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Abstract: As a highly efficient and flexible data collection device, Unmanned Aerial Vehicles (UAVs)
have gained widespread application because of the continuous proliferation of Internet of Things
(IoT). Addressing the high demands for timeliness in practical communication scenarios, this paper
investigates multi-UAV collaborative path planning, focusing on the minimization of weighted
average Age of Information (AoI) for IoT devices. To address this challenge, the multi-agent twin
delayed deep deterministic policy gradient with dual experience pools and particle swarm optimiza-
tion (DP-MATD3) algorithm is presented. The objective is to train multiple UAVs to autonomously
search for optimal paths, minimizing the AoI. Firstly, considering the relatively slow learning speed
and susceptibility to local minima of neural network algorithms, an improved particle swarm op-
timization (PSO) algorithm is utilized for parameter optimization of the multi-agent twin delayed
deep deterministic policy gradient (MATD3) neural network. Secondly, with the introduction of
the dual experience pools mechanism, the efficiency of network training is significantly improved.
Experimental results show DP-MATD3 outperforms MATD3 in average weighted AoI. The weighted
average AoI is reduced by 33.3% and 27.5% for UAV flight speeds of v = 5 m/s and v = 10 m/s,
respectively.

Keywords: UAV; path planning; data collection; deep reinforcement learning; particle swarm
optimization; dual experience pools

1. Introduction

In the current age of digital revolution, the advancement of Internet of Things (IoT)
has exerted profound influences on across various sectors of society [1–3]. The widespread
deployment of sensor networks has enabled a continuous influx of real-time data into sys-
tems [4], encompassing parameters such as temperature, humidity, and light intensity, among
others. These data sources hold a pivotal significance in supporting real-time management
systems, including traffic supervision, industrial control, and so forth [5–7]. In this context,
the freshness of data collection becomes paramount for ensuring the quality of informed
decision-making. Nevertheless, with the continuous growth of data scale and complexity, the
freshness of data collection becomes a crucial consideration in guaranteeing the quality of
real-time decision-making. In order to evaluate data freshness, Age of Information (AoI) is
adopted as an evaluation index [8,9].

Currently, AoI has gained popularity as a metric to assess data timeliness in IoT net-
works [10–15]. It underscores the “freshness” of data within target nodes. In reference [10],
a balance between high reliability and information freshness was achieved through fine-
tuning jointly encoded packets. Simultaneous transmission over multiple sub-channels
effectively reduced AoI. Chen et al. [11] introduced an algorithm from a charging perspec-
tive, addressing the optimization of information delay in wireless-powered edge networks,
concurrently reducing both average and maximum peak AoI. Pu et al. [12] proposed a
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novel AoI-bounded scheduling algorithm, ensuring that the peak age of AoI for each data
package is maintained within a finite range. To optimize average AoI, Zhao et al. [13] stud-
ied the impact of interference on information delay in large-scale wireless networks and
presented a novel method. The research revealed similarities in channel access probabilities
and differences in packet arrival rates, particularly under low node density conditions.
Zhou and Saad [14] introduced a threshold-based optimization strategy to minimize aver-
age AoI, achieving near-optimal performance in noisy channels through a low-complexity
suboptimal strategy. Gu et al. [15] assessed the performance of average peak AoI in IoT sys-
tems by introducing AoI metrics, and evaluating coverage and underlying schemes. These
studies primarily conduct theoretical analyses of AoI performance or adopt conventional
approaches to minimize AoI through resource allocation optimization.

When facing challenges such as limited transmission power and unavailable uplink
channels in the IoT, one widely recognized solution is the utilization of Unmanned Aerial
Vehicles (UAVs) for auxiliary remote sensing. Their high maneuverability, ease of de-
ployment, and capability to cover hard-to-reach areas make them efficient data collectors,
significantly enhancing the efficiency of data acquisition in IoT [16,17]. Despite the advan-
tages, UAV-assisted IoT networks encounter problems stemming from restricted energy and
the consequential effects of UAV trajectory on both the effectiveness of data acquisition and
power consumption. Additionally, the uplink transmission time and power consumption
of IoT devices are influenced by the choice of hover points. Hence, the focus of this work
lies in investigating the problem of UAVs path planning to minimize AoI, thereby enabling
IoT to collect data in a timely and effective manner.

1.1. Related Works

This section revisits some research on UAV path planning related to AoI.
In reference [18], for minimizing the average AoI, a dynamic programming and ant

colony algorithm are employed to decompose this problem into energy transmission and
data collection time sequence allocation. Gao et al. [19] employed an end-to-end strategy
to successfully enhance data collection efficiency and reduce the AoI. For the purpose of
minimizing AoI, Xiong et al. [20] utilized GA to optimize the data collection process. Lu
et al. [21] utilized mobile unmanned vehicles to cooperate with UAVs in data collection,
thereby achieving a balance between information freshness and energy replenishment,
leading to a reduction in AoI. Liu and Zheng [22] utilized continuous approximation and a
genetic algorithm to optimize UAVs’ speed and path, as well as AoI and onboard energy of
the monitoring area data, thereby reducing task completion time.

However, the aforementioned works often employ heuristic algorithms to address
trajectory optimization problems, facing challenges such as insufficient adaptability, sus-
ceptibility to local optima, and high computational complexity. These issues typically
hinder their ability to adapt to increasingly complex and scalable wireless networks. As
artificial intelligence continues to advance, deep reinforcement learning (DRL) could enable
UAVs to make intelligent localized decisions and accomplish tasks. Leveraging DRL algo-
rithms and trained models, UAVs can autonomously and rapidly optimize flight trajectories
through interaction with the environment. Hu et al. [23] proposed the compound CA2C
algorithm to address path design problems resulting from UAVs’ collaborative perception
and transmission, thereby reducing the AoI. Zhou et al. [24] introduced the A-TP algorithm,
which employs DRL to optimize UAV paths, thereby enhancing the efficiency of IoT data
collection. Abd-Elmagid et al. [25] proposed an improved DRL algorithm to address the
AoI of different processes. Peng et al. [26] employed the double deep Q-learning network al-
gorithm to intelligently plan paths for UAVs, aiming to reduce UAVs’ energy consumption,
thereby enhancing information freshness. Yin et al. [27] focused on UAV-assisted vehicular
communication, using a deep Q network to optimize transmission power and offloading
ratios, minimizing AoI. Chen et al. [28] conducted research on resource allocation for AoI
perception using online DRL.
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1.2. Contributions

This paper investigates the path planning problem for UAV-assisted IoT network data
collection and introduces a DRL algorithm to achieve intelligent decision-making for UAV
flight trajectories, thereby reducing the level of AoI. The key contributions are outlined in
the following manner.

(1) To minimize AoI, it is transformed into a Markov game process, and the multi-
agent twin delayed deep deterministic policy gradient (MATD3) algorithm is designed to
optimize the UAV flight trajectory.

(2) To address the relatively slow learning speed and susceptibility to local minima
issues associated with neural network algorithms, we applied an improved Particle Swarm
Optimization (PSO) algorithm for the parameter optimization of the MATD3 neural net-
work. Additionally, to further expedite the training speed of the network, we incorporated
an additional experience replay buffer to store superior experience information. This
enhancement facilitates a quicker convergence of the network towards the optimal policy.

(3) Through a comparison with the traditional MATD3 algorithm, the proposed ap-
proach was evaluated. Simulation results indicate that it effectively reduces AoI, demon-
strating the effectiveness of the designed algorithm.

The remaining parts of this work are structured as enumerated below. The system
model and the multi-UAV path planning algorithm based on DP-MATD3 are introduced
in Sections 1 and 3. Simulation analysis was conducted in Section 4. The conclusion is
provided in Section 5.

2. System Model
2.1. Network Model

In the scenario of UAVs assisting in data collection for the IoT, the UAVs perform
data acquisition and transmission, as illustrated in Figure 1. Assuming within the service
range, there are M UAVs, and their electricity is E, and N IoT devices are randomly
distributed, with each device having a task size of ln, where M ∈ M = {1, 2, . . . , M} and
N ∈ N = {1, 2, . . . , N}.

UAV IoT
device

Data
uploading 

Trajectory
of UAV

Data
Offloading

Base
station

UAVn

Initial position

Figure 1. A scene of UAV-assisted data collection.

Then, a model is established to represent the connectivity between UAVs and IoT
devices, utilizing the decision variable χn

m(t) ∈ {0, 1} to indicate the connection status
between mth UAV and nth IoT device at time t. When χn

m(t) = 1, it signifies that mth UAV
is accessing nth IoT device; otherwise, it denotes no communication link between them. It
is assumed that in each time slot, the communication between IoT devices and UAVs is a
one-to-one correspondence. Therefore, constraints ∑n χn

m(t) ≤ 1 indicate that each UAV
can communicate with only one IoT device at any given time. Additionally, to enhance
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collaboration among multiple UAVs, any nth IoT device can be serviced by at most one
UAV at the same time, represented by the constraint ∑m χn

m(t) ≤ 1.
In addition, considering that multiple UAVs are serving the same area, it is essential to

address the issue of collisions between UAVs. The distance constraint is denoted as follows

‖qm1(t)− qm2(t)‖ ≥ omin , ∀t ∈ [0, T], ∀m1, m2 ∈ M (1)

here, qm(t) represents the two-dimensional position of UAV m ∈ M while flying at a
constant altitude of H meters, and omin is the minimum inter-UAV collision distance.

2.2. Data Collection Model

In practical scenarios, given the typically low power of IoT devices, their long-range
communication capabilities are notably constrained. To address this challenge, UAVs need
to reach the communication zone of these devices and stay within the range for some time
to facilitate efficient data collection. Drawing on experimental findings regarding channel
gain from references [29,30], it is observed that in moderate altitudes, communication
primarily relies on Line-of-Sight (LoS) propagation. Consequently, the channel gain gn

m(t)
can be approximated as [31]

gn
m(t) = h0d−2

m (n) =
h0

‖qm(t)− c(n)‖2 (2)

where qm(t) and c(n) denote the location of mth UAV at time t and nth IoT device, re-
spectively. h0 denotes the channel gain when d = 1. The wireless transmission rate is
denoted as:

rn
m(t) = B log2

(
1 +

Pupgn
m(t)

σ2

)
(3)

In order to collect data from the nth IoT device, it is assumed that the UAV must
hover above the IoT device for a minimum duration. Therefore, the delay in information
transmission Tn

m needs to meet the following constraint:

Tn
m ≥

ln
rn

m
(4)

2.3. Energy-Consuming Model

UAV energy consumption includes two parts: flight energy consumption and com-
munication energy consumption. The power consumption Pm(v) of the mth UAV when
moving horizontally at the speed v can be expressed as follows

Pm(v) = ωprp M× λp +
1
2

ρCD0 Aev3 +
π

4
npcpρCD0 ω3

pr4
p

[
1 + 3

(
v

ωprp

)2
]

(5)

where M and Ae represent the weight and the frontal area of the UAV, respectively, ωp is
the angular velocity, CD0 denotes the drag coefficient, np signifies the number of blades, rp
indicates the rotor disk radius, cp is the blade chord, and ρ represents the air density. The
total energy consumption of the mth UAV at the hovering position is given by

Eq,m = Tn
m(Pm(0) + Pc,m) (6)

where Pm(0) represents the hover power and Pc,m is the communication power of the mth
UAV. Therefore, the energy consumption in time slot k is given by

Eu,m(k) =
Lk,m

v
Pm(v) + ck,mEq,m (7)
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where Lk,m represents the flight distance of the mth UAV in time slot k, and ck,m represents
whether the mth UAV collects data in time slot k, which can be expressed as

ck,m =

{
1, UAV data collection
0, otherwise

(8)

The battery remaining power Ek,m of mth UAV in time slot k is as follows:

Ek,m = E−
k

∑
i=0

Eu,m(i) (9)

2.4. AoI

To guarantee timely data collection, AoI is a critical performance index. As shown
in Figure 2, commencing from the initial value A0, AoI progressively accumulates at a
constant rate of 1 until the reception of an update.

The following equation represents the AoI of nth IoT device at time t:

An(t) =
{

t− o(t), {t, χn
m(t) = 1}

An(t− 1) + 1, others
(10)

where o(t) signifies the timestamp of data generation. It is worth noting that when an IoT
device has no data stored or has already been collected, the AoI is 0.

A0

t1 t2 t3 t4 t5 t6

Device packet update

UAV data collection

AoI

Time(s)

A0+t2

A0+t6- t3

A0+t4- t1

Figure 2. The change process of AoI of IoT devices over time.

2.5. Problem Modeling

This paper aims to design a collaborative path-planning method for multiple UAVs,
to minimize the collected AoI. This process encompasses two distinct stages: the flight
stage, where UAVs move, and the hovering collection stage, where UAVs hover to collect
information from IoT devices. Therefore, the AoI collected by UAVs An(t) can be divided
into: the AoI of the information itself at the beginning of transmission, and the delay in
information transmission Tn

m, which is the time it takes for information to transmit from
nth IoT device to mth UAV. Accordingly, the optimization task is briefly outlined as:

min
q,χ

1
N

N

∑
n=1

An(t) (11)

s.t. ‖qm1(t)− qm2(t)‖ ≥ omin, ∀t ∈ [0, T], ∀m1, m2 ∈ M, (12)

N

∑
n=1

χn
m(t) ≤ 1, ∀m ∈ M (13)
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M

∑
m=1

χn
m(t) ≤ 1, ∀n ∈ N (14)

Ek,m > 0 (15)

3. DP-MATD3-Based Multi-UAV Path Planning Algorithm
3.1. Markov Game Process for the Given Problem

UAVs need to plan paths collaboratively in IoT data collection, and their location and
movement behavior will affect each other, forming a multi-agent cooperation problem.
Therefore, this problem can be modeled and solved using Markov games.

(1) State Space
In time slot k, the position of mth UAV is denoted as qk,m, the remaining energy of mth

UAV is Ek,m; the distance measured by the rangefinder is Dk,m =
{

d1
k,m, . . . , d f

k,m

}
, where f

is the number of rangefinders equipped on the UAV, the position of the IoT devices is c =
{c(1), . . . , c(N)}, the pending transmission task of the IoT device is wk =

{
wk,1, . . . , wk,N

}
,

and the AoI is Ak =
{

Ak,1, . . . , Ak,N
}

. Therefore, the system state can be defined as follows:

Sk = (sk,1, . . . , sk,M) (16)

where sk,m, m ∈ [1, M] represents the state of the m-th UAV and can be expressed as:

sk,m =
{

qk,m, Ek,m, Dk,m, c, wk, Ak
}

(17)

(2) Action Space
For the collaborative scenario of multiple UAVs, the joint action of the UAVs is repre-

sented as follows:
Ak = (ak,1, . . . , ak,M) (18)

where ak,m, m ∈ [1, M] is the decision made by mth UAV in time slot k. Using βk,m ∈ [0, 2π]
to denote the flying angle of mth UAV, the decision ak,m is expressed as follows:

ak,m = βk,m (19)

Therefore, in time slot k+1, the position of the mth UAV qk+1,m can be expressed as
follows

qk+1,m = (xk,m + vcosβk,m, yk,m + vsinβk,m, H) (20)

(3) Reward Function
In DRL, to minimize the AoI of data and ensure real-time accuracy, the reward function

can be designed as a function of AoI:

rk,a−m =

{
R− Ak,n, χn

m(t) = 1
0, others

(21)

where R is a positive constant, Ak,n is the AoI value when mth UAV chooses to communicate
with the nth IoT device. As the AoI value decreases, the reward value increases, indicating
that the UAV tends to arrive at that device sooner to reduce the AoI. When the UAV is in
flight and not communicating with IoT devices, the reward value is set to 0.

To ensure that IoT devices are not accessed repeatedly, the reward function can be
designed as follows:

rk,c−m =

{
−gc, χn

m(t) = 1, n ∈ O
0, others

(22)
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where gc is a positive constant, and O is the set of nodes that UAVs have visited. If mth
UAV visits a node it has visited in the past, it will receive a penalty, as repeated visits to the
same node are discouraged.

To prevent collisions between UAVs during path planning, the reward function can be
designed as:

rk,ij =

{
−b, di,j < 2rp
0, others

i, j ∈ M (23)

where b denotes a positive constant, di,j is the distance between two UAVs, and rp is the
rotor radius.

To avoid collisions, the reward function can be designed as follows:

rk,b−m =

{
−bblk, dm,blk < 2rp
0, others

(24)

where bblk is a positive constant, and dm,blk is the distance between the UAV and the
obstacle.

Simultaneously, to ensure that the battery power of the UAV remains above zero
during operation, the reward function is expressed as follows:

rk,e−m =

{
−ge, Ek,m <= 0
0, Ek,m > 0

(25)

where ge also indicates a positive constant and Ek,m denotes the battery power of mth UAV.
Therefore, the cumulative reward rk is formulated as follows:

rk =
M

∑
m=1

N

∑
n=1

(
rk,a−m + rk,c−m

)
+

M

∑
i=1

M

∑
j 6=i

rk,ij +
M

∑
m=1

(
rk,b−m + rk,e−m

)
(26)

3.2. DP-MATD3 Algorithm: Concept and Workflow

Traditional reinforcement learning algorithms based on value and policy encounter
limitations when addressing the problem of multi-UAV trajectory planning. Value-based
algorithms focus on learning the value functions of states or actions but often overlook
the details of policies, making it challenging to adequately consider interactions and
cooperation among agents in complex multi-agent collaborative scenarios, thus impacting
system performance. The policy-based algorithms directly learn policy functions. However,
in multi-agent problems, the policy space is typically large, leading to high computational
and sample complexities.

To overcome these limitations, the MATD3 algorithm based on the Actor-Critic frame-
work is utilized. It integrates the learning of policy functions and value functions, consider-
ing both the importance of policies and the information from value functions. The solution
to this multi-agent stochastic game process is achieved through centralized training and
decentralized execution, providing a comprehensive approach to address the challenges in
multi-UAV path planning.

(1) TD3 Algorithm
The TD3 algorithm is designed to address reinforcement learning problems in contin-

uous action spaces, building upon the foundation of the DDPG algorithm. It introduces
several improvements to mitigate issues present in the DDPG algorithm, including the
problem of overestimating Q-values. Through the incorporation of twin critic networks,
delayed updates, and policy noise, TD3 aims to enhance learning efficiency and stability
compared to DDPG.

By precisely defining the boundaries of each action, the TD3 algorithm ensures the
rationality of actions. In contrast to the DQN algorithm, TD3 exhibits greater flexibility in
handling multidimensional variables, cleverly optimizing multiple actions simultaneously.
Through techniques such as batch sampling and neural network estimation, TD3 obtains a
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probability distribution that encompasses multiple actions, allowing it to derive solutions
with associated actions.

TD3’s core structure comprises an Actor and two Critic networks. Each of them
comprises two sub-networks: an online network for real-time decision-making and a target
network for stable training. To store the accumulated experience during training, TD3
utilizes a Replay Buffer. When the replay buffer reaches full capacity, TD3 clears the oldest
experiences to make room for the latest ones, helping to break the correlation between
experiences in small batches.

Compared to the DDPG algorithm, the TD3 algorithm significantly demonstrates
advantages in the following three aspects:

(1) Dual Critic Networks
TD3 introduces two critic networks, effectively reducing the overestimation of Q-values.
(2) Delay Update
By implementing a delayed mechanism for updating the target network, TD3 reduces

the frequency of updating the target networks, which helps to slow down the learning
process of the algorithm, making it more stable and preventing inaccurate Q-values from
prematurely affecting the policy network.

(3) Policy Noise
TD3 introduces a target policy network and adds noise to its output to enhance the

exploratory nature of the policy. This mechanism effectively improves the algorithm’s
exploration capability, particularly demonstrating superior performance in complex envi-
ronments.

(2) MATD3 Algorithm
The MATD3 algorithm is an extension of the TD3 algorithm, combining the theoretical

framework of DRL with the concept of multi-agent cooperation. It is suitable for scenarios
where multiple UAVs collaborate to plan paths to minimize performance metrics such as
information age. During training, the Critic network functions can obtain information from
all agents. Each agent i, utilizing the information obtained, can learn two centralized evalu-
ation functions Qπ

i,θ1,2
(s, a1, . . . , aN). To address the issue of overestimated Q-values, when

calculating the target Q-value, the minimum evaluation network is chosen for computation:

yi = ri + γ min
j=1,2

Qπ
i,θj

(
s′, a′l , . . . , a′M

)
(27)

In addition, to ensure the exploratory and robust nature of the learned policy, clipped
Gaussian noise is added to the output, as outlined in Equation (21):

a′i = clip
[
µθ′i

(
s′i
)
+ clip(N(0, δ),−c, c), alow , ahigh

]
(28)

The Critic network is updated at a higher frequency, with the Actor network updated
every d times after the Critic network update. This is conducted to ensure that the updates
to the Actor network are more targeted and effective, as the Critic network has been
updated multiple times before updating the Actor network, providing more accurate
value function estimates. Additionally, the target networks also adopt a delayed updating
strategy, enhancing the stability of the algorithm.

(3) DP-MATD3 Algorithm
The MATD3 algorithm is a fusion of reinforcement learning and neural networks,

respectively, using their deep learning advantages and parametric representation ability. In
the construction and parameter determination process of neural networks, the key lies in
determining the network’s structure and weights. However, the learning speed of neural
network algorithms is relatively slow, and they are prone to getting stuck in local minima,
posing challenges for MATD3.

The Critic network plays a central role in MATD3, responsible for estimating the
value of actions in the environment. This process involves a significant amount of weight
adjustments, and the slow learning and susceptibility to local minima in neural network
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algorithms make the optimization of weights particularly challenging. To overcome these
challenges, the MATD3 algorithm introduces the PSO algorithm, which has advantages
such as fast convergence, simplicity, and global search capability. The network performance
of the MATD3 algorithm can be enhanced by combining the PSO algorithm with the Critic
network and leveraging its global search capability to train its weights.

In the PSO algorithm, each particle represents a possible solution, where its position
denotes the values of the Critic network parameters, and its velocity indicates the direction
and stride of the particle’s movement. The particle updates its speed and position by
comparing its individual and group best position, namely pbest and gbest. The update
process involves the following steps:

(1) Initialize Particle Swarm
Firstly, G particles in the D-dimensional search space are initialized, where Xg =

(
xg1, . . . xgD

)
represents the position of the g-th particle and is a set of weights and biases for the Critic network,
and Vg =

(
Vg1, . . . , VgD

)
represents its speed. These particles are randomly distributed in the

parameter space.
(2) Compute Fitness Value
For each particle, based on its represented parameter settings, the performance of the

corresponding Critic network on the training set is calculated. The Critic network under-
goes a training process that involves gradually adjusting its parameters by minimizing the
absolute TD error, ultimately enhancing the accuracy of Q-value estimation. Consequently,
the magnitude of the TD error serves as a critical fitness metric, guiding the particles toward
optimal parameter configurations. Among them, TD error is used to measure the difference
between the Q-value estimated by the agent in a given state based on the current strategy
and the target Q-value calculated based on experience.

(3) Determine Individual and Global Optimal Positions
Individual and global optimal position refer to the fitness values and corresponding

positional parameters of individual particle and whole particle populations in their history,
respectively.

(4) Update Velocity and Position
The formulas for position and velocity update are as shown in Equations (22) and (23):

Vgd(t + 1) = ϕ×
[
ωVgd(t) + c1r1

(
pbest ,gd − xid(t)

)
+ c2r2

(
gbest ,d − xgd(t)

)]
(29)

Xgd(t + 1) = Xgd(t) + Vgd(t + 1) (30)

here, g = {1, 2, . . . , G}, d = {1, 2, . . . , D}, r1 and r2 are uniformly distributed on [0, 1] and
are mutually independent, and ϕ is the constriction factor.

(5) Determine termination condition
If the termination condition is not satisfied, go back to step 2; otherwise, end. The

particle swarm adjusts its velocity and position according to the fitness values, gradually
converging towards the global optimal solution.

Each time an operation is performed, all particles execute simultaneously, and the
state of each particle is continuously updated, avoiding any waiting issues. During the
process of adjusting states, particles adapt their individual states at any moment until the
global optimal solution is found. The implementation steps are illustrated in Figure 3.

In the updating process of PSO, the particle swarm searches the entire parameter space,
gradually converging to the global optimum. The absolute value of TD-error is employed
as the fitness value, the Critic network can learn the value function more accurately, and
then guide the Actor network to update the policy, thus improving the performance of the
algorithm.

In addition, in order to further enhance the convergence speed of the MATD3 algo-
rithm, the dual experience pools technique is introduced. However, the target region is
relatively vast and the capacity of the experience pool is limited. This leads to the pos-
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sibility that, under limited exploration, the experience pool may store a large number of
suboptimal actions, affecting training efficiency. Therefore, two experience pools, B1 and
B2, are considered. B1 indiscriminately stores samples, while B2 is used to store experiences
with single-step rewards rt > v, and its size is much smaller than B1. During the sampling
process, a subset of samples is randomly selected from B1, and an additional 10% of the
total samples are randomly chosen from B2.

Start

Initializes  parameters

Initialize particle
position and velocity 

Does the particle
converge?

Update particle velocity and
position

Calculate the particle fitness
value

Determine the optimal particle

N

Output the optimal
solution

End

Y

Figure 3. Particle swarm algorithm implementation process.

The DP-MATD3 algorithm combines the PSO algorithm to optimize the parameters
of the Critic network while utilizing dual-experience pools to overcome the shortcomings
of the MATD3 algorithm. The DP-MATD3 algorithm is illustrated in Figure 4 and the key
procedures are generalized in Algorithm 1.
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Figure 4. DP-MATD3 algorithm block diagram.
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Algorithm 1 DP-MATD3 algorithm
Initialization: The network parameters of each UAV are randomly initialized. Initialize the
replay experience pools B1 and B2, and set the mini-batch sample size N. Initialize the
proportions p1 and p2 for sampling from experience pools B1 and B2, respectively, with
p1 = (1− p2). Initialize the number and positions of IoT devices, as well as the number
and positions of UAVs.

for episode = 0, 1, . . . , L do

Obtain the initial environment observation values s for each UAV.

for t = 1, . . . , T do

mth UAV selects an action am;
Perform action am to obtain reward rm and new environmental observation sm;

if the state sm encounters an obstacle or goes beyond the boundary do

break

end if

Store the state transition tuple (sm, am, rm, s′m) in B1;

if rm > v do

Store the state transition tuple (sm, am, rm, s′m) in B2;

end if

Randomly sample p1 ∗ N tuples (st, at, rt, s′t+1) from B1 and p2 ∗ N tuples (s, a, r, s′) from
B2 to learn;
Add exploration noise to the action’s output by the Actor target network
a′m = µθ′m(s

′
m) + ε̃, ε̃ ∼ clip(N(0, δ),−c, c)

Setting ym = rm + γ minj=1,2 Qπ
m,θj

(
s′m, a′1, . . . , a′M

)
;

Calculate the absolute value of the TD-error
∣∣∣ym −minj=1,2 Qπ

m,θj
(sm, a1, . . . , aM)

∣∣∣
Based on the optimal particle’s location, the Critic network’s parameters are updated;

if t mod c1 then

Update Actor params using the gradient of the sampled data ∇θµm J(µm) ≈
1
N ∑N

i=1[∇am Q(sm, a1, . . . , aM)∇θm µm(sm | θµm)]

if t mod c2 then

Update target net params.

end for

end for

In DP-MATD3, the absolute value of TD-error is used as the fitness value of the
PSO algorithm to minimize TD-error faster, so that the Critic network can learn the value
function more accurately and guide the Actor network to choose better actions. The
structure of dual-experience pools is designed to store more optimal experience information
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by adding an additional experience pool so that the network can find the optimal strategy
faster and speed up the training of the DP-MATD3 algorithm.

4. Simulation Analysis
4.1. Environmental Configuration

This section simulates the designed the multi-UAV trajectory planning strategy. The
simulation scenario consists of a square area measuring 1.5 km × 1.5 km. As shown in
Figure 5, the orange circles represent IoT devices, while three UAVs (green circles) depart
from locations (0.1 km, 0.1 km), (1.3 km, 0.1 km), and (1.3 km, 1.3 km). The parameters for
the UAVs are presented in Table 1.

Table 1. Parameters of the aerial vehicle.

Parameter Value

channel gain h0 −50 dB
communication bandwidth B 2 MHz

upload power Pup 0.1 W
UAV fixed altitude H 50 m

noise power σ2 −100 dBm

Figure 5. The map of the environment.

The networks in the DP-MATD3 algorithm are constructed with two hidden layers of
artificial neural networks, both being fully connected layers. The experimental platform is
established using Python 3.7 and PyTorch 1.5.1. The remaining parameters are illustrated
in Table 2.

Table 2. Simulation Parameter Setting.

Parameter Value

discount factor 0.95
Critic learning rate 0.001
Actor learning rate 0.002
experience pool B1 20,000
experience pool B2 1000

batch size 256
Maximum training steps 10,000
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4.2. Experimental Results and Analysis

The DP-MATD3 algorithm optimizes the MATD3 algorithm’s Critic network by in-
troducing the PSO and uses the absolute value of the TD-error as the fitness value for the
PSO to achieve faster minimization of TD-error. To assess the algorithm’s convergence, the
trend of TD-error absolute value over training steps was used as an evaluation criterion.
Figures 6 and 7 demonstrate that, under the same number of training steps, the DP-MATD3
algorithm reaches a stable state faster than the MATD3 algorithm. This is attributed to the
PSO algorithm’s ability to rapidly explore the optimal solution space, optimizing Critic
network parameters and quickly reducing TD-error absolute value, thus expediting the
overall convergence process.
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Figure 6. The convergence of the absolute value of TD-error in the MATD3 algorithm.
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Figure 7. The convergence of the absolute value of TD-error in the DP-MATD3 algorithm.

Figure 8 shows the trajectory diagram under the DP-MATD3 algorithm designed in
this chapter. At t = 0, all IoT devices perform a data update. Subsequently, IoT devices
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N1 and N6 conduct another data update at t = 100 s, devices N7 and N8 at t = 200 s,
and device N3 at t = 300 s. The remaining IoT devices do not perform a second update
within the mission cycle. Observing the trajectory in the figure, due to the flight time
required for the UAVs to reach the IoT devices, the DP-MATD3 algorithm fully considers
the tradeoff between flight time and AoI in trajectory planning. The algorithm achieves the
minimization of AoI by jointly planning the collaborative working trajectory of the UAVs
and the connection sequence of the UAVs. For example, UAV1 chooses to gather data from
N2 first, not N1 nearby. This is because N1 performs a data update at t = 100 s, and by
then, UAV1 will have access to the updated data. Therefore, UAV1 chooses to collect data
from N2 first, thus reducing the overall AoI. Similarly, for N3, N7, and N8, which have
longer update cycles, the UAVs fully consider their update frequencies and locations in the
planning, choosing appropriate time points for data collection. These results effectively
demonstrate the superiority of the DP-MATD3 algorithm in trajectory planning.

Figure 8. UAV flight trajectory.

The weighted average AoI between the DP-MATD3 and the MATD3 at the UAV speed
of 5 m/s and 10 m/s are depicted in Figures 9 and 10, respectively. From the graphs,
it is evident that the convergence and stability of the DP-MATD3 algorithm are better
at different speeds. For instance, when v = 10 m/s, the weighted average AoI achieved
by the DP-MATD3 algorithm is approximately 121.59 s, while the MATD3 algorithm’s
weighted average AoI is around 155.03 s. It can be seen that DP-MATD3 achieves the
reduction in the weighted average AoI and improves the system performance. This is
because the DP-MATD3 algorithm can generate more reasonable trajectories based on the
actual information update patterns. For example, concerning N1, since it will undergo a
second data update at t = 100 s, UAV1 collects its data after collecting N2’s data, resulting
in a smaller AoI. In contrast, the MATD3 algorithm completes information collection before
its second update, leading to a larger AoI, falling into a local optimum.
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Figure 9. Weighted average AoI at v = 5m/s.
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Figure 10. Weighted average AoI at v = 10 m/s.

5. Conclusions

This paper investigated the path planning problem for multi-UAV collaboration in
completing data collection tasks and proposed a DP-MATD3 path planning algorithm
to minimize the weighted average AoI. The algorithm optimizes the Critic network by
introducing the PSO algorithm, overcoming the issue of the MATD3 algorithm being
prone to local optima. Additionally, the algorithm is extended and optimized through the
introduction of a dual experience pool structure to enhance training efficiency. The simula-
tion experiments, demonstrating the path planning results for multiple UAVs, effectively
validated the feasibility of the DP-MATD3 algorithm in path planning. A comparative anal-
ysis with baseline strategies also clearly indicated a significant improvement in algorithm
performance.
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