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Abstract: Our previous study utilized importance analysis, random forest, and Barnes–Hut t-SNE
dimensionality reduction to analyze critical dicing parameters and used bidirectional long short-term
memory (BLSTM) to predict wafer chipping occurrence successfully in a single dicing machine.
However, each dicing machine of the same type may produce unevenly distributed non-IID dicing
signals, which may lead to the undesirable result that a pre-trained model trained by dicing machine
#1 could not effectively predict chipping occurrence in dicing machine #2. Therefore, regarding the
model robustness, this study introduces an ensemble meta-learning-based model that can evaluate
many dicing machines for chipping prediction with high stability and accuracy. This approach con-
structs several base learners, such as the hidden Markov model (HMM), the variational autoencoder
(VAE), and BLSTM, to form an ensemble learning. We use model-agnostic meta-learning (MAML)
to train and test the ensemble learning model by several prediction tasks from machine #1. After
MAML learning, we call the trained model a meta learner. Then, we successfully apply a retrieved
data set from machine #2 to the meta learner for training and testing wafer chipping occurrence
in this machine. As a result, our contribution to the robust chipping prediction on cross-machines
can improve the yield of wafer dicing with a prediction accuracy of 93.21%, preserve the practical
wearing of dicing kerfs, and significantly cut wafer manufacturing costs.

Keywords: wafer dicing; robust chipping prediction; random forest; dimensionality reduction;
model-agnostic meta-learning; ensemble meta-learning

1. Introduction

With the advent of the AI boom, competition and cooperation in advanced wafer
foundries will affect the prospects of various semiconductor companies and the new devel-
opment process of the global semiconductor industry. System wafer foundries designed for
AI vary from technology competitions to international geopolitical arrangements, especially
cutting-edge process chips, which are crucial to the development of AI. There is a need
to improve the production of AI chips and, more importantly, to integrate AI technology
into high-end semiconductor processes to improve production yield and reduce manufac-
turing losses. Texas Instruments, in 1993, cooperated with the United States military and
conducted advanced process control (APC) or advanced equipment control (AEC) [1,2]
instead of statistical process control (SPC). These process control methods have become
quite mature technologies. To further reduce wafer manufacturing costs, wafer fabs are
considering whether APC can improve process control capabilities and equipment usage ef-
ficiency to optimize the process and increase capacity utilization. Fabs with AI approaches,
for example, can effectively control the occurrence of the backside wall chipping during
wafer dicing. The main topic of this paper is how to prevent the occurrence of chipping in
wafer dicing.

In our previous study [3], we proposed several methods to check dicing signals
generated from the machine during wafer dicing that can analyze fab machines to see
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any precursors or common denominators for wafer chipping and take measures to avoid
things happening. The first was to examine the common correlation using Spearman [4–6],
Pearson [7,8], and Kendall [9] methods. The previous work chose one to analyze the log
data according to the characteristics of data with/without linearity and continuity. In
this way, the correlation analysis gave information about a correlation between different
parameters in the log, looking at combining other machine parameters. For instance, wafer
chipping can appear due to various factors in wafer dicing, such as kerf wear, cooling
water temperature, and cleaning gas emissions. Next, further information analysis, like
importance analysis [10], can extract the important dicing parameters that affect wafer
chipping. Finally, random forest [11,12] examined the judgment nodes to screen the critical
dicing parameters from the important ones. Consequently, we can see the changes in
wafer chipping occurrence to understand the critical parameters verified by correlation
analysis [13].

Precise and complex dicing machines can be suitable for controlling advanced manu-
facturing processes to avoid a large-scale area of wafer chipping. In other words, the pro-
duction machines may generate hundreds or even thousands of control parameters during
wafer dicing. Constructing the detection or prediction model using many high-dimensional
parameter vectors is tough for wafer dicing. If a slight deviation in the parameter value
happens, it could cause detection or prediction deviation, leading to a significant error
in the model output. Therefore, our previous work [3] implemented the dimensionality
reduction of any high-dimensional parameter vector to a single one-dimensional indicator
with PCA [14,15] or Barnes–Hut t-SNE [16,17]. After that, we established a bidirectional
long short-term memory (BLSTM) [18,19] to predict wafer chipping occurrence. As a result,
this model can work successfully in chipping occurrence prediction as per a pre-specified
wafer dicing machine.

Many early dicing machines, e.g., the DFD 6560, are still available in wafer dicing
operations in fabs. Judging the changes in dicing signals for promptly tuning machine
parameters can reduce the occurrence of large-area wafer chipping. Our previous study [3]
made a BLSTM to precisely predict chipping occurrence in a single specified dicing ma-
chine, e.g., machine #1. However, we applied transfer learning to the chipping prediction
on machine #2 from the pre-trained model in machine #1, and it turned out to be the
worst situation, significantly lowering the chipping prediction accuracy on machine #2.
The pre-trained BLSTM lacked the robustness of chipping prediction in wafer dicing. The
problem is enhancing the robustness of chipping prediction on cross-machines to main-
tain high prediction accuracy. This study proposes model-agnostic meta-learning [20]
to breed a pre-learned base learner called a meta learner that can tackle a new task or
environment in the future. However, another problem is that a specified model may not
cope with the varying characteristics of cross-machines. Again, this study will establish an
ensemble learning [21,22] with multiple base learners, including the hidden Markov model
(HMM) [23,24], variational autoencoder (VAE) [25,26], and BLSTM. Such a combination
can deal with the varying characteristics of cross-machines and improve the overall system
performance to achieve the best prediction. The contribution of this study is to propose a
new chipping prediction framework called ensemble meta-learning that can adapt the new
task or environment between machines to appropriately adjust the critical parameters of
dicing machines to avoid large-scale chipping occurrence, effectively improving production
yield and reducing manufacturing losses.

2. Literature Review and Background Material
2.1. Literature Review

In the recent development of Industry Revolution 4.0, big data analytics have been
applied to large amounts of data processing and analyses [27]. In addition to the correlation
analysis to know the data relationship [13], time series technology can observe and predict
the data sequence based on a timeline [28]. Regarding intelligent computing, the model
using the machine learning method can learn prior data to infer the predictive outcome
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shortly, and its applications become increasingly important. Random forest [11,12] is one of
the most common approaches in machine learning for data analysis and decision making.
People can usually use importance analysis [10] to discover a few important factors out
of thousands or hundreds of factors in a system. The random forest method is relatively
simple and transparent, making it more straightforward to see the judgment of different
parameters at each node during operation. It helps quickly screen a few critical factors
from the important ones.

During IC assembly, testing, and packaging (ATP), the machine will test again through
the wafer surface after wafer dicing. This chipping examination can prevent severely
defective chips from going directly to assembly, resulting in many poorly assembled ICs.
How to detect or predict the possible chipping occurrence in advance during wafer dicing
becomes a more critical issue. Chipping detection technology has been widely used in the
ATP process by semiconductor factories. Li et al. [29] stated that we can train several models
before detecting wafer surface chipping phenomena. Tsuda et al. [30] also mentioned that
many online databases provide a large amount of data about the chipping phenomena to
anyone who wants to use them for modeling in the training and testing phases.

Furthermore, people are concerned about reducing the manufacturing loss caused by
chipping if the method incorporated with the FDC system can prevent wafer damage arising
in the ATP process. Although most of the recent literature, e.g., Fan et al. proposed in [31]
and Sunny et al. introduced in [32] applied machine-generated data to simple statistics or
machine learning for modeling, where they cannot achieve the required accuracy in the
chipping occurrence prediction during wafer dicing. Nevertheless, Yang, S. [33] described
that both LSTM and bidirectional LSTM models had higher accuracy in predicting a specific
time series. According to the performance comparison between the two approaches,
the prediction accuracy using the bidirectional LSTM model was better than the LSTM.
Bidirectional LSTM models to predict abnormal data are also successful in high accuracy,
verified by Liu et al. in [34].

Additionally, F. Gao et al. [23] mentioned the hidden Markov model (HMM), which
reflects the stochastic behavior of the machine, reveals its hidden states, and changes the
scheduled processes. For machines, the nature with comprehensive understanding can
facilitate the estimate of changes in the status and performance in the prediction and
assessment of nonlinear weak signals. A. Gong et al. [24] explained that HMM can evaluate
the signals of fault prediction and health condition in machinery to assign the emerging
areas with such signals. In other words, this action gives accurate predictions or evaluations
of machine anomalies. Y. Zhao et al. [25] introduced variational autoencoder (VAE) to
time series anomaly detection. VAE delivers a powerful probabilistic modeling framework
for time series data modeling and analysis. With the probabilistic modeling capability,
VAE can better understand the true distribution of given data to boost anomaly detection
accuracy. T.-H. Kim et al. [26] described VAE performing anomaly detection well using its
reconstructed data. Compared with the original data, reconstructed data for VAE make
time series anomaly detection highly applicable.

Intelligent computing usually simplifies complex data to improve execution perfor-
mance. Thus, it can effectively perform reasoning applications with better results. In
other words, we can reduce the dimensionality of high-dimensional vectors to obtain
low-dimensional vectors and simplify the high-dimensional complex data. Ou et al. [35]
concluded that the proposed new PCA can beat the linear PCA method in dimensionality
reduction. New PCA can optimize the reduction effect by using threshold filtering features
and entropy. Deng et al. [36] introduced a nonlinear dimensionality reduction, t-SNE, which
is good at classification tasks suitable for various nonlinear data sets. Yumeng et al. [37]
mentioned that t-SNE is not good at big data analytics. Thus, they proposed an enhanced
version, Barnes–Hut t-SNE, which is helpful for nonlinear big data analytics.
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2.2. Time Series Anomaly Detection

Finding anomalies hidden in time series is a big problem; people usually use time
series anomaly detection. Whether the system predicts abnormal phenomena as usual or
vice versa, it will cause considerable losses in the time series applications. In addition,
the time series is highly complex and changeable, so many normal or abnormal states
may occur within a certain period, or abnormal states may scatter among normal states.
This challenging situation often makes anomaly detection difficult. Adjusting the model
sensitivity for anomaly detection is a huge challenge. Three methods can detect anomalies
in time series as follows.

(1) Statistical approach It assumes that the target data are of normal distribution. When
the observed data exceed three times the standard deviation, statistics determine them
to be abnormal (a simple and intuitive approach). However, it will fail when the data
distribution is not normal. This method cannot initially identify spatial anomalies if
the data contain high-dimensional data points.

(2) Supervised learning We can apply a deep learning approach to anomaly detection by
finding feature values from the data sequence and classifying the anomalies. However,
supervised learning is the most time-consuming and labor-intensive because it relies
on many manually labeled data to train the model. Still, it is usually more accurate
than other learning methods. In addition, if the ratio of the number of normal data to
abnormal data is seriously unbalanced, it will probably lead to poor performance of
the trained classifier.

(3) Semi-supervised learning The amount of data we collect is often too sparse, resulting
in poor training results. Therefore, for example, we can use a simple three-hidden-
layer autoencoder to learn the characteristics of normal distribution in data, as shown
in Figure 1. Thus, the autoencoder can generate more training data and combine and
restore the data with apparent errors that we identify as abnormal. Even though the
autoencoder can achieve significant results in many fields, it will lead to low accuracy
if the environment changes too quickly.
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2.3. Data Preprocess

In wafer dicing, people encounter severe problems, such as loss of collected data,
nonlinear data distribution, and loss of related hidden parameters. Our previous work [3]
found that data sets collected from the wafer dicing process can reveal new information
(hidden features) about the wafer representation, especially in wafer coverage areas smaller
than 30 for a single wafer. In machine #1, the coverage area of wafer chipping ratio of
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10%, 10~15%, 15~20%, and 20~30% (i.e., four groups of data sets) is equal to the number of
samples in the single kerf dicing process from the beginning to the replacement of the wafer.
Mainly, average pooling is applied to four group data sets by averaging four sampled data
at the same corresponding position in each group to generate extra data that can deliver
hidden information between data and increase the training data, as shown in Figure 2.
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Similarly, in machine #2, we find that the coverage area of wafer chipping ratio of
10~20% and 20~30% (i.e., two groups of data sets) is equal to the number of samples.
Then, in Figure 2, the pooling average is applied to obtain extra data that can give hidden
information between data and increase the amount of training data. Follow-up experi-
ments will demonstrate the technical contribution and improve the prediction accuracy of
chipping occurrence.

2.4. Data Dimensionality Reduction

Most dicing signals generated during wafer dicing have little influence on the chipping
occurrence. Therefore, importance analysis [10] can effectively screen the relatively impor-
tant dicing parameters for analyzing chipping phenomena afterward. However, prediction
models built with high-dimensional input sample vectors may not achieve high prediction
accuracy regarding the probability of chipping occurrence. Reduce implementing the
dimensionality reduction of high-dimensional input sample vectors to a simple condense
indicator as the input signal can benefit the modeling, with high prediction accuracy in
this case.

Our previous study [3] proposed dimensionality reduction with linear PCA [14,15]
and nonlinear t-SNE [16,17]. Two of them are shown below. The conditional probabilities
pj|i in Equation (1) present the similarity between two high-dimensional sample points
in a Gaussian distribution using t-SNE, where σ represents the variance, xi stands for the
current data, xj indicates the following data of xi, and X denotes a set of high-dimensional
data. Equation (2) gives the probability density function (PDF) pij, where N represents the
total amount of data between i and j. For low-dimensional data, Equation (3) computes
the probability density function, qij, in the conditional probability of t distribution, where
yi denotes the current data, yj indicates the following data of yi, and Y denotes a set of
low-dimensional data. Instead of Gaussian distribution, t distribution was applied to the
low-dimensional vector to avoid a situation where the outliers would significantly affect
the prediction result due to such information diminishing in the condensed indicator after
dimensionality reduction. According to the low-dimensional data in the t distribution, we
compute KL divergence to attain the loss function c in Equation (4) and then obtain the
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gradient descent, δC
δyi

, in Equation (5). Thus, we can continuously update low-dimensional
data using the derivative.

pj|i =
exp

(
−||xi−xj||2

)
2σ2

Σk ̸=i
exp(−||xi−xk ||2)

2σ2

(1)

pij =
pj|i + pi|j

2N
(2)

qij =
(1 +

∥∥yi − yj
∥∥2
)−1

Σk ̸=i(1 + ∥yk − yi∥2)−1
(3)

c = ∑
i

∑
j

pijlog
pij

qij
pij (4)

δc
δyi

= 4·∑
j

(
pij − qij

)
(yi − yj)

(
1 +

∥∥yi − yj
∥∥)−1 (5)

2.5. Hidden Markov Model (HMM) and Variational Autoencoder (VAE)

The Markov chain is the probability of the same type of events (different states)
occurring sequentially because the state that occurs before will affect the state that arises
later. It is a mathematical model used to infer this relationship, and the hidden Markov
model is the flow chart of a model that predicts results by finding some hidden influencing
factors, as shown in Figure 3. x(t) is a hidden state or hidden variable. The observer cannot
directly observe the hidden variable, so this is what we imagined, which means that some
decision-making factors affected our results. y(t) is the observation state or observation
variable, which is what we observed. For example, if we toss a coin four times in a row,
the results are positive, negative, negative, and positive. These four times are the states
we observe, and each toss, the strength and direction of the hand when holding a coin, the
wind speed of the air, etc., are hidden.
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The autoencoder uses the deep learning network to train the entire model through
dimensionality reduction (encoder) and dimensionality enhancement (decoder). Finding
the key dimensions makes it possible to reach the input and output patterns as closely as
possible. The simple autoencoder still has some performance limitations, and it may be
unable to restore the original pattern after training. Therefore, the variational autoencoder
adds some noise from a normal distribution sampling into autoencoder training to improve
the results, as shown in Figure 4.
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2.6. Bidirectional LSTM (BLSTM)

Our previous paper [3] introduced bidirectional LSTM [18,19] for chipping occurrence
prediction. It simultaneously inputs time series into individual LSTMs in forward and
backward ways for training, as shown in Figure 5. Inputting the data forward into the
LSTM model (denoted Forward LSTM) learns how the generated past data appear in the
present data to deduce the causal relationship between each other. Similarly, data can also
go backward into the LSTM model (denoted Backward LSTM) to learn the relationship
between future data and present data. Finally, we merge the predicted results of the forward
and backward outputs by weighted averaging or summing. This way, we can obtain better
prediction accuracy than a one-way LSTM model.
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After dimensionality reduction, we transform every vector of the critical dicing pa-
rameters into a single one-dimensional indicator used as an input datum of the forward or
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backward sequence in the BLSTM model. In Figure 5, we use the BLSTM model to predict
the next indicator value at a time. In Figure 5, we can see that after data enter the model,
parameter c0 is the long-term memory data of the previous dicing parameters, h0 is the
prediction result of the last series time, S1 is the dicing parameter signal of the current time
series, and c0 will pass A forgetting gate of f1, in which c0 will determine its forgetting
proportion with the value calculated through the Sigmoid activation function between h0
and S1. After that, h0 and S1 will pass through a memory gate represented by i1 through
the value of tanh of h0 and S1 to determine which information to memorize. The data that
passed the input gate will be added to c0 to become c1. They will pass through an output
gate represented by o1, and c1 will use tanh to decide whether to obtain the output value of
the current cell.

2.7. Model-Agnostic Meta-Learning (MAML)

Meta-learning [20], learning to learn, was born with the expectation of human learning
ability. Meta-learning is expected to benefit the ability to “learn to learn” and quickly learn
new tasks based on attained existing knowledge. Training results are often poor when we
train a model due to insufficient data. Meta-learning can learn through the classification
experience of previous tasks and quickly adapt to a new task through previously learned
data. In machine learning, the training unit is a set of collected data used to optimize the
model. The system usually divides the acquired data into a training data set, a verification
data set, and a test data set. Meta-learning divides the training unit into two levels. The
first-level training unit is the task. Meta-learning requires preparing many tasks for the base
learner and the data corresponding to each task to learn the meta learner (generalization
model). The second-level training unit is a new task that uses a small amount of new data
to achieve rapid convergence and optimize meta learner model parameters.

Instead of a deep learning model, MAML [20] is a framework that provides a meta
learner for training base learners. The meta learner here is the essence of MAML and is
used to learn, while the base learner is a fundamental mathematical model trained on the
target data set and practically used for prediction tasks. Most deep learning models can be
embedded in MAML seamlessly as a base learner, and we apply reinforcement learning to
MAML. Such a way is called model-agnostic in MAML, as shown in Figure 6.
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2.8. Ensemble Learning

Ensemble learning [21] is a machine learning method that combines multiple different
models as base learners to boost the overall prediction accuracy. The main idea of this
method is to form a powerful ensemble model by combining various basic models (that is,
a learner with a single prediction ability slightly better than random guessing) to improve
the overall prediction accuracy and enhance generalization ability. The various frameworks
of ensemble learning include bagging, boosting, blending, and stacking. The advantage
of ensemble learning is combining the merit of multiple models, reducing the risk of
overfitting, improving accuracy, and enhancing overall output stability. It can widely
solve machine-learning problems, including regression, classification, feature selection, and
anomaly detection. This method is valid for improving prediction accuracy significantly
in practical applications and thus has received widespread attention in the industry. The
accuracy comparison between ensemble learning uses basic machine learning models and
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various CNN models for nine analog and digital modulation signals, where CNN has
higher SNR tolerance and better classification than the ensemble learning algorithm [21].

Nevertheless, if we replace basic machine learning models with deep learning models
in ensemble learning, ensemble learning performance will outperform the CNN model. In
addition, ensemble learning performs well for anomaly detection [22]. This study adopts
the blending method in ensemble learning, as shown in Figure 7.
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3. Method

In the previous work, we implemented importance analysis, random forest, and
Barnes–Hut t-SNE dimensionality reduction to obtain critical dicing parameters. The wafer
dicing machine retrieved information about 143 wafer dicing parameters corresponding
to the chipping position. Then, we applied important analysis to pick up the ten most
important dicing parameters related to wafer chipping. Next, the random forest method
further filtered out eight critical parameters from the ten important parameters. Finally,
we used the eight critical parameters to build the chipping occurrence prediction model.
The purpose of selecting parameters from data analysis is to let readers understand the
modeling method.

Then, trained bidirectional long short-term memory (BLSTM) can predict wafer chip-
ping occurrence successfully in a single dicing machine. However, each dicing machine of
the same type may produce unevenly distributed non-IID dicing signals, which may lead
to the undesirable result that a pre-trained model trained by dicing machine #1 cannot ef-
fectively predict chipping occurrence in dicing machine #2. This study adopts an ensemble
meta-learning-based model that can evaluate many dicing machines with high stability
and accuracy for chipping prediction to realize the cross-machine use prediction tool. Here,
we will introduce several base learners, such as the hidden Markov model (HMM), the
variational autoencoder (VAE), and BLSTM, to form an ensemble learning.

With mainly unsupervised learning and well-performed results in generative AI, the
variational autoencoder (VAE) can find subtle abnormal signals by restoring the signal
distribution method. If it has detected such abnormal signals, we can infer a high probability
of chipping occurrence due to such a model combining the concepts from autoencoder
and variational inference to form generative learning. With the stochastic behavior in
discovering hidden states and changing processes, the hidden Markov model (HMM) can
better find the hidden parameters than the ordinary Markov model to predict the future
state accurately. HMM can also perform the applications of generative AI well due to
its capability to predict and assess weak nonlinear signals from changes in machinery
equipment. Therefore, this study combines HMM, VAE, and BLSTM models. It uses
ensemble meta-learning by voting weighted averages between their results to predict
large-scale wafer chipping occurrence and achieve the best outcome.
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3.1. Exploring Critical Parameters

In our previous work [3], we collected data sheets related to wafer dicing from a
semiconductor company in Kaohsiung, Taiwan. The data sheets showed the dicing position
coordinates of 112 wafers; the coordinates of each dicing position marked the corresponding
kerf, cutline, and channel number. People can look for the parameter codes according to
the channel number and cutline indicated in a signal summary table. After that, you can
search a data table using the parameter code, then query the data table and retrieve the
information about 143 wafer dicing parameters corresponding to the chipping position.

Our previous study performed importance analysis to determine ten important pa-
rameters of wafer dicing, as listed in Table 1. Next, this study conducts correlation analysis
on these parameters to verify that the spindle current_Z1 and current_Z2 will significantly
impact the yield of wafer dicing. Then, the random forest estimates how likely these
ten important parameters can affect chipping phenomena. According to ten important
dicing parameters applied to the random forest, the estimation accuracy for chipping
coverage area less than 30% can achieve 87%. This result shows it is better than using all
the important dicing parameters with an estimation accuracy of 78%.

Table 1. Important parameter pick-ups.

No. Parameter Title Series No.

1 TDS: Sig:DFD6560_Spindle_SpindleCurrent_Z1 (postRun) Nil
2 TDS: Sig:DFD6560_Spindle_SpindleCurrent_Z2 (postRun) Nil
3 TDS: Tool: SV_l555_CuttingWaterStatusZl_WATERF; SVID_1555
4 TDS: Tool: SV_1556_CuttingWaterStatusZ2_WATERF2; SVID_1556
5 TDS: Tool: SV_1772_AnalogFlowSprayNozzleZl_AVALWATER3 (L); SVID_1772
6 TDS: Tool: SV_1773_AnalogFlowKerfNozzleZ2_AVALWATER4 (L); SVID_1773
7 TDS: Tool: SV_1775_AnalogFlowShowerNozzleZ2_AVALWATER6 (L); SVID_1775
8 TDS: Tool: SV_1752_AnalogPressureMainAir_AVALPRESS0 (MPa); SVID_1752
9 TDS: Tool: SV_l753_AnalogPressureCleanAir_AVALPRESS1 (MPa); SVID_1753
10 TDS: Tool: SV_l785_AnalogPressAtomizingNozzleClnAir_AVALPRES9 (MPa); SVID_1785

The time series analysis used in our previous work [3] can check the data distribution
relationship between normal conditions and chipping phenomena. We can match different
wafers to examine whether this relationship has regular behavior. For example, we found
that backside wall chipping may occur when the wafer’s cleaning gas emission parameter
SVID_1752 is lower than 586 during the wafer dicing process. In addition, we found that if
the air pressure of parameter SVID_1753 changes too much, it can easily cause this backside
wall chipping phenomenon as well.

Our previous work [3] inspected the judgment conditions of each important parameter
in different decision trees. According to the judgment conditions of each node in the
decision tree, we can observe different parameter values that represent normal or chipping
situations. According to the parameter values within the judgment conditions, people
can better understand which important parameters influence wafer chipping occurrence.
We find that parameter SVID_1772 of the node in the decision tree has eight data values
greater than 1112.5, and we consider six of them to be chipping phenomena. Therefore,
important parameter SVID_1772 has an important influence on determining whether
chipping occurs on a wafer. In the random forest estimation, we filter ten important
parameters selected from the importance analysis into the eight most important parameters
afterward. Eight critical dicing parameters are SpindleCurrent_Z1, SpindleCurrent_Z2,
SVID_1772, SVID_1773, SVID_1775, SVID_1752, SVID_1753, and SVID_1785. Furthermore,
we also carried out dimensionality reduction using PCA or Barnes–Hut t-SNE for this
eight-dimensional parameter vector to a one-dimensional condensed indicator. Then, we
realized a heatmap analysis of the indicators to describe the potential chipping occurrence
afterward. As a result, Barnes–Hut t-SNE can more significantly reduce dimensionality
because its data changes are more sensitive than PCA.
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3.2. Dimensionality Reduction

The dicing signals can find critical parameters of wafer dicing in the previous work
through importance analysis, correlation analysis, and random forest. It turns out to be a
high-dimensional vector, and we make the most significant effort to reduce its dimensional-
ity to a one-dimensional indicator to facilitate the subsequent use of indicators to detect
and predict the wafer-chipping phenomenon. Different important dicing parameters with
a gap value that is too large may cause the smaller one to be ignored after dimensionality
reduction. Thus, the minimax method in Equation (6) standardizes the critical dicing
parameters. Equation (6) proportionally adjusts each dicing parameter value within (0, 1],
where xnom represents the normalized parameter, xmax stands for the maximum parameter,
xmin indicates the minimum parameter, and x is the current parameter.

xnom =
x − xmin

xmax − xmin
, xnom ∈ [0, 1] (6)

In our previous study, we applied the Barnes–Hut t-SNE dimensionality reduction to
the critical dicing parameters because the dimension of the critical dicing parameter vector
is not very high. Figure 8 gives the execution flow of the Barnes–Hut t-SNE dimensionality
reduction. The time complexity of this computation of the Barnes–Hut t-SNE is O(nlogn)
less than the general t-SNE requiring O

(
n2), and it is more practical in this case. An amount

of 112 dicing wafers will give 223,990 important characteristic parameters, and these input
data denote xh,m, where h represents the wafer number and m stands for the parameter
number. In Figure 8, Perp determines how many similarities we find in the Barnes–Hut
t-SNE dimensionality reduction. The larger the data volume, the higher the Perp is usually
set. On the contrary, if the setting is too high in Perp when the amount of data is small, it
could cause many dots to be connected too closely, making it impossible to detect subtle
changes. pij represents an approximating probability density function (PDF) of a Gaussian
distribution in high-dimensional data when we execute a dimensionality reduction a time.
Putting pij together can construct a high-dimensional PDF matrix Pn,n, and then this flow
will randomly generate an initial low-dimensional output matrix Yn,n using t distribution
density function PDF to obtain qij, where Equation (3) can calculate qij. We can use qij to
form an output matrix Yn,n, and then Equation (4) calculates the loss function C through KL
divergence. The closer the C value is to 1, the closer the distance between the two points
is; the closer the C value is to 0, the further the distance between the two points is. The
gradient descent in Equation (5) updates Yn,n.
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3.3. Model-Agnostic Meta-Learning (MAML)

The model-agnostic meta-learning (MAML) framework consists of an inner and outer
loop. First, the inner loop builds multiple execution threads to run reinforcement learning
simultaneously, establishing multiple tasks and policy networks (θ) responding to different
environments. Next, the state, action, reward, and loss generated in each environment
and the updated policy network parameters (θ′) are stored in iteration replay. We choose
trust region policy optimization (TRPO) in the outer loop to find the best strategy. The
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trajectory reuse strategy of the TRPO algorithm improves the utilization of samples. It
ensures that reinforcement learning will not affect the learning effect of the model due to
changes in strategy during the training process. This algorithm also delimits the trusted
policy learning area to ensure the stability and effectiveness of policy learning, as shown in
Figure 9.
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3.4. Chipping Prediction Model

This study introduces three different MAML models, i.e., HMM, VAE, and BLSTM, as
base learners (i.e., prediction model) and incorporates ensemble learning with the MAML
framework to establish ensemble meta-learning, as shown in Figure 10. Based on the
MAML framework, we train HMM, VAE, and BLSTM in several application domain tasks
and validate them by voting on weighted average results. The voting weighted average
of all models’ outputs can evaluate the ensemble output of chipping prediction, which
calculates the chipping occurrence prediction from all the weighted average predictions of
each model obtained from the MAML learning. Equation (7) calculates the weight of each
prediction model ωk for ensemble learning, where k represents a specific kth prediction
model, tek stands for the training error of the kth prediction model obtained from the MAML
learning, and m is the number of all prediction models. Next, Equation (8) computes the
weighted average of the outputs of all prediction models outensemble, where ωk denotes the
weight of each prediction model, outk indicates the output of the kth prediction model
obtained from the MAML learning, k shows a specific the kth prediction model, and m is
the number of all prediction models.

ωk = 1 − tek

∑m
k=1 tek

, where k = 1, 2, . . . , m; ∑m
k=1 ωk = 1 (7)

outensemble =
m

∑
k=1

ωk·outk (8)

In the testing, three trained models will give the inference result out of the voting
weight average of the individual output of each meta learner, as shown in Figure 10. The
time complexity of this computation of the HMM, VAE, and BLSTM is O(nlogn), O

(
n2),

and O
(
n4), where n is the number of multiplications of each unit in this case.

Some issues that arise in the training data set are collected data missing, data showing
a nonlinear distribution, and correlated hidden parameters lost. One solution is to increase
the training data to enhance the information in the training data set. Therefore, our
previous work [3] in a wafer chipping coverage area of less than 30% divided the data
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set into four groups, including chipping areas of 10%, 10~15%, 15~20%, and 20~30%.
Within these groups, we then carry out an average pooling of four sampled data at the
same corresponding position in each group to generate an extra data set that can deliver
hidden information between data and increase the amount of training data. After the
dimensionality reduction, this study imports indicators into ensemble meta-learning to
predict the potential large-scale chipping occurrence implemented by HMM, VAE, and
BLSTM models, as shown in Figure 10. With a range of indicator inputs, a training model
reaches a loss (error) of 0.1116 in the training phase, as shown in Figure 11. Once the trained
model passes the testing, this model exploits to predict the chipping occurrence afterward
during wafer dicing at the same machine, as shown in Figure 12. In Figure 12, a specific
model, such as HMM, VAE, or BLSTM, has been trained entirely at the early stages of the
wafer dicing process. Then, it can accurately predict the future indicator that will reveal
the occurrence of chipping shortly. In such a way, it can help detect a chipping occurrence
or show the trend of potential chipping soon.
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This study utilizes Anaconda to build the experimental environment and set model
hyperparameters, where we set the hidden layer [100, 100], the adapt learning rate 0.5, the
number of iterations 100, the meta batch size 10, the number of workers 10, and the cuda 1.
Each iteration creates a record file to log the reward and accuracy of the currently trained
model and observe the training status through Tensorboard.
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3.5. Robust Chipping Prediction System (RCPS)

This study introduces an ensemble meta-learning with the constraint of model-agnostic
meta-learning applied to the robust chipping prediction, as shown in Figure 13. First, the
network uploads the collected instant dicing signals from different machines (as other
tasks) to the in-cloud database. Then, we proceed with data cleaning and aggregation of the
dicing signal of each task to form an individual time series so that we cand perform data
analysis on them. Next, implementing random forest and importance analysis can find the
critical dicing parameters. After that, Barnes–Hut t-SNE dimensionality reduction converts
every eight-dimensional parameter vector into a single condensed indicator. Finally, we
import the processed indicators into the ensemble meta-learning for model training. Then,
according to the chipping prediction results, fab decides whether to warn the process
personnel to pause the current operation and adjust the critical dicing parameter to reduce
the probability of chipping afterward.
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4. Experiment Results and Discussion
4.1. Experimental Procedure and Environment

Our previous work [3] adopted PCA and Barnes–Hut t-SNE methods to reduce signal
dimensionality and acquire respective condensed indicators. After that, we utilized indica-
tors to train the BLSTM model for the prediction of chipping occurrences implemented. The
BLSTM model introduced in our previous paper [3] acts as a baseline compared with this
study’s proposed approach in the following experiment. The proposed approach in this
paper will put these indicators into the ensemble meta-learning to predict backside wall
chipping and check the prediction accuracy of chipping during dicing. Once the predictor
detects the possible chipping occurrence, the system should warn the operator to adjust
critical dicing parameters promptly to avoid chipping occurrence during the dicing process.
An ablation study investigates the performance of different combination ensemble models
in machines #1 and #2 individually to understand the component’s contribution to the
overall prediction. Finally, comparing chipping results with or without dimensionality
reductions demonstrates the significant contribution of this study.

Our previous work [3] showed that the wafer dicing machine was DISCO DFD6560
manufactured by Disco Corporation, Tokyo, Japan with hardware specifications. A table
in our previous work also displayed the application software packages. This table shows
Pandas 1.1.5 and Numpy 1.19.5 packages for data preprocessing, PCA and t-SNE for
dimensionality reduction, Scikit-learn 0.23.2 for machine learning, Tensorflow 2.6.2 and
Keras 2.6.0 for deep learning, and Matplotlib 3.3.4 and Pyplot 5.5.0 for output visualization.

4.2. Data Collection and Dimensionality Reduction

According to the importance analysis in the previous chapter, there are seven critical
parameters for wafer dicing, including a spindle current, three types of jet water flow, and
three types of clean gas emission. Here, we put them as an eight-dimensional vector and
want to convert this vector into a one-dimensional condensed indicator by dimensionality
reduction. According to the settings for parameter dimensionality reduction in our previous
work [3], we used PCA and Barnes–Hut t-SNE methods to reduce an eight-dimensional
vector to a one-dimensional condensed indicator. The dimensionality reduction obtained
231,990 data concerning the critical parameters from 112 pieces of wafer dicing, where
176,900 data were obtained from machine #1 from 85 pieces of wafer dicing, and 55,090 data
were attained from machine #2 from 27 pieces of wafer dicing.
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4.3. Modeling Using Ensemble Meta-Learning and Chipping Prediction

For data allocation in machine #1, we arranged a training data set of 167,993 signals
and a testing data set of 8907 signals, which collected the frontend dicing signals and their
corresponding backend dicing signals from 85 different wafers. Next, this study set the
model and training parameters for HMM, VAE, and BLSTM base learners in the following
experiments. Concerning the HMM setting in the training phase of machine #1, we set the
training parameters to include two states in the model, 150 iterations performed during
training, and a full covariance type. Regarding the VAE setting in the hyperparameter, the
encoder consists of four layers. The first layer is a convolutional layer with 32 pieces of
3 × 3 kernels, and the second is a convolutional layer with 64 pieces of 3 × 3 kernels. Then,
the third layer is a dense layer with 32 neurons, and the fourth layer is a dense layer with
32 neurons. The decoder is an encoder image with a symmetrical four layer. All activation
functions are ReLU in the VAE model. In the training phase of machine #1, this experiment
set the training parameter epochs to 100, batch_size 128, and loss_funtion “Kullback-Leibler
divergence”. As for the BLSTM setting in the training phase of machine #1, every single
LSTM model constructs three layers and a total of 640 neurons, as shown in Figure 5. In
Figure 5, the optimizer is adaptive moment estimation (Adam), the loss function defines
mean-square error (MSE), the activation function tanh means the hyperbolic tangent, and
the activation function σ indicates the sigmoid function. If the accuracy does not increase
significantly in ten consequent training rounds, the training will terminate due to an
early stopping setting. To return short-term output results between multiple units, we set
return_sequences to true. This experiment sets the epoch to 50 and the batch size to 128.

For wafer dicing in machine #1, we view the collected data sets concerning chipping
coverage area 10%, 10~15%, 15~20%, 20~30%, and its generated data set as tasks #1, #2, #3,
#4, and #5, respectively, applied to MAML modeling. The prediction models using Barnes–
Hut t-SNE dimensionality reduction give the prediction accuracy, as shown in Table 2.
In Table 2, ensemble meta-learning achieves the best accuracy in both categories. The
hidden Markov model has the worst prediction accuracy in Class I, while the variational
autoencoder has the worst in Class II. According to the ablation study for ensemble meta-
learning (EML), this experiment uses different combinations of HMM, VAE, and BLSTM
models to verify the validity of the approaches. In the experiment, the ensemble meta-
learning using HMM and BLSTM denotes EML_HMM+ BLSTM, ensemble meta-learning
using VAE and BLSTM abbreviates EML_VAE+BLSTM, and ensemble meta-learning using
HMM, VAE, and BLSTM marks EML_HMM+VAE+BLSTM.

Table 2. Comparison of accuracy of various meta learners in machine #1.

Chipping Area
in Machine #1

Models
HMM VAE BLSTM *

EML_
HMM + BLSTM

EML_
VAE + BLSTM

EML_
HMM + VAE + BLSTM

Class I: less than 30% 0.7622 0.8623 0.9234 0.9267 0.9275 0.9323

Class II: more than 30% 0.6213 0.5431 0.8216 0.8222 0.8227 0.8233

* is a baseline and the result of our previous work [3].

For wafer dicing in machine #2, we treat the collected 55,090 data as new data sets,
where we arrange a training data set of 52,336 signals and a testing data set of 2754 signals.
This use case finds them to have equal chipping numbers distributed between 10~20%
and 20~30% of the chipping coverage area, and its newly generated data set as new tasks
#1, #2, and #3, respectively. According to a trained prediction model (called meta learner)
obtained in machine #1, modeling machine #2 uses the collected data to fine-tune and
test meta learner to find an optimal prediction model for machine #2. This use case is
not a traditional transfer learning to use the data set of machine #2 to fine-tune and test
a pre-trained model obtained in machine #1. Similarly, such a MAML approach can also
apply to modeling the same type of other dicing machines #3, #4, #5, and #n. According to
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a trained prediction model (called meta learner) obtained in machine #1, modeling in every
machine can effectively use its corresponding collected data to fine-tune and test meta
learner to find an optimal prediction model for every machine. The prediction models using
Barnes–Hut t-SNE dimensionality reduction deliver the prediction accuracy, as shown in
Table 3. We find that the prediction accuracy of each model decreases significantly during
wafer dicing in machine #2. Nevertheless, the predictive effect of ensemble meta-learning
is less affected and can still maintain higher accuracy. This mechanism confirms that
the proposed approach can preserve the highly predictive accuracy, achieving a robust
prediction behavior.

Table 3. Comparison of accuracy of various meta learners in machine #2.

Chipping Area
in Machine #1

Models
HMM VAE BLSTM *

EML_
HMM + BLSTM

EML_
VAE + BLSTM

EML_
HMM + VAE + BLSTM

Class I: less than 30% 0.6412 0.7123 0.8579 0.8727 0.8901 0.9027

Class II: more than 30% 0.5130 0.5122 0.7813 0.7980 0.8095 0.8154

* is a baseline and the result of our previous work [3].

After completing the dimensionality reduction, either PCA or Barnes–Hut t-SNE to
obtain condensed indicators, we train different condensed indicators with an ensemble
meta-learning under the constraint of model-agnostic meta-learning, as shown in Figure 14.
We then import the test data set about indicators into the trained ensemble meta-learning to
predict possible chipping during wafer dicing. We compare the prediction accuracy among
the different dimensionality reductions, namely without reduction, PCS, and Barnes–Hut
t-SNE methods, as listed in Table 4.
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Table 4. Accuracy comparison with different dimensionality reductions using ensemble meta-learning
in machines #1 and #2, respectively.

Chipping Area of a Wafer

Dimensionality Reduction
Without Reduction PCA Barnes–Hut t-SNE

Machine #1
Less than 30% 0.8473 0.7875 0.9323
More than 30% 0.7424 0.5136 0.8233

Machine #2
Less than 30% 0.7821 0.7502 0.9027
More than 30% 0.6785 0.5245 0.8154

Table 4 shows the chipping samples from the wafer dicing machine divided into two
categories. The first category is the chipping coverage area of less than 30% on the surface of
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a single wafer, and the second category is greater than 30%. The ratio of the former samples
to the latter is 11:1. By collecting the above chipping samples, we can train the ensemble
meta-learning and then obtain a trained model. In the testing, the chipping prediction
accuracy of the first category is 10.9% higher than the second category. On the other
hand, the chipping data shows a nonlinear distribution, and thus, the chipping prediction
accuracy of using the Barnes–Hut t-SNE in the test will be 14.48% higher than PCA.

4.4. Wafer Dicing Results

During wafer dicing, Barnes–Hut t-SNE reduces the dimensionality of the input vector
to the condensed information that feeds into the ensemble meta-learning learning to predict
possible chipping. Since the kerf is detected to be worn out, it will cause more chipping
if not replaced. This study compares two situations between the default setting without
adjusting the critical dicing parameters during the dicing process and the tuning setting
with timely changing the critical dicing parameters according to our proposed approach.
The tuning setting can rapidly adjust critical dicing parameters and check whether it can
effectively control the occurrence of large-area wafer chipping. The case in the default
setting might lead to the rapid wear of the kerf where the probability of wafer chipping will
gradually increase, resulting in changing the kerf after three pieces of wafer dicing [3]. In
contrast, in our previous paper [3], the case in tuning setting with single BLSTM model can
change the critical dicing parameters appropriately to reduce the probability of chipping
occurrence and maintain most diminutive kerf wearing, resulting in eight pieces of wafers
in dicing for every kerf using the single BLSTM model referred to. With our proposed
ensemble meta-learning approach in tuning critical parameters optimally while wafer
dicing, this study achieves better results, achieving ten pieces of wafers in dicing for every
kerf, as shown in Figure 15. In Table 5, the proposed method significantly improves the
yield of wafer dicing, thereby reducing the manufacturing costs.

Table 5. Comparison of chipping after wafer dicing.

Setting Attribute

Parameters
Default BLSTM

Ensemble
Meta-Learning HMM

+ VAE + BLSTM

Number of wafers diced before a kerf change is needed 3 8 10

Distribution of backside wall chipping Whole wafer Bottom half of a wafer Right half of a wafer

4.5. Discussion

Random forest can infer the wafer chipping occurrence in dicing, effectively exploring
important dicing parameters. In the experiments, this study finds that, for the coverage area
in chipping of less than 30% on the surface of a wafer, the prediction accuracy can be as high
as 87%. However, random forest can only estimate most defects after the chipping occurs.
Still, they cannot do this during the chipping process due to the poor sensitivity of wafer
chipping detection and prediction in dicing. The sensitivity of wafer chipping detection
and prediction in dicing is poor. Instead, if we test random forest with a wafer covering
a chipping area of more than 50%, the estimation accuracy drops to 52%. Such a case
can successfully predict fewer chipping during the estimation process. Most predictions
are misclassified to normal situations when chipping has already occurred. Suppose you
observe node judgment conditions in random forest, in that case, you probably focus
on a few key nodes to explain the chipping phenomenon and pick up the critical dicing
parameters if needed.
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This study only selects three base learners, such as HMM, VAE, and BLSTM, to con-
struct an ensemble meta-learning in the experiments. Although other applicable base
learners have been found, such as ARIMA, sparse transformer, and XLNet, their imple-
mentation effects are not sound in the chipping prediction during wafer dicing. Thus, we
have not included them in this study’s list of base learners. In the future, we hope to find
more base learners and train them through model-agnostic meta-learning to obtain better
execution results. Even though BLSTM cannot perform very well in chipping prediction in
some iterations (or at some time instants), HMM or VAE could achieve better prediction
accuracy than BLSTM. Therefore, the overall result can achieve the best prediction accuracy
due to the voting by the weighted average of every output among the three models. This
can explain why the ensemble meta-learning frame can outperform the individual model
output in chipping prediction.

There are two limitations to the experiments. The old type wafer dicing machines
cannot give a specific log concerning the outlier or chipping in detail. Therefore, the
machine needs manual labeling to mark the chipping coverage area and read each piece of
chipping data individually after wafer dicing. It costs much of the workforce to deal with
data cleaning and aggregation. In addition, the current approach cannot handle extreme
cases successfully, especially the coverage area with more than 70% chipping on the wafer
surface. On the other hand, this situation forces the operator to replace the worn kerf
compulsorily during wafer dicing.

5. Conclusions

A semiconductor factory needs many machines to achieve the predetermined yield
rate during mass production. In our previous study, only a single pre-trained model
out of a specific machine to predict chipping in another machine was not practical due
to different chipping coverage area distribution in other dicing machines. The main
contribution of this study in solving the problem mentioned above is to introduce ensemble
meta-learning-based robust chipping prediction that can effectively apply to many dicing
machines for chipping prediction with high stability and accuracy. This study proposes
ensemble learning incorporating model-agnostic meta-learning to establish an ensemble
meta-learning that will vote the weighted average from several meta learners to obtain the
high accuracy of chipping prediction with stability across several dicing machines. The
goal is to adjust key dicing parameters rapidly and avoid the occurrence of large-scale
chipping during wafer dicing. Accordingly, the proposed approach will promote the yield
rate of wafer dicing and cut wafer manufacturing costs.

Regarding the prospects of this study, early wafer dicing machines cannot automat-
ically log in data to mark the chipping coverage area when chipping occurs. After the
machine dices the wafer, it is necessary to manually keep the chipping coverage areas
to find each piece of data on the chipping phenomenon, wasting much of the workforce
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manipulating the data. In the future, we look forward to adopting more advanced dicing
machines that can perform visual algorithms and related software to automatically mark
outliers that cause chipping when dicing wafers on the machine. The machine collects data
efficiently and automatically, saving time and effort.
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