, eye movement features performed poorly, with only FR in CF and SD in RT
(reading test) showing significant differences. Among the task performance features, TSR
showed significant differences. TFR, TSL, and CFR did not show significant differences.

The distribution of features with significant differences is shown in Figure 6. The
asterisk is used in the tables and figures to indicate whether the data are statistically
significant or not. One asterisk is used for p < 0.05 and two asterisks for p < 0.01.
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5.2. Detection Algorithm

Based on the statistical analyses, this study used eye movement features manually
extracted from the raw data and an eye fatigue dataset constructed from the raw data to
complete the eye fatigue detection task, respectively. In this study, we used scores from
the eye fatigue questionnaire to assess the current level of eye fatigue in the subjects. In
our overall research program, the part of the study described in this paper belongs to a
more preliminary stage, and therefore we only performed a binary classification of whether
fatigue was detected in the fatigue detection task and did not further discriminate the
level of fatigue. As manually extracted eye movement features of raw signals are relatively
readily comprehensible, this study adopted traditional machine learning classification
models such as SVM, DT, RF, and ET for eye fatigue discrimination and adjusted the key
parameters therein, such as the choice of kernel function in SVM and the classification
strategy in DT. In the detection task in the eye fatigue dataset, this study optimized the
structure of the algorithm several times, especially the number of network layers.

Since the ratio of positive and negative samples of the original data was approximate to
1:1 and the ratio of positive and negative samples of the eye fatigue dataset strictly conformed
to 1:1, this study adopted the accuracy rate for the algorithm’s performance evaluation
after comprehensively considering the performance evaluation criteria of the classification
algorithms., whose mathematical expression is shown in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

TP (true positive): values that are positive and predicted as positive,
FP (false positive): values that are negative but predicted as positive,
FN (false negative): values that are positive but predicted as negative,
TN (true negative): values that are negative and predicted as negative.

The detection accuracies of the different models used in this study as well as the
different parameters are shown in Table 5. Parameter “-” indicates that the optimal structure
has been adjusted. Machine learning algorithms have significantly lower detection accuracy
than deep learning algorithms. The best performance among the classical deep learning
algorithms was the auto-encoder algorithm, with 82.4%, and its optimal network structure
consisted of a five-layer encoder. Transformer was slightly lower than the auto-encoder,
at 81.7%. The machine learning algorithm based on manually extracted features was
significantly less effective in detection than the deep learning algorithm with automatically
extracted features. The auto-encoder feature union algorithm, which incorporates eye-
tracking features based on the optimal model, achieved 87.9% detection accuracy.

Table 5. Detection accuracy of different algorithms.

Algorithm Parameter Accuracy

SVM
Linear 57.6
Poly 55.2
Rbf 68.4

DT
ID3 51.8
C4.5 54.1

CART 57.8

RF - 65.8

ET - 63.5

CNN
3-convolutional layer 72.9
5-convolutional layer 74.1

10-convolutional layer 71.3
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Table 5. Cont.

Algorithm Parameter Accuracy

AE
3-encoder layer 78.5
5-encoder layer 82.4

10-encoder layer 80.3

Transformer
3-encoder layer 79.3
5-encoder layer 81.7

10-encoder layer 80.4

AEFU 5-2-encoder layer 87.9

The variation of the training loss function for the auto-encoder algorithm and the
auto-encoder feature union algorithm is shown in Figure 7. From the change in the loss
function, both the convergence speed and the degree of overfitting of the model were
improved after combining manually calculated eye features. The number of epochs needed
to train the model from the beginning to near convergence dropped from 40 to 25.
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6. Discussion

In general, this study verified the support of eye-tracking features for eye fatigue
detection. For all the eye-tracking signal features, this study analyzed their response
to the eye fatigue status and whether the difference between the non-fatigued and eye
fatigue states was significant. In addition to considering the influence of the ocular damage
mechanism of the eye fatigue on the features, this research also considered the influence of
the experimental design and the subjects themselves on the experimental results and the
significance of the differences in the features.

Pupil-related features performed better in the analysis of variance of repeated mea-
sures of variance, especially the maximum and minimum pupil sizes. In the data analysis,
maximum pupil sizes showed a significant difference in the slow flicker task where the
screen became brighter, as well as in the fast flicker and slow flicker tasks where the screen
became darker. Meanwhile, minimum pupil sizes also showed significant differences in
the screen-brightening in the fast flicker and luminance gradient tasks, as well as in the
screen darkening in the fast flicker task. In addition, both features showed near-significant
differences in other tasks and other situations, which perhaps related to the number of
data. This phenomenon suggests that as eye fatigue increases, pupillary control by the
pupillary sphincter and pupillary dilator muscles decreases significantly and the pupil
dilates accordingly. Therefore, changes in pupil size is one of the reliable ocular motility
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features of eye fatigue. In contrast, mean velocity of pupil changes and response time for
the pupil to adjust to screen changes performed poorly and did not show significant differ-
ences. Overall, although there were no significant differences in some of the pupil-related
features, they were still relatively well-performing eye movement features that can be used
as discriminators of eye fatigue.

In contrast to the performance of pupil-related features, the reliability of fixation-
related features was poorer. Only the percentage of fixation duration in the color flicker
task and the mean saccade distance in the reading task showed significant differences.
Our explanation for this phenomenon is that because eye movement behavior is a direct
reflection of subjects’ attention, eye movement behavior is seriously influenced by subjects’
subjective consciousness. The problem of eye fatigue is inherently a problem that may be
masked by the subjective fatigue feelings of the human brain, and fixation-related features
that were seriously affected by subjective influences did not show a good response effect.
Although most of the features related to fixation showed no significance difference, the
mean saccade distance showed significant differences in the reading task. The average
saccade distance, which is an oculomotor feature that represents the sweeping distance of
the subjects in reading, can objectively reflect the current speed of information reception
of the subjects to a certain extent. As the level of eye fatigue increases, subjects’ ability to
receive information becomes weaker, so it is difficult for them to maintain long-distance
saccade at the same level of information reception. The subjects’ number of fixations was
significantly lower in the color flicker task. This result demonstrates that there was no
significant difference in the performance of this feature in relatively mild stimuli. However,
fixation behavior was difficult to maintain, and the difference was instead significant for
more intense stimuli. We conjecture that the performance of task-related features is largely
influenced by subjects’ subjective awareness. In other words, subjects’ performance of
task features is largely a reflection of their subjective awareness rather than an objective
manifestation of eye strain. For this issue, further analysis of the performance of eye move-
ment behavioral features in eye fatigue detection experiments is needed. It is important
to verify whether the influence of subjective factors is real by modifying the experimental
paradigm and other methods. Among the task features, only the TSR feature showed
significant variability, and the rest of the features did not show significant differences. This
phenomenon seems to prove from another perspective that eye movement behavior is
largely influenced by subjective factors of the subjects.

The proportion of subjects’ attention to the target, reaction time, and accuracy de-
creased to different degrees as fatigue increased, which was in line with the experimental
expectation. It still did not show significant changes under the influence of subjective
awareness. Consideration should be given to reducing the influence of subjects’ subjective
factors from the perspective of experimental design in subsequent studies.

In the exploration of eye fatigue detection algorithms, the excellent performance of the
auto-encoder among many algorithms is surprising, which suggests that eye-tracking sig-
nals are suitable for feature extraction using the auto-encoder. In addition, the transformer
is an upgraded version of the auto-encoder, but the detection performance was slightly
lower than that of the auto-encoder algorithm in this study, which may be related to the fact
that eye-tracking data possess a strict temporal order. Since the time of acquisition and the
time of occurrence of the experimental stimuli strictly correspond to each other, the position
encoding in the transformer instead resulted in information redundancy, which affected
the classification results. This point needs to be explored in depth in subsequent studies.

It can be seen from the changes in the loss function curves that the addition of eye-
tracking features not only accelerated the model learning efficiency and convergence speed
but also solved the overfitting problem to a certain extent. The enhancement effect of
the AEF model proves that the features extracted from eye movement signals were still
of some guiding significance and practical value. However, due to the relatively small
number of subjects collected in this study, the setting of the experimental task was quite
specific and the results obtained in this study did not have high generalization performance.
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Although this paper achieved better results during the research process, its generalizability
for eye fatigue detection in daily use environments needs to be further considered. In this
paper, the eye movement features in the experimental scenario were used for eye fatigue
detection, and the real-time performance of the detection model also needs to be optimized.
In addition, in the process of feature fusion, this study only directly connected the eye
movement feature data with the implicit features of the self-encoder, and the method of
feature fusion also needs to be studied.

7. Conclusions

This study focuses on the eye fatigue detection system and discrimination algorithm
under the environment of daily electronic screen use. Aiming at the physiological factors
that can directly produce and potentially affect the problem of eye fatigue, the feasibil-
ity of eye fatigue detection through eye-tracking signals captured by video is explored
through analyses of the features extracted from the eye movement signals by using sta-
tistical methods. The supporting effect of different eye movement features on eye fatigue
assessment was also discussed. In addition, this study explores the establishment of eye
fatigue detection algorithms based on auto feature extraction and eye movement features
and based on different feature extraction methods. Various traditional machine learning
models and deep learning algorithms are investigated, and an auto-encoder feature union
algorithm based on the feature fusion coding model is proposed, which realizes a fast and
high-precision eye fatigue detection method. In the future research program, a total of two
aspects are envisioned for this study. On the one hand, based on the research of this paper,
the performance of eye-tracking features in the eye fatigue detection task will be further
explored by changing the feature calculation method and optimizing the experimental
setting. On the other hand, this study only uses a simple link method for feature fusion,
so it is necessary to conduct in-depth research on feature fusion methods and feature
selection proportion.
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