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Abstract: Virtual simulators of embedded systems and analyses of student surveys regarding their
use at the early stage of the process of learning embedded systems, are presented in this article. The
questionnaires were prepared in the Polish language, and the answers were automatically translated
into English using two publicly available translators. The results of users’ experiences and feelings
related to the use of virtual simulators are shown on the basis of detected sentiment using three
chosen analysis methods: the Flair NLP library, the Pattern library, and the BERT NLP model. The
results of the selected sentiment detection methods were compared and related to users reference
answers, which gives information about the methods quality of the methods and their possible use
in the automated review analysis process. This paper comprises detailed sentiment analysis results
with a broader statistical approach for each question. Based on the students feedback and sentiment
analysis, a new version of the TMSLAB v.2 virtual simulator was created.

Keywords: embedded systems simulators; user feedback; sentiment analysis; natural language
processing

1. Introduction

Sentiment analysis of student evaluation is a crucial area of research in understanding
the opinions and attitudes of students towards various aspects of education [1–6]. It com-
prises students’ attitudes towards courses, teachers, laboratories, and different educational
experiences. There is a growing trend in sentiment analysis in the context of student
feedback, utilizing Natural Language Processing (NLP) [7–10], Deep Learning (DL) [11,12],
and Machine Learning (ML) [13,14] techniques. The review papers [15–17] provide a sys-
tematic study on sentiment analysis of students’ feedback and the main research topics,
venues, and top papers. The authors of [15] have analyzed 92 relevant papers showing the
main trends in NLP, ML, and DL techniques. It was shown that the application of DL is
rapidly growing.

The interesting proposal for sentiment analysis provides an article [18] that discusses
the real-time identification and analysis of student sentiment in classroom teaching. It
has many advantages compared to standard post-processing text analysis, as it can assist
teachers in understanding student learning stages in time so that they can take appropriate
actions. The literature review on the subject encompasses various methodologies and
applications. Another proposal for real-time student feedback analysis can be found in [19].
The highest results were found for four aspects (preprocessing, features, machine learning,
and use of the natural class) with Support Vector Machines (SVMs). Another application
of SVM with a radial kernel and CNB (Complement Naïve Bayes) to analyze students’
feedback for real-time interventions in the classroom can be found in [20]. Some other
proposals for real-time feedback can be found in [21,22].

Several authors were using different methods of sentiment analysis connected with re-
mote and distance learning that were especially used during the COVID-19 pandemic [23–26].
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The authors of [24] deployed a questionnaire to 660 postgraduate students who had access
to lecture recordings. Key findings showed that students who accessed lecture recordings
reported an enhanced learning experience.

The paper [27] concentrates on the preprocessing method for closed-ended ques-
tionnaires. It uses sentiment analysis through polarity. The main goal was to develop a
mechanism for analyzing questions and students’ emotions in closed-ended responses. The
authors proposed a Quest_SA software tool for this purpose. Another type of sentence
whose sentiment can be analyzed are conditional sentences.

In turn, the paper [28] proposes a system for automatically extracting aspects from
the available text and their corresponding orientation. The study proposes a supervised
aspect-based opinion mining system based on a two-layered LSTM model. Another new
method of sentiment analysis of student feedback is proposed in [29]. It proposes an
innovative model to find the targets of the given sentence using Bi-Integrated Conditional
Random Fields (CRFs).

The natural language processing of student online sentiment was analyzed in [30].
The authors were looking for new and better ways to support and understand the learning
experience of their students. The idea was to investigate the attitudes and emotions of
students when they were interacting on social media about their course experience. The
short, informal texts were also analyzed in [31]. The sentiment features were primarily
derived from novel, high-coverage tweet-specific sentiment lexicons.

The fuzzy logic rules are also used to analyze the sentiment and understand students’
opinions and satisfaction about the university and its services. Some original proposals
can be found in [32,33]. Also, a neural network approach can be used in sentiment and
behavior analysis [34].

Additionally, the sentiment analysis of student evaluations can benefit from the ap-
plication of sentiment analysis in different languages, as demonstrated by [35–37] in the
context of Korean, Vietnamese, and Kurdish, respectively. There is also a valuable, from
the author’s point of view, example of sentiment analysis methods in Polish [38].

In the article, the authors focused on a comparative study of sentiment analysis
methods [39]. The students’ opinions in Polish regarding embedded systems and their
simulators used at the Institute of Automation of the Lodz University of Technology [40,41]
were analyzed. These opinions contain various emotions and impressions that accompanied
the students’ work both during laboratory classes and on their own. Based on the analysis
of the described student opinions, it was proposed to implement several improvements to
the simulators.

For the comparison of sentiment analysis methods, available tools with pretrained
NLP models were picked. There are a large number of these types of tools [42], especially
with their availability in the Python language [43]. The following requirements were taken
into account when choosing analysis methods:

• Ability to analyze texts composed of many sentences [44];
• At least a five-level sentiment analysis scale returned;
• Availability of ready-to-use, pre-trained NLP models [45].

Based on these criteria, Pattern [46], BERT [36], and Flair [47] were used for sentiment
analysis.

Since the survey was conducted in Polish and the NLP models for sentiment analysis
are trained mainly based on English [48], automatic translations [49] using two translators
were used. The two publicly available translators were compared: Google Translator [50]
and MyMemory Translator [51].

As a final result of the statistical processing analysis of detected sentiments in relation
to the reference answers provided by the participants of the proposed survey, the best
method for determining sentiment in Polish surveys with automated language translation
was selected.
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2. Virtual Simulators of Didactical Embedded Systems
2.1. Embedded Systems at the Institute of Automatic Control at Lodz University of Technology

The Institute of Automatic Control at the Lodz University of Technology (LUT) [52]
has a long tradition of teaching embedded systems [53]. It has an extensive hardware base
and covers typical issues of using these systems in real applications. The set of didactic
microprocessor modules shown in Figure 1 is a subset of the hardware base and is used in
two subjects: Microprocessor Techniques [54] and Microprocessor Systems Software [53].
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This didactic set is, in some cases, special because each hardware module has its own
virtual simulator [40,41]. These simulators are increasing the flexibility of students’ work
and thus improving the quality of teaching [55].

2.2. The TMSLAB Didactical Module Simulator

Virtual simulators of embedded systems are very important for students. The authors
of the paper draw that conclusion based upon nearly 30 years of teaching experience at
the LUT and recent experiences connected with the COVID-19 pandemic. The teaching
goals are clear—providing access to high-quality material to study outside the university in
order to improve skills and knowledge. Specialized laboratories limit the opportunity for
education without access to hardware resources. Embedded systems programming classes
provide a unique opportunity to conduct education outside the university, providing
students with appropriate tools, in this case simulators of embedded systems used in the
classes. However, these systems have a unique architecture, and developing simulators for
them is not an easy task. Therefore, before upgrading or modifying a given tool, knowledge
about the opinions and feelings of the students on this subject is needed. At the same time,
students constantly emphasize how much simulators make it easier for them to work on
laboratory tasks, whether it is in terms of preparation for task problems or in connection
with the need to complete work started during classes.

One of the microprocessor modules used in teaching classes is the TMSLAB system [53].
Its current, second version, is based on the Texas Instruments [56] TMS320F28379D MCU
and is equipped with intermediate circuits enabling the use of a graphic-text LCD, a
4 × 4 matrix keyboard, and an LED line. The laboratory module evolved from the first
version, equipped with the TMS320F2812 MCU system and a similar set of peripherals [41].
With a lot of effort, a system-level simulator [41] was introduced a few years ago for
TMSLAB v.1 (Figure 1) and has been used since then in laboratory classes.

The introduction of a new version of the TMSLAB v.2 laboratory hardware module
during classes resulted in several differences from the first version. The developed simula-
tor, TMSLAB v.1, was still useful, but students had the impression that it was not suitable
for the equipment, which resulted in their different reactions.

Feedback from students was important about the need to further develop the simulator,
and therefore it was necessary to conduct an appropriate survey. Finally, at the beginning
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of 2024, a decision was made to update the simulator, which resulted in the development
of its newer version, shown in Figure 2, in the form of the TMSLAB v.2 simulator.
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3. Computing Methods and Tools for Sentiment Analysis
3.1. User Feedback as a Guideline for Product Improvements

In addition to the desired didactic effect related to the use of virtual simulators of
embedded systems, the authors also aimed to encourage students to use these tools. This
required the implementation of some simulator functionality that is not only about elements
that lecturers care about but also taking into account users’ opinions. Therefore, simulator
developers need to consider components that are needed from a purposeful perspective
but also which functionalities are redundant and which are missing.

A good method to obtain information about the last two aspects is through feedback
from surveys. The questions they contain may be open or closed; they may concern very
narrow and precisely formulated issues; or they may allow greater freedom of expres-
sion [27]. As a final result, the goal of the survey is to obtain feedback related to the purpose
of conducting it.

3.2. Text Sentiment Analysis

The opinion and sentiment expressed in the respondent statement are very important
pieces of feedback. This sentiment guides the interpretation of the user’s answers [33] and
allows for a better understanding of his needs and emotions [15]. With a large number of
surveys, manual sentiment analysis takes a lot of time and requires the operator’s work.
The results of manual analyses may not be repeatable and may depend on the emotional
state of the person interpreting the answers [42]. Automated sentiment detection systems
are free of these drawbacks, the results of which can be used to automate processes that
meet the needs of respondents [17].

Basically, the result of the sentiment analysis should be the classification of the text
into one of the following categories: positive or negative. More precise analysis techniques
add a neutral (mixed) category, or additionally, positive mixed and negative mixed. Still,
other sentiment analysis methods use indicators that are numbers in the range usually
[0,1] or [−1,1], specifying a scale from negative to positive for sentiment description and
additionally supplementing the sentiment estimation with a parameter of its detection
quality [30].

In accordance with the assumptions presented in the introduction, three tools available
for research and comparison were chosen. They were accordingly:

• The Flair NLP library [47];
• The Pattern library [46];
• The BERT NLP model [36].
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All three tools were used with default parameters and were in versions: Flair (BLSTM—
Bidirectional Long Short-Term Memory) v. 0.13.0, Pattern v.3.6 (DbA—Dictionary-based
Approach, SLP classifier based on WSJ trained on the John = ”NNP-PERS” dictionary), and
Multilingual BERT (mBERT) used in Transformers library v. 4.35.2 (BERT was used with a
pretrained model based on English datasets for a multilingual model).

For the purposes of this article, results were unified to give results in a range from
one to five, with subsequent sentiment levels assigned to: positive, mixed positive, mixed,
mixed negative, and negative sentiment. All the sentiment analysis methods used in the
article were scaled to those five levels to give comparable results. Typically, the literature
considers a two-point, three-point, and five-point sentiment. The authors decided to use the
last variant, which allows for sentiment assessment with greater diversity, providing better
comparison possibilities for analysis methods. The libraries used for analysis return not
only the probability of sentiment classification but also a five-point sentiment assessment
scale. The probability of the determined sentiment result was used as an element of filtering
the results, introducing two sub-variants of the comparison of research results.

4. Research Methodology
4.1. The Quality of Teaching Aids Based on Virtual Simulators of the Embedded System Survey

The results presented in this article are based on a survey prepared to verify the
suitability of methods and tools used in the subject of Microprocessor Systems Software [53]
lectured at the Institute of Automatic Control, Lodz University of Technology [52]. The
survey was prepared in such a way as to obtain answers to questions about the quality
of tools and materials supporting the teaching process and not discourage students from
completing it. This forced us to limit the questions to the minimum necessary set, giving
a picture of opinions, thoughts, and emotions related to the use of embedded system
simulators. The survey consisted of five open questions and five corresponding closed
questions with answers on a point scale. The survey itself was conducted on the university
teaching platform WIKAMP [57], which is based on Moodle [58]. Essentially, the students
were asked about:

• The need for using software simulators in question 1;
• Thoughts on the TMSLAB module simulator in question 2;
• The significance of creating a simulator of the STMLAB system supporting FreeRTOS

in question 3;
• The impressions, feelings, and emotions they experienced when using microprocessor

system simulators during laboratory classes in question 4;
• Opinions regarding the plan to introduce an additional microprocessor system with a

simulator and an additional programming task within unchanged teaching hours in
question 5.

The survey was not obligatory. It was completed by students interested in provid-
ing feedback, which increases its reliability. A total of 14 questionnaires were collected
from a group of 60 students. This is a satisfactory result, considering the fact that the
semester surveys completed by students at the Lodz University of Technology as part of
the Microprocessor Systems Software course, regarding the quality of teaching, are usually
completed by a much smaller group. Some of the students aversion to completing surveys
may be related to the requirement of many forms of surveys at the university level, which
results in overloading the students in this area.

4.2. Sentiment Analysis of Open Questions

The open answers to the survey were posted in Polish. The intention at this point
was to avoid errors in the quality of the respondents’ answers resulting from the possible
insufficiently precise expression of emotions in a foreign language. This forced the use
of language translators to translate the answers into English. Two publicly available
translators were used. Google Translator [50] and MyMemory [51] translators. The results
of using both translation tools are included in the article.
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Due to the exhaustive answers of some respondents, the article also presents two
variants of sentiment analysis. The first one, in which entire answers were analyzed,
and the second one, where the answers were divided into sentences that were subject
to separate analysis. The second approach posed a serious challenge to the compared
sentiment analysis methods because some sentences, taken from a broader opinion, may
not correctly represent its sentiment.

4.3. Survey Reference Questions

The sentiment detected in the survey responses was verified based on the answers
provided by the respondents themselves. For each open question, there was one closed
question with an answer on a five-point scale. This scale corresponded to the five levels of
detected sentiment. On this basis, the sentiment detection error was determined, which
was used to compare sentiment analysis methods. This error was calculated according to
the following formula:

∆S =
∣∣∣Sre f − Ŝ

∣∣∣ (1)

where ∆S—sentiment error, Sre f ¯sentiment reference level, and Ŝ—sentiment detected level.
Only those survey answers that led to the determination of Equation (1) were used

for result interpretation. This means that the statistical analysis conducted in the article
was performed only in cases where both the open question and the corresponding closed
question were answered.

5. Sentiment Analysis Results
5.1. Sentiment of Survey Answers

All fourteen collected surveys were subjected to sentiment analysis, considering two
different language translators, two sets of responses (complete answers and their split into
single sentences), and two groups of results: all results and results rejecting low reliability
ones. The assumption made for reliable sentiment detection results is that the method
returning the sentiment estimation quality indicator returns its value above half of its total
range. For all possible combinations, the results of sentiment are shown in Figure 3 for
using Google translator and in Figure 4 for using MyMemory translator.
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The presented results of the sentiment analysis have been divided according to the
question number and presented in statistical terms with the median and average values
separately for each of the analysis methods and reference responses that play a verification
role. To better illustrate the collected data and their analysis, a broader statistical approach
is presented individually for each question in the attachments in Figures A1–A16 for
all study cases. There are both probability density distributions obtained for sentiment
analysis methods and reference responses, as well as histograms that cover this issue as
a supplement to the documentation of statistics regarding the obtained research results.
The statistical results included in Appendix A to the article act as complete documentation
of the survey results without the need to publish confidential results—another form of
sharing survey results. They are also an intermediate element in determining the sentiment
estimation error (1), the results of which are presented in Section 5.2.

5.2. Sentiment Analysis Errors

The obtained sentiment analysis results were related to the reference responses in
accordance with Equation (1). On this basis, sentiment detection errors were determined
and presented in Figures 5 and 6 for all study variants.
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Similarly to the collected research analysis results, the obtained statistics of sentiment
detection errors are presented in more detail in Appendix A in Figures A17–A24. Those
figures cover not only errors for each question, like in Figures 5 and 6, but also for each
sentiment level, which gives a broader look at the issue.

6. Discussion

The conducted review study showed general consistency between emotions expressed
descriptively and the respondents ratings from reference answers. Every method used
tended to correctly identify the sentiment, but each of them was characterized by different
accuracy and statistical properties. Summary error statistics obtained as a result of the study
conducted for each analysis method and all study criteria are shown in Figures 7 and 8.
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Based on the review answers detected sentiment levels (Figures 3 and 4), their accuracy
expressed as detection error (Figures 5 and 6), and the summarized error for all obtained
results per method (Figures 7 and 8), several interesting conclusions can be drawn:

• Each method produced results that make it useful for sentiment analysis. In no case
did the average error value of the results exceed two sentiment levels;

• As was to be expected, the BERT model is characterized by the highest precision in
sentiment detection. Regardless of the analysis used, the average error made by this
method was the smallest;

• The Flair library produced very highly polarized results and occasionally balanced
ones. This resulted in a large impact on the error statistics made by this method with
every detection mismatch. The method can be useful to distinguish the emotional
state of opinions very clearly;

• The Pattern library gave very balanced results in terms of sentiment level. This leads
to a reduction in the sentiment detection error but does not allow for a clear distinction
between the emotional potential of the review responses;

• In the case of very short statements (splitting respondents’ answers into single sen-
tences), all methods returned results consistent with expected ones. The BERT model,
which was generally the best, lost the most in terms of analysis quality while at the
same time signaling that the obtained results are unreliable;

• The method based on the Pattern library gave surprisingly good results, considering
that it is very simple [46] compared to the other two;

• The change of the translator did not affect the nature or general interpretation of the
results obtained. This leads to the indirect conclusion that the above methods can be
successfully used to analyze the sentiment of texts in Polish using language translators;

• From a statistical point of view, the results obtained for complete answers were similar
to the results of analyzing responses split into sentences. This gave a surprisingly high
accuracy of analyses of very short texts, which may not necessarily contain emotional
potential;

• The results of the error analysis indicate that in both cases of automatic translation, the
potential impact of losing the nuances by the translation, discussed in literature [59,60],
did not affect the accuracy of sentiment determination.
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7. Conclusions

This article compares three sentiment analysis methods for short texts and presents
their results in the case of analyzing the quality of teaching aids based on virtual simulators
of embedded systems. The comparison took into account various criteria of text taken into
account in the analysis, as well as two different language translator tools. It was shown
that every sentiment analysis tool gave correct results when analyzing texts in Polish with
automated language translations. Even limiting the length of the analyzed text to a single
sentence, which may not be emotionally representative in statistical terms, gave satisfactory
sentiment detection results.

The issue of potential loss of text nuances in automatic translation was also one of the
matters investigated in the article. Two different translators and a given methodology for
determining sentiment errors were used for this purpose. The effects of the error analysis
show that in all the cases of automatic translation, the potential impact of nuances did not
affect the accuracy of sentiment determination. This was observed for both full responses
and when questionnaire answers were split into sentences. It reflects the high usability
of sentiment analysis through automatic translation and opens the way for automatic
sentiment analysis of short texts.

The conclusions of the sentiment analysis method are presented to highlight the
strengths and weaknesses of each comparison method. The method based on BERT NLP
gave the most precise results, while Pattern was more balanced and Flair strengthened the
emotional potential of the statement, often giving mostly negative or positive sentiment.

The article describes what factors may influence the results and what aspects were
not taken into account in the study. The results obtained from the comparative analysis are
largely influenced by the size of the result set and the expected output sentiment. Due to the
limited scope of the survey, the total number of respondents was 14. For this reason, some
of the research was carried out by breaking down the survey into individual sentences to
enhance their sentimental potential. The main limitation in assessing the obtained results
was the level of reference sentiment, which gave less reliable comparative results on mixed
sentiment. This was due to the fact that for the mixed reference sentiment, the maximum
error that could be made in the analysis was two sentiment levels, while for borderline
sentiments it was four levels, i.e., twice as much. For this reason, the questions that were
prepared for the survey with the intention of the authors were intended to lead to obtaining
borderline reference answers.

The paper also compared not only the currently leading methods but also the simplest
ones, based on the DbA (Dictionary-based Approach). This method, considering the
mechanisms it uses, may be several times faster than BERT and consume fewer resources,
leading to its effective use in small embedded systems, but it requires further research.

Based on the students feedback and sentiment analysis, a new version of the TMSLAB
v.2 simulator with more realistic graphics, greater control over the output code and data
size in the simulated IDE, and a more interactive user interface was prepared. The au-
thors will also provide our students in the future with a newly developed starter project
for the STMLAB simulator (based on the STM32F429 MCU QEMU emulator and LCD
system-level simulation) with new features in the form of STM LL (low-layer) drivers and
FreeRTOS support in the STMLAB simulator. The ability to run this type of software in a
simulated environment is desirable and was assessed mainly positively in the survey. As a
result of respondents answers sentiment analysis, the intention to introduce an additional
microprocessor module into the teaching program was abandoned, which, according to the
survey, would have been perceived relatively negatively.
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