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Abstract: Assuming incomplete knowledge of the channel state information (CSI), we investigate
two scenarios involving millimeter wave (mmWave) relaying to support outdoor-to-indoor commu-
nications. We proceed to derive the average signal-to-noise ratio (SNR) expressions for two relaying
scenarios and quantify the asymptotic SNR. The performance of the two relaying scenarios is evalu-
ated using the outage probability—for which we have derived closed-form equations—the end-to-end
channel capacity, and the energy efficiency. The obtained results are compared with those derived
assuming complete knowledge of the CSI. The effect of the imperfect CSI is therefore assessed in rela-
tion to the reference of perfect CSI. In these scenarios, an outside base station (BS) in an urban cellular
network serves several indoor users. In the context of a two-hop full-duplex (FD) relaying scheme,
we initially suggest a method in which the base station (BS) utilizes zero-forcing (ZF) precoding, and
we take into account the overall channel response. Furthermore, we make the assumption that the
base station (BS) engages in precoding only depending on the response of the channel in the first hop;
in this second design, the relay precodes (using the response of the second-hop channel), amplifies,
and sends the signals. Both techniques utilize massive multiple-input–multiple-output (mMIMO)
arrays to permit transmission. We also present Monte Carlo simulation results to assess the accuracy
of our analytical results. Finally, the two systems are compared in terms of channel estimation and
precoding complexity, the number of antennas, as well as the number of users. Practical deployment
recommendations are formulated at the end of this work.

Keywords: channel estimation; complexity; full-duplex; massive MIMO; millimeter waves;
outdoor-to-indoor; power normalization; zero-forcing

1. Introduction

A preliminary version of this work was published in [1], and the results obtained
previously will be considered as a reference to compare with the new results. Hence, the
present work presents an extended version wherein the important and more practical
impact of channel estimation is taken into consideration.

The millimeter wave (mmWave) spectrum is an essential element of fifth-generation
(5G) and future (6G) wireless communications, as stated in [2]. The mmWave technology
offers the benefit of increased capacity [3] and more focused beams [4,5], but it comes with
the drawback of greater loss of signal when penetrating buildings. The aforementioned
disadvantage is often reduced by employing relays to connect indoor users to outdoor
transceivers, along with the implementation of scalable massive multiple-input–multiple-
output (mMIMO) configurations [6,7] to enhance signal coverage [8,9], utilizing nearly
optimal linear processing techniques (such as zero-forcing (ZF) and maximum-ratio (MR)),
and reducing channel estimation complexity (using achieved channel hardening, among
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other methods). Many mMIMO detection algorithms have been proposed in the literature;
ref. [10] provides a survey of those algorithms.

However, full-duplex (FD) relaying, as described in [11], involves nodes that may
broadcast and receive at the same time and on the same frequency resource. This is a
significant advancement towards fulfilling the spectrum efficiency and system capacity
needs of future wireless networks. Although there are still underlying concerns that need
to be addressed [12], the directional characteristics of mMIMO (massive multiple-input–
multiple-output) technology operating in the millimeter wave frequency range help to
mitigate the challenges associated with implementing full-duplex (FD) relaying.

Power considerations are of utmost importance in this context, particularly because
precoding is necessary to prepare the signals for the mMIMO broadcasts. To account for the
power limitations at the base station (BS) and the relay node, it is necessary to normalize the
precoding matrix by adjusting its power [11,13]. In [14], the authors present a mathematical
formula for calculating the trace of the zero-forcing (ZF) precoding matrix at the base
station. On the other hand, [15] provides the expression of the normalization coefficient at
the relay node while adopting different relaying schemes.

There are two main approaches to normalization: vector normalization (VN) and
matrix normalization (MN). The authors in [16] present a comparative approach that
examines the differences between VN and MN for various linear precoding techniques.
Channel estimation is a crucial concern that has been addressed in numerous studies
exploring the problem of mMIMO-based mmWave relaying (e.g., [17,18]). According
to [14], the complexity of channel estimation can be decreased in a mMIMO system due to
the occurrence of channel hardening. Within this specific situation, it is only necessary to
use uplink pilot symbols to calculate the channel using reciprocity; in this case, the residual
channel estimation error can be disregarded when determining the power normalization
coefficient [19].

This paper examines two outdoor-to-indoor millimeter wave (mmWave) full-duplex
(FD) relaying strategies considering both perfect [1] and imperfect channels. The perfor-
mance of these strategies is evaluated based on outage probability, capacity, and energy
efficiency while also considering the complexity of channel estimation and precoding for
each scheme. In the first design, the base station (BS) employs zero-forcing (ZF) precoding:
utilizing the two-hop channel response from end to end. In this scenario, the relay performs
the functions of normalizing, amplifying, and forwarding the signals to the indoor users.
The base station (BS) predicts the comparable uplink channel, and the downlink channel
state information (CSI) is derived by leveraging the principle of channel reciprocity [20].

In contrast, the second technique involves the BS performing precoding only based
on the channel knowledge of the first hop. In this second scheme, the relay performs the
functions of normalizing, precoding (using the second-hop channel response), amplifying,
and forwarding the signals. The relay estimates the second-hop channel, while the first-
hop channel is estimated at the BS. The power normalization coefficients are gradually
approached as a limit, enabling us to calculate the average and asymptotic signal-to-noise
ratios (SNRs) in the presence of both perfect and imperfect signal channel information (SCI).
The outage probability expressions are derived for each precoding scheme.

Furthermore, we offer estimations of the level of complexity involved in channel
estimation and precoding. We also deduce a relationship between the number of antennas
in each scheme to guarantee equal complexity. Therefore, the subsequent performance
comparison framework will consider two cases: (i) analyzing performance without taking
complexity into account and (ii) choosing different numbers of antennas in both schemes to
ensure equal complexity and enable a fair performance comparison.

The rest of the paper is structured as follows. The global system model is introduced
in Section 2. Section 3 discusses and analyzes the first scheme, whereas Section 4 provides
the same analysis for the second scheme. Section 5 displays the numerical and simulation
results that were obtained; it also highlights the performance that was obtained when
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taking into account different system parameters and constraints. The paper is concluded in
Section 6.

Mathematical Notation

In the rest of the paper, we use the following notational conventions: (·)T and (·)H,
respectively, for the transpose and the Hermitian transpose, E[·] for the mathematical
expectation, ∥ · ∥ for vectors norm, tr[·] for the trace of a matrix, and (·)+ for the Moore–
Penrose pseudo-inverse of a matrix.

2. System and Signal Models

As illustrated in Figure 1, we consider Nu single-antenna users in a dual-hop downlink
system in communication with a BS B equipped with NB antennas via an FD relay node R
equipped with NR1 receive antennas and NR2 transmit antennas.

NB Antennas NR1 Antennas NR2 Antennas
User Nu

User k

User 1

Indoor SpaceOutdoor Space
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Figure 1. Adopted system model with massive-MIMO-based outdoor-to-indoor relaying with
multiple indoor users.

At time instant i, R receives a data vector y(i)
RR and transmits the previously received

data, which has been processed, normalized, and amplified y(i−1)
RT . To alleviate the notation,

we drop the time index in the remainder of the analysis. Let us note that H1 ∈ C(NR1
,NB)

and H2 ∈ C(Nu,NR2 ) are the channel matrix between the BS and the relay receiver and the
channel matrix between the relay transmitter and the users, respectively. Both nodes B and
R transmit with large numbers of antennas. Assuming that all the paths between the BS and
the receiver side of R have the same large-scale fading statistic β1, we denote H1 =

√
β1Z1,

and since a Rayleigh fading channel model is considered in this work, the elements of
Z1 are independent circularly symmetric Gaussian with zero mean and unit-normalized
variance. The second hop is modeled similarly, where H2 denotes the channel matrix of
the second hop, and all paths between the relay transmitter and the individual users have
the same large-scale fading statistic β2, i.e., H2 =

√
β2Z2, where the elements of Z2 are

independent circularly symmetric Gaussian with zero mean and unit-normalized variance.
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We denote by q the Nu × 1 vector of user symbols, with E[qqH] = INu . The transmitted
vector x is then given by

x =
√
PF1q, (1)

where P is the source power budget for each user, and F1 is the precoding matrix performed
such that E[∥x∥2] = NuP. The received signal at R is given by:

yRR = H1x + HRRyRT + n1, (2)

where HRR ∈ C(NR1
,NR2 ) is the matrix representing the self-interference channel (taking

into consideration the advantages of mMIMO antenna array directivity, we neglect the self-
interference term in the remainder of the analysis [21]), yRT is the data vector transmitted
by R during the same time interval (containing data received in the previous time interval,
which has been processed, normalized, and amplified), and n1 represents zero-mean
additive white Gaussian noise (AWGN) at the relay’s receiver side with variance σ2

1 .
The processing at the relay consists of a linear signal processing unit, which is denoted

by the relaying matrix F2 and results in a processed version expressed as

yRP = F2yRR =
√
PF2H1F1q + F2n1. (3)

The relay then normalizes and amplifies the signal before forwarding it to the indoor users.
Let α denote the normalization coefficient (in the remainder of the text, to avoid confusion,
we denote the normalization coefficients by α1 and α2 when analyzing the first and second,
relaying scheme, respectively) given by

α = tr
[
yRPyH

RP

]

= tr
[
F2(PH1F1FH

1 HH
1 + n1nH

1 )F
H
2

]
.

(4)

With a power budget of PR at the relay, the transmitted signal is then expressed as

yRT =

√
PR

α
yRP. (5)

Finally, user k receives

y(u,k) =

√
PRP

α
h(2,k)F2H1F1q +

√
PR

α
h(2,k)F2n1 + h(D,k)F1q + n(2,k), (6)

where n(2,k) represents the zero-mean AWGN with variance σ2
2 at user k, h(2,k) and h(D,k)

denote, respectively, the k-th lines of matrices H2 and HD, and HD∈C(Nu,NB) represents
the direct link channel matrix. Due to the blockage of mmWave signals by the outdoor-to-
indoor separation, the direct link is subsequently neglected [22].

3. All-Pass Relay with Zero-Forcing Precoding at BS
3.1. Case of Perfect CSI

In this case, the relay is simply designed as an all-pass amplify-and-forward (AF)
unit, i.e., NR2 = NR1 = NR and F2 = INR , while the BS performs precoding based on the
end-to-end channel. Let us denote Heq = H2 × H1 =

√
NRβ1β2Zeq. According to the

central limit theorem, the elements of Zeq are complex Gaussian with zero mean and unit
variance. As in [14], the ZF beamforming matrix is given by F1 =

√
NB − NuZ+

eq, where
Z+

eq = ZH
eq(ZeqZH

eq)
−1.

To characterize the complexity of this first scheme, we consider the complexity analysis
framework presented in [23] wherein only multiplications are taken into account. Therefore,
the precoding complexity of Scheme 1 can be directly approximated as O(2NBN2

u + N3
u).
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3.1.1. Asymptotic SNR Analysis

In the following, we first give the asymptotic value of α in the large number of antennas
regime; then, we derive the instantaneous, average, and asymptotic SNR expressions.

With Scheme 1, the normalization coefficient is expressed as α1 = tr[(H1x + n1) (H1x+
n1)

H], which, after a few manipulations, yields

α1 = P(NB − Nu) · tr
[
H1ZH

eq(ZeqZH
eq)

−1qqH((ZeqZH
eq)

−1)HZeqHH
1

]
+ tr

[
n1nH

1

]
. (7)

Based on [24] (Lemma 1), when NR = NB = N, we obtain

H1HH
1

N
N→∞−−→ β1IN ,

H2HH
2

N
N→∞−−→ β2INu ,

ZeqZH
eq

N
N→∞−−→ INu , and

n1n1
H

N
N→∞−−→ σ2

1 IN .

Therefore, the normalization coefficient α1 asymptotically goes to

α1

N
N→∞−−→ Pβ1Nu + σ2

1 , (8)

and since the signal received by user k is expressed as

y(u,k)=

√
P(NB−Nu)PRNRβ1β2

α1
qk+

√
PR

α1
h(2,k)n1+n(2,k), (9)

the end-to-end instantaneous SNR can be expressed as

Γinst
1 =

PRPNR(NB − Nu)β1β2|qk|2
PR|h(2,k)n1|2 + α1|n(2,k)|2

; (10)

the average SNR can be expressed as

Γ
avg
1 =

PRPNR(NB − Nu)β1β2

PRNRβ2σ2
1 + α1σ2

2
, (11)

and, in the large number of antennas regime, the end-to-end SNR at user k can be
expressed as

Γ
asym
1 =

PRPβ1β2

PRβ2σ2
1

N
+

Pβ1Nuσ2
2

N
+

σ2
1 σ2

2
N

. (12)

Equation (12) shows that the asymptotic SNR for Scheme 1 goes to infinity as N → ∞. This
means that the undesirable effects from relay and user noise disappear when N becomes
large, and only the useful signal is dominant.

It is well known that one advantage of using mMIMO is that power scaling can
improve the energy efficiency while maintaining a desired capacity due to the large diversity
gain of the large antenna array. Therefore, we propose and analyze a few typical power
scaling options for Scheme 1. The asymptotic SNRs with power scaling (P = E/Na,
PR = ER/Nb, 0 ≤ a, b ≤ 1) are summarized in Table 1. Note that E and ER are fixed
regardless of N. Finally, we can straightforwardly express the system’s capacity and
asymptotic capacity, respectively, as

C1 = log2(1 + NuΓ
avg
1 ), (13)

C
asym
1 = log2(1 + NuΓ

asym
1 ). (14)
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Table 1. Asymptotic SNRs with different power scaling—Scheme 1 and perfect CSI.

Power Scaling Parameters Asymptotic SNR (N → ∞)

a + b < 1 ∞

a + b = 1, a ̸= 0 and b ̸= 0 EERβ1β2/σ2
1 σ2

2

a = 1 and b = 0 EERβ1β2/[(β2ER + σ2
2 )σ

2
1 ]

a = 0 and b = 1 EERβ1β2/[(β1NuE+ σ2
1 )σ

2
2 ]

a + b > 1 0

3.1.2. Outage Probability Analysis

In this subsection, we derive the outage probability of Scheme 1 using (10) and (8).
The instantaneous SNR can be rewritten as

Γinst
1 =

A

λ1X + λ2Y
, (15)

where A = PRPNR(NB−Nu)β1β2, λ1 = PRNRβ2σ2
1 /2, λ2 = α1σ2

2 /2, and X and Y are
two independent chi-squared distributed variates with two degrees of freedom [25]. Note
that λ1X and λ2Y are gamma variables with shape parameter 1 and respective scale
parameters a1 = 1/2λ1 and a2 = 1/2λ2. Then, by following the same approach as
in [25], we obtain the cumulative distribution function (CDF) of the approximate SNR in
Scheme 1 as

Pout
1 (Γth) =

a1 exp
(
− a2A

Γth

)
− a2 exp

(
− a1A

Γth

)

a1 − a2
. (16)

This yields the outage probability expression that we will evaluate numerically later in
Section 5.

3.2. Case of Imperfect CSI

In this subsection, we consider the case of imperfect CSI, for which the channels are
estimated using a minimum mean square error (MMSE) approach, and we re-derive the
SNR and the outage probability expressions obtained in the previous subsection. For
Scheme 1, we assume that the relay amplifies and forwards the received pilots, and only
the BS estimates the equivalent end-to-end channel.

3.2.1. Pilot Symbol Transmission

We denote by τc the number of samples that can be sent during a channel coherence
interval, where τc = B · T, with T being the duration of the coherence interval in which the
channel is considered to remain time-invariant, and B is the bandwidth of the waveform,
for which the frequency response of the channel is considered to be flat. Each coherence
interval hosts Nu orthogonal pilot waveforms of length τP, where Nu ≤ τP ≤ τc [14]. Note
that the BS estimates the equivalent end-to-end channel for each user based on the received
uplink pilots.

Let us denote by Φ a τP × Nu unitary matrix that contains the pilot symbols, such that

ΦHΦ = INu , (17)

and all the users simultaneously transmit Nu signals of duration τP and of the form [14]

XP =
√

τPΦH. (18)
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The relay receives the pilot symbols and amplifies and retransmits the signal to the BS,
where the received signal can be expressed as

YPR = HT
2 XR + N3, (19)

where N3 represents the zero-mean AWGN matrix at the relay, the elements of which all
have a variance σ2

3 .
Finally, let us denote by αP = tr(YPRYH

PR) the power normalization coefficient, and the
relay hence transmits

YPT =
√

1/αPYPR. (20)

We can note that αP has the same structure as α1 and can be approximated as:

αP

N
N→∞−−→ τPβ2Nu + σ2

3 , (21)

3.2.2. Despreading at the BS

During this phase, the BS uses the pilot symbol matrix Φ for despreading the signal.
Since the received pilot signal at the BS is given by

YPB = HT
1 YPT + N4, (22)

where N4 represents the zero-mean AWGN matrix at the BS, for which the elements all
have a variance σ2

4 , this yields a received signal with the form

YP = YPBΦ

=
√

τP/αPHT
eq + (

√
1/αPHT

1 N3 + N4)Φ.
(23)

3.2.3. MMSE Channel Estimation

Let us denote by Na ≜ (
√

1/αPHT
1 N3 +N4)Φ the aggregate noise. The elements of Na

are independent and identically distributed (i.i.d.) circularly symmetric Gaussian variables,
i.e., Na(i, j) ∼ CN (0, NRβ1σ3

2/αP + σ2
4 ), where i and j denote the i-th line and j-th column,

respectively, of Na(i, j). Referring to [26], the estimated channel between the BS and the
users is thus given by

ĤT
eq =

√
τP
αP

βe

∆
YP, (24)

with ∆ = (τPβe + NRβ1σ2
3 )/αP + σ2

4 , and βe = NRβ1β2. It is worth noting that the variance
of the elements of ĤT

eq can be expressed as

ζ2
e =

τP

αP∆
β2

e, (25)

and denoting by E ≜ Ĥeq − Heq the error estimation matrix, the variance of the elements

of E is βe − ζ2
e , and 0 ≤ µe ≜

√
ζ2

e
βe

≤ 1 denotes the channel estimation reliability.

The computational complexity of channel estimation was studied and approximated
for several channel estimation methods in [27]. Referring to it, we approximate the MMSE-
based channel estimation complexity as ON3

Bτ3
p . This complexity will be added to the

precoding complexity already computed in Section 3.1.
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3.2.4. Asymptotic SNR Analysis

Here, zero-forcing precoding is based on the estimated channel in (24), and the pre-
coding matrix is given by F̂1 =

√
NB − NuẐH

eq(ẐeqẐH
eq)

−1, where Ẑeq ≜ (1/ζe)Ĥeq is the
normalized estimated equivalent channel. The transmitted signal vector is thus given by

x̂ =
√
PF̂1q, (26)

and the relay receives the following signal:

ŷRR = H1x̂ + n1. (27)

Let us denote α̂1 = tr(ŷRRŷH
RR), which, after a few manipulations, can be written as

α̂1 = P(NB − Nu) · tr
[
H1ẐH

eq(ẐeqẐH
eq)

−1qqH((ẐeqẐH
eq)

−1)HẐeqHH
1

]
+ tr

[
n1nH

1

]
. (28)

To alleviate the derivations, we write Ẑeq as Ẑeq = 1
ζe
(Heq + E). When NR = NB = N,

we obtain the following convergences:
H1ẐH

eq
N

N→∞−−→ β1
ζe

HH
2 + 1

ζe

H1EH

N , H2HH
2

N
N→∞−−→ β2INu ,

ẐeqẐH
eq

N
N→∞−−→ INu , and n1n1

H

N
N→∞−−→ σ2

1 IN , and since H1EH

N
N→∞−−→ 0Nu , the normalization

coefficient α̂1 asymptotically converges as

α̂1

N
N→∞−−→ Pβ1Nu

µe
+ σ2

1 . (29)

Referring to (25), we can express µ2
e as µ2

e =
τPβ1β2

τPβ1β2 + β1σ2
3 + (τPβ2Nu + σ2

3 )σ
2
4

. This yields

an expression of the signal received by the user under the form

ŷu =

√
PRPNRβ1β2µ2

e
α̂1

(NB − Nu)q

+

√
PR

α̂1
(H2n1 − Ex) + n2. (30)

Under these notations, we can derive the instantaneous SNR for user k as

Γ̂inst
1 =

PRP(NB − Nu)NRβ1β2µ2
e

PR|E(k,:)x|2 + PR|h(2,k)n1|2 + α̂1|n(2,k)|2
, (31)

where E(k,:) is the k-th line of the channel estimation error matrix. Then, the average SNR
can be expressed as

Γ̂
avg
1 =

PRP(NB − Nu)NRβ1β2µ2
e

PRPNuβe(1 − µ2
e) + PRNRβ2σ2

1 + α̂1σ2
2

, (32)

and the end-to-end SNR in the large number of antennas regime at user k can be expressed as

Γ̂
asym
1 =

PRPβ1β2µ2
e

PRβ2σ2
1

N
+

Pβ1Nuσ2
2

µ2
e N

+
σ2

1 σ2
2

N

. (33)

From (33), we can see clearly that the main influence of the channel estimation reliability
µ2

e is the decrease in the capacity of Scheme 1 due to the channel estimation error. Some
typical power scaling options for Scheme 1 under imperfect CSI are summarized in Table 2.
We observe that µ2

e does not change the power scaling effects on Scheme 1 as N increases,
which will also be verified in the numerical results in Section 5.
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Table 2. Asymptotic SNRs with different power scaling—Scheme 1 and imperfect CSI.

Power Scaling Parameters Asymptotic SNR (N → ∞)

a + b < 1 ∞

a + b = 1, a ̸= 0 and b ̸= 0 EERβ1β2µ2
e/σ2

1 σ2
2

a = 1 and b = 0 EERβ1β2µ2
e/[(β2ER + σ2

2 )σ
2
1 ]

a = 0 and b = 1 EERβ1β2µ2
e/[( β1 NuE

µ2
e

+ σ2
1 )σ

2
2 ]

a + b > 1 0

Finally, we can straightforwardly express the system capacity and asymptotic capacity,
respectively, similarly to (13) and (14).

3.2.5. Outage Probability Analysis

In this subsection, we derive the outage probability of Scheme 1 using (31) and (29).
The instantaneous SNR can be rewritten as

Γ̂inst
1 =

B

λ1X + λ2Y + λ3Z
, (34)

where B = PRP(NB−Nu)NRβ1β2µ2
e, λ1 = PRPNuβe(1 − µ2

e)/2, λ2 = PRNRβ2σ2
1 /2,

λ3 = α̂1σ2
2 /2, and X, Y, and Z are three independent chi-squared distributed variates

with two degrees of freedom. Note that λ1X, λ2Y, and λ3Z are gamma variates with
shape parameter 1 and respective scale parameters b1 = 1/(2λ1), b2 = 1/(2λ2), and
b3 = 1/(2λ3). Then, by following the same approach as in [25], we obtain the CDF of the
instantaneous SNR in Scheme 1 under imperfect CSI as

P̂out
1 (Γth) =

b3b2(b3 − b2) exp
(
− b1B

Γth

)
− b3b1(b3 − b1) exp

(
− b2B

Γth

)
+ b2b1(b2 − b1) exp

(
− b3B

Γth

)

(b3 − b2)(b3 − b1)(b2 − b1)
. (35)

This yields the outage probability expression that we will evaluate numerically later in
Section 5.

4. Hop-by-Hop Zero-Forcing Precoding at BS and Relay
4.1. Case of Perfect CSI

In this second scheme, hereafter called Scheme 2, the base station precodes the signal
using the channel response of the first hop; then, the relay receives, without interference,
the users’ signals with Nu antennas, precodes them based on the channel response of
the second hop, and normalizes, amplifies, and retransmits the signals to the users. In
this case, NR1 = Nu and NR2 = NR. The precoding matrix at the base station is given
by F1 =

√
NB − NuZ+

1 , and the relay processing matrix is given by F2 =
√

NR − NuZ+
2 .

Therefore, the precoding complexity of Scheme 2 can be approximated as O(2NBN2
u +

N3
u) +O(2NR2 N2

u + N3
u).

Assuming the same large number of antennas at both the base station and the relay,
i.e., NR2 = NB = N, the complexity can be rewritten as 2O(NN2

u + N3
u). Under these

considerations, we derive the normalization coefficient as

α2 = Pβ1(N − Nu)
2tr
[
Z+

2 q(Z+
2 q)H + (N−Nu)Z+

2 n1(Z+
2 n1)

H
]
. (36)

4.1.1. Asymptotic SNR Analysis

Based on [24] (Lemma 1), when NR = NB = N, we obtain

Z2ZH
2

N
N→∞−−→ INu . (37)
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Then, for the normalization coefficient

α2

N
N→∞−−→ Pβ1Nu. (38)

The received signal at user k is given by

y(u,k) =

√
PPRβ1β2(NB − Nu)(NR − Nu)

α2
qk +

√
PRβ2(NR − Nu)

α2
n(1,k) + n(2,k), (39)

where n(1,k) is the k-th element of vector n1.
Now, we can derive the instantaneous and average SNRs, respectively, as

Γinst
2 =

PRP(NR − Nu)(NB − Nu)β1β2

PR|n(1,k)|2 + α2|n(2,k)|2
, (40)

Γ
avg
2 =

PPR(NR − Nu)(NB − Nu)β1β2

PR(NR − Nu)β2σ2
1 + α2σ2

2
. (41)

When NB = NR = N and taking into consideration (38), the asymptotic SNR for this
scenario can be expressed as

Γ
asym
2

N→∞−−→ PRPNβ1β2

PRβ2σ2
1 + Pβ1Nuσ2

2
. (42)

As we have observed in (12) for Scheme 1, Equation (42) also shows that the asymptotic
SNR in Scheme 2 grows to infinity as N → ∞. The asymptotic SNRs for a few typical power
scaling options are summarized in Table 3.

Table 3. Asymptotic SNRs with different power scaling—Scheme 2 and perfect CSI.

Power Scaling Parameters Asymptotic SNR (N → ∞)

0 ≤ a, b < 1 ∞

a = 1 and 0 ≤ b < 1 Eβ1/σ2
1

0 ≤ a < 1 and b = 1 ERβ2/Nuσ2
2

a = b = 1 EREβ1β2/(ERβ2σ2
1 + Eβ1Nuσ2

2 )

In Table 3, we analyze a few typical power scaling options for Scheme 2 under perfect
CSI to take advantage of using mMIMO and to improve the energy efficiency while main-
taining the desired capacity. Therefore, we propose some practical cases of asymptotic SNR
according to specific values of a and b.

From Tables 1 and 3, we see clearly that Scheme 2 outperforms Scheme 1 for all power
scaling options. Moreover, for a large number of antennas, increasing a and b leads to a
dramatic reduction in the performance of Scheme 1, i.e., a + b ≥ 1.

Finally, we derive the system capacity and asymptotic capacity, respectively, as

C2 = log2(1 + NuΓ
avg
2 ), (43)

C
asym
2 = log2(1 + NuΓ

asym
2 ). (44)

4.1.2. Outage Probability Analysis

We adopt the same approach as for Scheme 1 and derive the CDF of the approximate
SNR in Scheme 2 as
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Pout
2 (Γth) =

c1 exp
(
− c2C

Γth

)
− c2 exp

(
− c1C

Γth

)

c1 − c2
. (45)

where C = PRP(NR − Nu)(NB − Nu)β1β2, c1 = 1/(PR(NR − Nu)β2σ2
1 ), and c2 = 1/α2σ2

2 .

4.2. Case of Imperfect CSI

Here, for Scheme 2, we adopt a cascaded channel estimation, wherein the relay
estimates the second-hop channel response and transmits pilot symbols to the BS, which
estimates the first-hop channel response.

4.2.1. MMSE Channel Estimation

First, the second-hop channel estimation is given by

ĤT
2 =

√
τPβ2

τPβ2 + σ2
3

YP,1, (46)

where YP,1 is the pilot symbol matrix received by the relay after despreading. Similarly
to the perfect CSI case, let us denote by ζ2

2 the variance of the elements of ĤT
2 , which is

given by

ζ2
2 =

τPβ2
2

τPβ2 + σ2
3

, (47)

and let E2 ≜ Ĥ2 − H2 denote the channel estimation error matrix over the second hop,

for which the elements’ variance is given by β2 − ζ2
2, and 0 ≤ µ2 =

√
ζ2

2
β2

≤ 1 denotes the

channel estimation reliability in this case.
Second, and in order to estimate the first-hop channel, the relay sends its own pilot

symbols to the BS, which obtains an estimation given by

ĤT
1 =

√
τPβ1

τPβ1 + σ2
4

YP,2, (48)

where YP,2 is the pilot matrix received by the BS after despreading. Again, ζ2
1 denotes the

variance of the elements of ĤT
1 and is given by

ζ2
1 =

τPβ2
1

τPβ1 + σ2
4

, (49)

E1 ≜ Ĥ1 − H1 is the channel estimation error matrix over the first hop, for which the

elements’ variance is given by β1 − ζ2
1, and 0 ≤ µ1 =

√
ζ2

1
β1

≤ 1 denotes the channel

estimation reliability.
In this case, the channel estimation complexity is approximated as O(N3

Bτ3
p + N3

Rτ3
p).

4.2.2. Asymptotic SNR Analysis

In this case, zero-forcing precoding is based on the estimated channels in (46) and (48),

with precoding matrices F̂1 ≜
√

NB − NuẐ+
1 and F̂2 ≜

√
NR − NuẐ+

2 , where Ẑ1 = (1/
√

ζ2
1)Ĥ1

and Ẑ2 = (1/
√

ζ2
2)Ĥ2 are the normalized estimated channel matrices of the first and the

second hops, respectively.
Under these notations, the signal received at the relay side can be expressed as

ŷRR =
√
(NB − Nu)P(Ĥ1 − E1)Ẑ+

1 q + n1. (50)
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In this case, α̂2 can be expressed as

α̂2 = P(NB − Nu) · tr
[
H1ẐH

1 (Ẑ1ẐH
1 )

−1q

×qH((Ẑ1ẐH
1 )

−1)HẐ1HH
1

]
+ tr

[
n1nH

1

]
.

(51)

To alleviate the derivations, we write Ẑ1 as Ẑ1 = 1√
ζ2

1
(H1 + E1). When NR = NB = N,

we obtain H1ẐH
1

N
N→∞−−→ β1√

ζ2
1
INu +

H1E1
H

N , Ẑ1ẐH
1

N
N→∞−−→ INu , and n1n1

H

N
N→∞−−→ σ2

1 INu , and since

H1E1
H

N
N→∞−−→ 0Nu , the normalization coefficient α̂2 asymptotically converges to

α̂2

N
N→∞−−→ Pβ1Nu

µ2
1

. (52)

Thus, the signal received by all the users is given by

yu =

√
PR(NR − Nu)

α̂2
(Ẑ2 − E2)Ẑ+

2

[√
Pζ2

1(NB − Nu)q −
√

P(NB − Nu)E1Ẑ+
1 q + n1

]
+ n2. (53)

Similarly to the analysis in Section 3.2.4 and after a few simple manipulations, we can
derive the instantaneous and the average SNRs, which are given, respectively, by

Γ̂inst
2 =

PRP(NB − Nu)(NR − Nu)β1β2µ2
1µ2

2
P(NB − Nu)β1µ2

1|E2(k,:)
x2|2 + PR(NR − Nu)β2µ2

2|E1(k,:)
x1|2 + PR(NR − Nu)β2µ2

2|(n(k, 1)|2 + α̂2|n(k,2)|2
, (54)

and

Γ̂
avg
2 =

PRP(NB − Nu)(NR − Nu)β1β2µ2
1µ2

2
PRPNu(NB − Nu)β1β2µ2

1(1 − µ2
2) + PRPNu(NR − Nu)β1β2µ2

2(1 − µ2
1) + PR(NR − Nu)β2µ2

2σ2
1 + α̂2σ2

2
, (55)

where E1(k,:)
and E2(k,:)

are the k-th lines of channel estimation error matrix E1 and E2,

respectively, and x1 =
√

P(NB − Nu)Ẑ+
1 q and x2 =

√
PR(NR − Nu)Ẑ+

2 q. We also assume
that H2Ẑ+

2 = ζ2
2INu . The end-to-end SNR in the large number of antennas regime at user k

can be expressed as

Γ̂
asym
2 =

PRPNβ1β2µ4
1µ2

2
PRβ2σ2

1 µ2
1µ2

2 + Pβ1Nuσ2
2

. (56)

Intuitively, Scheme 1 is more sensitive in terms of channel estimation reliability compared
to Scheme 2. This is mainly due to the pilot noise amplification at the relay. A few typical
power scaling options for Scheme 2 under imperfect CSI are summarized in Table 4.

Table 4. Asymptotic SNRs with different power scaling—Scheme 2 and imperfect CSI.

Power Scaling Parameters Asymptotic SNR (N → ∞)

0 ≤ a, b < 1 ∞

a = 1 and 0 ≤ b < 1 Eβ1µ2
1/σ2

1

0 ≤ a < 1 and b = 1 ERβ2µ4
1µ2

2/Nuσ2
2

a = b = 1 EREβ1β2µ4
1µ2

2
(ERβ2σ2

1 µ2
1µ2

2 + Eβ1Nuσ2
2 )

Finally, we can express the system capacity and asymptotic capacity as in (43) and (44),
respectively.
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4.2.3. Outage Probability Analysis

Let us now derive the outage probability of Scheme 2 under imperfect channel estima-
tion using (54) and (52). The instantaneous SNR can be rewritten as

Γ̂inst
1 =

D

λ1X + λ2Y + λ3W + λ4Z
, (57)

where D = PRP(NB − Nu)(NR − Nu)β1β2µ2
1µ2

2, λ1 = PPR(NB − Nu)β1β2µ2
1(1 − µ2

2)/2,
λ2 = PPRNu(NR − Nu)β1β2µ2

2(1 − µ2
1)/2, λ3 = PR(NR − Nu)β2µ2

2σ2
1 /2, λ4 = α̂2σ2

2 /2, and
X, Y, W, and Z are independent chi-squared distributed variates with two degrees of
freedom. Then, we obtain the CDF of the approximate SNR in Scheme 2 under imperfect
CSI as

P̂out
2 (Γth) =

4

∑
j=1

∏4
i=1,i ̸=j di

∏4
i=1,i ̸=j(di − dj)

exp
(
−

djD

Γth

)
, (58)

where d1 = 1/(2λ1), d2 = 1/(2λ2), d3 = 1/(2λ3), and d4 = 1/(2λ4). This yields the
outage probability expression that we will evaluate numerically later in Section 5.

5. Numerical Results

Using Monte Carlo simulations, we now validate our analytical analysis and give a
comparative discussion of both schemes taking into consideration the precoding complexity.
Without loss of generality, we assume that σ1 = σ2 = σ3 = σ4 = 1, β1 = β2 = 1, and
τp = 10.

Please note that in all figures that will be presented in this section, the markers
represent the results of simulations, while solid lines represent the analytical and asymptotic
results under the perfect CSI assumption, and the dashed lines represent the results with
imperfect MMSE channel estimation.

5.1. Capacity and Energy Efficiency

In this subsection, we first examine the capacity and the energy efficiency (EE) of
both schemes, where EE is defined as EE = C/(P+ PR). (For simplicity, we only consider
transmission energy here, as it is the major component, and we neglect other energy
consumption in the system. An exhaustive energy efficiency framework will complement
this work in the future.) Figures 2 and 3 show the simulated capacity together with the
average and asymptotic capacity for different values of a and b, while Figures 4 and 5 show
the energy efficiency for different values of a and b. All results are given for both perfect
and imperfect CSI.
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Figure 2. Capacity and asymptotic capacity for different values of a and b, with Nu = 5, E = 2, and
ER = 10 under perfect and imperfect CSI.
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Ĉasym
1

a = 0, b = 1

a = 0, b = 1

a = b = 1

a = b = 1

Figure 3. Capacity and asymptotic capacity for different values of a and b, with Nu = 5, E = 2, and
ER = 10 under perfect and imperfect CSI.
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Figure 4. Energy efficiency for different values of a and b, with Nu = 5, E = 2, and ER = 10 under
perfect and imperfect CSI.
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Figure 5. Energy efficiency for different values of a and b, with Nu = 5, E = 2, and ER = 10 under
perfect and imperfect CSI.

Clearly, the asymptotic values presented in Tables 1–4 can perfectly predict the per-
formance of Scheme 1 and Scheme 2 under perfect and imperfect CSI. In fact, as N grows
infinitely large, the capacity when a = b = 0 and a = b = 0.3 has no upper bound.
In the other cases, as N increases, the capacity increases towards a constant asymptotic
value—except for a = b = 1 with Scheme 1, where it decreases towards zero. Moreover, as
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discussed in Section 4.1.1, Scheme 2 outperforms Scheme 1 for all power scaling options
when N is large enough. Further, observing Figures 4 and 5, we can conclude that Scheme 2
is the best in terms of energy efficiency when combined with relevant power scaling.

However, in terms of complexity, Scheme 2 is worse than Scheme 1. Hence, for a fair
comparison, and in order to get the same complexity, we select different values of N for
each scheme in what follows. Let us denote by N1 and N2 the numbers of antennas for
Scheme 1 and Scheme 2, respectively. Based on the complexity approximations for channel
estimation and precoding for each scheme, and in order to get the same complexity for
both schemes, the following constraint is respected:

N1 = 2N2 +
Nu

2
, for perfect CSI, (59)

and
N1 ≈ 3

√
2N2, for imperfect CSI. (60)

Figures 6–9 show the capacity and energy efficiency for both schemes with the same
complexity level. We clearly see that with the additional complexity constraint, Scheme 1
now always outperforms Scheme 2 for the perfect CSI condition—except when the power
scaling at the relay is very high, i.e., b = 1. However, under imperfect CSI, Scheme 2
remains a better choice at the same complexity level for all proposed a and b values.
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Figure 6. Capacity of Scheme 1 and Scheme 2 at equal complexities for different values of a and b
when Nu = 5, E = 2, and ER = 10 under perfect and imperfect CSI.
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Figure 8. Energy efficiency of Scheme 1 and Scheme 2 at equal complexities for different values of a
and b when Nu = 5, E = 2, and ER = 10 under perfect and imperfect CSI.
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Figure 9. Energy efficiency of Scheme 1 and Scheme 2 at equal complexities for different values of a
and b when Nu = 5, E = 2, and ER = 10 under perfect and imperfect CSI.

5.2. Outage Probability

In this subsection, we compare the studied schemes in terms of outage probability,
and for space considerations, we limit our analysis to the case of power scaling at the relay,
i.e., a = 0 and b = 1. Moreover, in all figures, we assume that both schemes have the same
complexity, i.e., the constraints in (59) and (60) are respected. In Figure 10, we first note
that the simulation results confirm the accuracy of the analytical expressions obtained in
Sections 3.1.2, 3.2.5, 4.1.2, and 4.2.3. We conclude that Scheme 1 outperforms Scheme 2
in term of outage probability when assuming the same complexities and a perfect CSI for
some numbers of transmitting antennas. Under imperfect CSI, we see that Scheme 2 is
always the best.
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Figure 10. Analytical and simulated outage probability assuming the same complexities for a = 0
and b = 1, E = 10, ER = 10, and Γth = 0.3.

6. Conclusions

In this paper, we have analyzed the end-to-end capacity, its asymptotic approximation,
and the outage probability of an outdoor-to-indoor dual-hop full-duplex mmWave multi-
user system for which the transmitting nodes are equipped with massive numbers of
antennas while the final users are equipped with single antennas. Two precoding schemes
were proposed, and the performance metrics were derived for each scheme under both
perfect and imperfect CSI conditions. An approximation of the precoding complexity
was also given for each precoding scheme. To respect the power budget allocated to the
relay, the normalization coefficient was approximated, capitalizing on the law of large
numbers. Monte Carlo simulation results were presented to confirm the accuracy of our
analysis. Practical recommendations were formulated at the end of the analysis for both
pure performance and for fair performance–complexity trade-off comparisons.
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