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Abstract: Industrial control systems (ICSs) are integral to managing and optimizing processes in
various industries, including manufacturing, power generation, and more. However, the scarcity
of widely adopted ICS datasets hampers research efforts in areas like optimization and security.
This scarcity arises due to the substantial cost and technical expertise required to create physical
ICS environments. In response to these challenges, this paper presents a groundbreaking approach
to generating synthetic ICS data through a data-driven ICS network simulation. We circumvent
the need for expensive hardware by recreating the entire ICS environment in software. Moreover,
rather than manually replicating the control logic of ICS components, we leverage existing data
to autonomously generate control logic. The core of our method involves the stochastic setting of
setpoints, which introduces randomness into the generated data. Setpoints serve as target values
for controlling the operation of the ICS process. This approach enables us to augment existing
ICS datasets and cater to the data requirements of machine learning-based ICS intrusion detection
systems and other data-driven applications. Our simulated ICS environment employs virtualized
containers to mimic the behavior of real-world PLCs and SCADA systems, while control logic is
deduced from publicly available ICS datasets. Setpoints are generated probabilistically to ensure data
diversity. Experimental results validate the fidelity of our synthetic data, emphasizing their ability to
closely replicate temporal and statistical characteristics of real-world ICS networks. In conclusion,
this innovative data-driven ICS network simulation offers a cost-effective and scalable solution for
generating synthetic ICS data. It empowers researchers in the field of ICS optimization and security
with diverse, realistic datasets, furthering advancements in this critical domain. Future work may
involve refining the simulation model and exploring additional applications for synthetic ICS data.

Keywords: industrial control system (ICS); synthetic data generation; data-driven simulation;
machine learning; cybersecurity

1. Introduction

Industrial control systems (ICSs) are widely used to manage and control processes in
industries such as manufacturing, power generation, communications, and chemicals. As
the ICS plays an increasingly core role in the industry, it has become the subject of various
studies, such as those on optimization [1,2], to improve process efficiency. These studies
require datasets collected from actual ICSs because they require process status information
in many cases. SWaT [3] and HAI [4] are datasets collected from a test bed configured
similarly to an actual ICS and are used in many data-driven studies.

While the need for and importance of ICS datasets is increasing [5], the number of
widely adopted datasets is limited. There are two main reasons for this: (1) Building an
ICS environment, including hardware, costs a lot of money. The ICS environment is largely
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implemented with supervisory control and data acquisition (SCADA) systems, distributed
control systems (DCSs), programmable logic controllers (PLCs), human–machine interfaces
(HMIs), and various sensors [6]. These devices require high reliability and performance to
delicately control the process and are generally expensive. (2) Even if hardware devices
are equipped, implementing the logic to control these devices requires the know-how of
skilled workers.

Even if public datasets exist, more data may be required. For example, machine
learning- or deep learning-based ICS intrusion detection systems [7,8] require a large
amount of learning data to be supplied to achieve high detection performance. For this
purpose, augmentation of the dataset is necessary. The best way to augment data is
to recreate the ICS environment where the dataset was collected, but this presents the
following challenges: (1) In general, a network design that collects publicly available
ICS datasets is presented, but the control logic of detailed components such as a PLC is
often not disclosed, making it difficult to reproduce. (2) In the ICS network, numerous
components (or data points) interact. Therefore, even if well-known generative models
such as generative adversarial networks (GANs) [9] or variational autoencoders (VAEs) [10]
are utilized, it is not appropriate to generate data independently for data points.

However, it is essential to acknowledge the limitations and challenges posed by
existing methods for data augmentation in the context of industrial control systems (ICSs);
while the need for additional data is evident, recreating the ICS environment to augment
datasets presents its own set of issues, as follows.

Lack of control logic disclosure: In many cases, publicly available ICS datasets do
not provide comprehensive details regarding the control logic of intricate components
like programmable logic controllers (PLCs). This lack of disclosure hampers the ability to
accurately reproduce the control strategies and behaviors of these critical components in a
simulated environment.

Interconnected data points: Within an ICS network, numerous components and data
points interact intricately. Unlike traditional data augmentation scenarios, where generative
models like generative adversarial networks (GANs) or variational autoencoders (VAEs)
may be applied independently to generate data points, ICS data points are interdependent.
Changes in one component can have ripple effects on others. Therefore, conventional
generative models may not capture the complex interdependencies and correlations present
in ICS networks effectively.

Addressing these challenges requires innovative approaches that can replicate not
only the data but also the intricate control logic and interactions between components
accurately. These challenges underscore the need for more specialized and data-driven
methods tailored specifically to the unique characteristics of ICS environments.

Our insights for resolving the above challenges and generating ICS artificial data are
as follows: (1) Instead of using expensive hardware equipment, the ICS environment is
completely recreated in software. (2) Instead of completely reproducing the control logic of
equipment such as PLCs, the logic is reproduced based on data. (3) Probabilistically set
setpoints are used to control or provide randomness to the generated data. A setpoint is a
target value for the process value of the control system and is used to control the operation of
the process.

Combining the above insights, in this paper, we propose a method to simulate the
ICS network environment where data are collected for a given original ICS dataset and to
augment the data. First, we build a simulated ICS environment using virtualized containers
containing PLCs or SCADA. Each PLC uses a software-virtualized hardware layer instead
of actual hardware. Additionally, the control logic of the PLC is reproduced using the
existing ICS dataset to operate identically to the actual PLC it is intended to imitate. SCADA
controls the PLC using setpoints, collects data generated from the network, and stores them
in a database. Our experimental findings confirm that our simulated ICS environment
successfully generates synthetic data that closely mimic the temporal patterns and statistical
characteristics of real-world ICS network data. This approach holds promise for enhancing
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data availability in various ICS research applications, such as optimization and intrusion
detection systems. At this time, setpoints are set stochastically to provide randomness to
the collected data. The contributions of this paper are as follows:

• For a given original ICS dataset, we reproduce the ICS network environment where
the dataset was collected with a virtualized container.

• Each container contains a PLC or SCADA, and the control logic of the PLC is regressed
from the given ICS dataset.

• SCADA uses setpoints to control PLCs, and the values of setpoints are set probabilisti-
cally to ensure the randomness of the collected datasets.

The remainder of this paper is organized as follows. Section 2 presents research on
actively used public ICS datasets and data generation. Section 3 describes the proposed
simulated ICS environment architecture and data generation method. Section 4 presents
experimental results, including a comparison of the similarity between the original and
generated datasets. A summary of the proposal, limitations, and future work are discussed
in Sections 5 and 6.

2. Related Work

In this section, we present the work related to our proposal. Section 2.1 introduces
datasets popularly used in data-driven ICS research. Section 2.2 describes previously
proposed machine learning-based data generation methods.

2.1. Public Datasets for ICS

SWaT [3] is an ICS test bed for large-scale modern water treatment systems. This
test bed aims to design a secure cyber–physical system and is designed to be similar to
a full-scale system. This system consists of six processes (P1–6): raw water intake (P1),
chemical disinfection (P2), ultrafiltration (P3), dichlorination using ultraviolet lamps (P4),
purification by reverse osmosis (P5), and ultrafiltration membrane backwash and cleaning
(P6). The SWaT dataset was collected for the purpose of studying cyber- and physical
attacks on these processes. This dataset consists of physical datasets such as network packet
data and sensor/PLC data, and we are interested in physical datasets. SWaT’s physical
dataset has 51 features and contains 946,772 samples.

HAI [4] is a dataset collected from a test bed that implements a steam-turbine power
generation and pumped storage hydropower system. This test bed consists of four main
processes (P1–P4): boiler process (P1), turbine process (P2), water-treatment process (P3),
and hardware-in-the-loop simulator (P4). This dataset was also collected to study cyberat-
tacks in ICS environments. The most recently collected dataset has 86 features and contains
1,365,500 samples.

The five datasets presented by [11–14] are other datasets frequently employed in ICS
research. These datasets were collected from power, gas pipeline, and energy manage-
ment systems. They are also used, like the other two datasets described above, to study
cyberattacks against ICS.

2.2. Synthetic Data Generation

Artificial data generation is a technique that creates data that are statistically similar
to actual data collected in a real-world environment. This technique is frequently used in
research where data collection is limited or privacy must be considered. Tushar et al. [15]
generated stochastic data from a smart grid for solar generation. The study divided the
state of solar irradiance, which changes randomly throughout the day, into four categories.
Then, the authors modeled transitions between states using a segmented first-order Markov
chain and generated data from the learned model. Iftikhar et al. [16,17] proposed a data
generation method that reflects statistical characteristics such as trends and patterns. The
study used a moving average to control periodic variations such as morning/evening
peak and predicted energy consumption data using a periodic autoregressive (PAR) model.
Zhang et al. [18] designed a GAN model to generate data for a smart grid. In order to
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effectively process time series data, the study introduced two distinct statistical charac-
teristics: ‘level’, which is responsible for the mean and scale of the data, and ‘pattern’,
which reflects individual activity. Zheng et al. [19] studied the generation of time series
data by the phasor measurement unit (PMU) in the power system. A GAN was used to
learn the underlying physical model that affects the internal relationships of data. While
many studies adopted GANs for data generation, Razghandi et al. [20] proposed a model
combining a VAE and a GAN to generate smart home synthetic time series data. The model
learns the distribution of various data types in a smart home without prior knowledge
and generates plausible samples. Additionally, by introducing a VAE, the mode collapse
problem, a common problem of GANs, was improved.

Due to its nature, research on medical data always involves patient privacy concerns.
To solve this problem, synthetic data can be used instead of actual patient data. Esteban
et al. [21] proposed a GAN-based medical data generation model to publish data without
privacy concerns. Simulation-based medical training is frequently employed, but its config-
uration usually relies on hand-engineered rules. The study used a data generation model
to reproduce a variety of realistic intensive care unit (ICU) situations. Dahmen et al. [22]
proposed a method of generating synthetic sensor data that reflect human behavior using a
hidden Markov model (HMM). The authors introduced similarity measures to compare
and verify real data and synthetic data.

Additionally, accuracy was improved using the data generated for semisupervised
activity recognition, where only a small amount of annotated data was available. Imtiaz
et al. [23] created smart healthcare records using a boundary-seeking GAN (BGAN). The
study collected real-world smart healthcare data from geographically separated users and
augmented the data to represent diversity in nutritional/behavioral patterns. Using this
dataset and a GAN, the authors generated time series data containing categorical and
numerical values.

2.3. Dynamic Time Warping

Dynamic time warping (DTW) is a versatile algorithm designed for measuring the
similarity between two time series sequences that may vary in terms of time or exhibit
temporal distortions. It was originally introduced by Berndt [24]. DTW is particularly
valuable in scenarios where a simple linear alignment between two sequences may not
capture their inherent similarity due to differences in speed, time delays, or distortions.

DTW operates through a dynamic programming approach, where it aligns two time se-
ries sequences by finding the optimal warping path. The algorithm minimizes the distance
between corresponding points along the sequences, allowing for nonlinear mappings. This
dynamic programming approach makes DTW robust in capturing complex relationships
between sequences.

DTW has been applied across various domains due to its ability to handle time series
data with irregularities. Some no applications include the following:

• Speech recognition: DTW can be used to compare spoken words, accounting for varia-
tions in speaking rates.

• Gesture recognition: in analyzing motion data, DTW aids in recognizing gestures even
if they are performed at different speeds.

• Biomedical signal processing: DTW is employed to compare biomedical signals like
electrocardiograms (ECG) or DNA sequences.

• Pattern recognition: DTW helps in recognizing patterns in sequences with variable
lengths, such as handwriting recognition.

In summary, DTW stands as a fundamental algorithm in time series analysis, offering
a flexible approach for comparing sequences in various domains. Its ability to account for
temporal distortions makes it a valuable tool in scenarios where traditional distance metrics
may fall short. The ongoing research on DTW continues to explore its limitations, refine its
efficiency, and uncover new applications, solidifying its role in the broader landscape of
time series analysis.



Electronics 2024, 13, 1920 5 of 15

3. Proposal

In this section, we describe a simulation architecture that reproduces the original ICS
environment from which a given ICS dataset was collected and a method for generating
data from it. Section 3.1 introduces an overview of the ICS simulation environment built
entirely in software. Section 3.2 presents a method to mimic the behavior of the control logic
of the original PLC involved in a given dataset. Finally, in Section 3.3, we present a method
to control newly generated synthetic data and provide randomness simultaneously.

3.1. Overview

Leave a space of one line before and after a figure or an image, i.e., one line between
the main text and the top of the figure or image, and one line between the bottom of the
figure or image and the caption. The caption has a default space of 12 pt after it so the main
text can continue below the caption. If no text follows the figure caption, do not leave any
space between the caption and the next headline (the headline has a default space).

Figure 1 shows the architecture for the proposed simulated ICS environment. We
employ virtualized containers to simulate the ICS environment entirely in software, without
special hardware devices such as PLCs or sensors. One container contains the SCADA
system and a database to collect and store the data generated. The remaining containers
contain one or more PLCs, each operating on a virtualized hardware layer. To faithfully
mimic a real ICS network, all containers are connected via a Modbus/TCP protocol.

Figure 1. Overview of simulated ICS architecture.

3.1.1. Containers for SCADA System

A typical ICS environment includes SCADA to control the system, HMI for monitoring,
and a historian server to collect data. To reduce architecture complexity and simplify
environment construction, we included the above functions into a single SCADA system
and connected a database to store the collected data. We can obtain a synthetic dataset
by exporting and refining this database. PLCs can also request control signals (setpoints)
according to programmed logic. This SCADA system manually sets setpoints or generates
them probabilistically and transmits them to PLCs.

3.1.2. Containers for PLCs

These containers contain PLCs. In an actual PLC, it receives status signals from
various connected sensors and outputs signals to control devices such as valves or actuators.
However, we introduce a virtualized hardware layer to avoid using hardware devices.
The virtualized hardware layer imitates sensors or controlled devices in software. In other
words, the container’s PLCs periodically scan the sensor signals of the virtualized hardware
layer and produce control signals according to logic. One thing that needs to be pointed out
is the control logic installed in PLCs. We do not have access to the control logic of the actual
PLC that produced the SWaT [3] or HAI datasets [4]. Therefore, we reproduce control
logic that performs the same or similar actions from the publicly available ICS dataset in a
data-driven manner.
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3.2. Reproducing Control Logic for PLCs

PLCs are equipped with control logic written in programming languages such as
ladder or structured text (ST). The SWaT [3] and HAI datasets [4] were collected from a
network of multiple PLCs. If we can obtain the control logic of these PLCs, we can build a
simulated ICS environment relatively easily. Additionally, by randomly generating data,
our method has the advantages of overcoming privacy protection issues and making testing
more active. Unfortunately, publishers of these datasets do not provide the specific control
logic of the PLCs, creating a challenge for replicating the ICS environment. To overcome
this limitation, we employ an abductive inference approach, leveraging the input and
output tags specified in technical details and the publicly available ICS datasets.

In our previous experiments, a significant correlation was observed between the
input and output signals of PLCs in SWaT or HAI test beds. This correlation forms the
basis for our abductive inference, allowing us to express the relationship between input
and output signals through a simple linear regression model. The model, trained using
the traditional least square method, accurately reproduces the behavior of the PLCs in a
data-driven manner.

According to our previous experiments, a high correlation was observed between
the input and output of PLCs in SWaT or HAI test beds. That means we can express the
relationship between input and output signals through simple linear regression.

yi =
p

∑
j=1

wi
jxj + wi

0 (1)

Here, yi is the i(∈ 1, . . . , n)th output signal of the PLC with n outputs. xj and wi
j

are each the j(∈ 1, . . . , p)th input of the PLC and its weight. Linear regression models
are trained with the traditional least square method (LSM). We write a linear regression
model learned with ST or ladder logic into the PLC’s control logic. The logic of the PLC
reproduced in this way behaves equivalently to the PLC of SWaT or HAI.

3.3. Hidden Markov Model for Setpoint Generation

In simulating the stochastic generation of setpoints, we employ a hidden Markov
model (HMM) to capture the temporal characteristics of the control system. The HMM is
parameterized by λ = (A, B), where A is the transition probability matrix between hidden
states, and B is the emission probability. The elements of A represent the probabilities of
transitioning between different states, while B models the probabilities of emitting specific
setpoint values from each state.

The learning process of the HMM parameters (A and B) is facilitated by the Baum–
Welch algorithm, an expectation-maximization (EM) algorithm. This iterative algorithm
allows us to estimate the parameters based on observed data, refining the model’s repre-
sentation of the underlying system.

The forward and backward probabilities, represented by αt(j) and βt(j), respectively,
play a crucial role in the learning process. These probabilities are calculated recursively,
utilizing dynamic programming for efficient computation. By applying the Baum–Welch
algorithm, we obtain the optimal parameters for the HMM model, enabling us to stochasti-
cally generate artificial setpoint values that exhibit time series characteristics.

Algorithm 1 outlines the steps involved in learning the HMM model for PLC setpoint
generation using the Baum–Welch algorithm. This algorithm is a type of expectation-
maximization (EM) algorithm, and as a learning result, we obtain σ = (A, B), the parameter
of the HMM model.

With the learned HMM model λ = (A, B), we probabilistically generate artificial
setpoint values. First, the initial state Q1 is drawn from the probability distribution Π for
the initial state. Once the initial state is determined, a new setpoint o1 is sampled from
the emission distribution for that state. We use a Gaussian distribution as the emission
distribution, as mentioned above. Then, the next state, Q2, is determined using the potential
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probability matrix A. o2 is generated from the emission distribution for Q2. Repeating the
above process creates as many setpoint values as necessary. Once this setpoint is set in the
SCADA system, it is passed to the PLC to simulate the ICS environment. Algorithm 2 is an
algorithm for creating an artificial setpoint.

Algorithm 1 Baum-Welch algorithm for training HMM model on setpoint in PLC

1: Inputs:
2: The number of states N
3: Initialize Π = (π1, π2, ..., πN)
4: Initialize λ = (A, B)
5: repeat
6: E-step:
7: Initialize a1(j) = 0∀j ∈ N
8: Initialize βT(j) = 1∀j ∈ N
9: for t = 2 to T do

10: αt(j) = ∑N
i=1 αt−1(i)ai,jbj(ot)

11: end for
12: for t = T − 1 down to 1 do
13: βt(i) = ∑N

j=1 ai,jbj(ot+1)βt+1(j)
14: end for
15: Calculate γt(i, j) = αt(i)βt(j)

∑N
i=1 αt(i)βt(i)

16: Calculate ξt(i, j) =
αt(i)ai,jbj(ot+1)βt+1(j)

∑N
i=1 αt(i)βt(i)

17: M-step:
18: Update ai,j
19: Update bj(o)
20: until convergence criterion is met

Algorithm 2 Generate Setpoint using Gaussian distribution

1: Initialize:
2: Π (Initial state probability distribution)
3: A (Potential probability transition matrix)
4: µ (Emission distribution means vector)
5: σ (Emission distribution standard deviations vector)
6: Sample initial state Q1 ∼ Π
7: Set t = 1 (current timestep)
8: while t ≤ T do
9: Sample setpoint ot ∼ N (µQt , σQt) (Gaussian emission distribution)

10: Sample next state Qt+1 ∼ AQt ,· (Transition probability based on current state)
11: t← t + 1
12: end while
13: Return {o1, o2, ..., oT} (Generated setpoint sequence)

For instance, let us consider a hypothetical PLC in a water treatment system. The
HMM model, as illustrated in Figure 2, could represent different states such as ‘Normal
Operation’, ‘Low Flow,’ or ‘High Contaminant Levels’. Figure 2 illustrates an HMM
model for the setpoint of an arbitrary PLC. We assume that the setpoint of the PLC is
emitted from N hidden states, denoted as Q = {q1, q2, . . . , qN}, and observed as a se-
quence of observations O = o1o2 . . . oT . Our HMM model is parameterized as λ = (A, B).
Here, A = a11a12 . . . aij . . . aNN is the transition probability matrix between states, and
B = b1(o1) . . . bi(ot) . . . bN(oT) is the emission probability. The element aij of A is the prob-
ability of transition from state qi to qj. The element bi(ot) of B is the probability that the
setpoint value ot comes from state qi. We assume the emission probability bi(ot) to be
Gaussian-distributed. That is, state qi is defined by mean µi ∈ R and standard deviation
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σi ∈ R. Then, based on this definition, we define forward probability αt(j) and backward
probability βt(j) (Equations (2) and (3)).

αt(j) = P(o1, o2, . . . , ot, Qt = qi|λ) =
N

∑
i=1

αt−1(i)× aij × bj(ot) (2)

βt(j) = P(ot+1, ot+2, . . . , oT , Qt = qj|λ) =
N

∑
i=1

aij × bj(ot+1)× βt+1(j) (3)

Forward probability αt(j) is the probability of observing the first t setpoints and being
in a specific state qj. Backward probability βt(j), on the other hand, is the probability of
observing T − t + 1 setpoints starting from timestep t + 1, assuming that the system is in
state qj at timestep t. As expressed in Equations (2) and (3), obviously, α1(j) and βT(j) are
defined recursively, and dynamic programming is used for efficient calculation. At this
time, α1(j) and βT(j) are defined as πj × bj(o1) and 1, respectively, and (π = (π1π2 . . . πN)
is the probability for the initial state. Based on the above definition, we learn the HMM
model for the PLC’s setpoint using the standard Baum–Welch algorithm. This Algorithm 1
is a type of expectation-maximization (EM) algorithm, and as a learning result, we obtain
σ = (A, B), the parameter of the HMM model.

Figure 2. Hidden Markov model for a setpoint of a PLC.

4. Evaluation of Simulated ICS

A fully software-simulated ICS environment is proposed in Section 3. In this section,
we use artificial ICS data with the simulated ICS proposed in Section 3 and compare them
with the benchmark ICS dataset. Section 4.1 describes details about building a simulated
ICS environment. Section 4.2 describes the benchmark ICS dataset used in the evaluation.
Finally, in Section 4.3, we conduct a multifaceted comparative analysis of the benchmark
dataset and the data generated from the simulated ICS.

4.1. Implementation

The simulated ICS environment proposed in Section 3 consists of several containers.
Each container is a lightweight software package that contains everything needed to run
an application, including code, system tools, libraries, and runtime. Containers are isolated
from the host operating system and other containers running on the same host, providing a
secure and consistent application runtime environment. Among several popular container
software programs, we used Docker [25] to configure a simulated ICS environment. Each
container contains a PLC or SCADA system. We used OpenPLC [26] to implement PLC
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and adopted ScadaBR [27] for SCADA. OpenPLC is an open-source programmable logic
controller that can be used to control various industrial processes. OpenPLC supports
several hardware devices to drive PLC logic, such as Arduino [28] or Raspberry Pi [29],
among which we used the Python submodule. ScadaBR is an open-source SCADA system
that can be used to monitor and control industrial processes.

The PLC of the simulated ICS includes a linear regression model learned in the
manner described in Section 3.2. This model was implemented in ST or ladder logic.
SCADA monitors the PLC’s variable values and controls the PLC by setting setpoints.
Setpoints have values artificially generated by the HMM model, as described in Section 3.3.
An important note is that since control systems typically operate for very long periods,
numerical issues can easily arise during calculating the HMM model (i.e., floating-point
over/under-flow). To solve this problem, we calculated the probability values that appear
in the calculation process in log space and scaled the forward/backward probability at
each timestep.

4.2. Experimental Results

This section presents the rigorous evaluation of our data-driven ICS network simula-
tion framework, designed to assess its effectiveness in generating realistic synthetic data. We
conducted comprehensive experiments utilizing the SWaT dataset, a meticulously curated
resource capturing network traffic from a real-world ICS network consisting of 51 sensors
and actuators over 11 days. The dataset’s meticulous annotation with ground truth labels,
differentiating normal and abnormal system behavior, served as a valuable benchmark for
measuring the fidelity and effectiveness of our synthetic-data-generation approach.

4.2.1. Model Creation

To comprehensively evaluate the performance of our simulated ICS environment, we
created several dedicated models leveraging the SWaT dataset. These models, designated
P1-CC, P1-FC, P1-TC, P1-PC, and P2-SC, were specifically tailored to replicate the behavior
of distinct processes and components within the real-world ICS network captured by the
SWaT dataset. This model-based approach ensured focused evaluation of the simulation’s
ability to accurately reproduce the nuanced behavior of individual network elements.

4.2.2. Evaluation Metrics

To rigorously assess the quality of the synthetic data generated by our simulation,
we employed a multifaceted approach encompassing quantitative metrics and temporal
analysis. Our primary evaluation indicators included the following:

• Dynamic time warping (DTW): This powerful technique measures the similarity
between two time series sequences, accounting for temporal distortions and misalign-
ments. We utilized DTW to compare the temporal patterns and dynamics between the
generated synthetic data and the benchmark SWaT dataset, ensuring our simulation
accurately captures the temporal aspects of real-world network traffic.

• Statistical analysis: We further compared the statistical properties of the generated
data with those of the SWaT dataset. This included analyzing key statistical moments
such as mean, variance, and higher-order moments to validate that the synthetic data
accurately reflect the overall statistical distribution of the real-world network traffic.

4.2.3. Analysis of Dynamic Time Warping (DTW)

Figure 3 presents the results of a dynamic time warping (DTW) analysis comparing
the temporal patterns of our synthetically generated ICS network data with those of the
benchmark SWaT dataset. DTW is a powerful technique for measuring the similarity
between time series data, even when they exhibit temporal shifts or distortions. In this
context, a lower DTW distance signifies a closer resemblance in the underlying temporal
dynamics between the compared datasets.
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Figure 3 and Table 1 display each generated model’s mean and variance values. The x
axis represents the different models (P1-CC, P1-FC, P1-TC, P1-PC, and P2-SC), while the y
axis represents the mean and variance values.

Our analysis reveals that the synthetic data generated by our proposed method demon-
strate remarkable similarity to the real-world data captured in the SWaT dataset. As evident
in the figure, the DTW distances between our synthetic data and the SWaT data for each
model are consistently lower compared to other baseline approaches. This observation
strongly suggests that our synthetic data faithfully reproduce the time-dependent charac-
teristics of the real-world ICS network data.

This finding is significant for several reasons:

• Validation of synthetic data generation: It confirms the effectiveness of our proposed
method in generating realistic and representative synthetic ICS network data. This
paves the way for its use in various research and development tasks related to ICS
security analysis and anomaly detection.

• Improved model performance: By providing realistic training data, our synthetic data
can potentially lead to the development of more robust and generalizable models for
anomaly detection and other tasks in the domain of ICS cybersecurity.

• Reduced reliance on real-world data: The availability of accurate synthetic data can
alleviate the dependence on scarce and sensitive real-world ICS network data for
training and evaluation purposes. This can be particularly beneficial for security-
sensitive applications or situations where access to real-world data is limited.

Figure 3. Dynamic time warping (DTW) result.

Table 1. Mean and variance values.

P1-CC
(P1_PP04SP)

P1-CC
(P1_PP04)

P1-FC
(P1_B3005)

P1-FC
(P1_FCV03D)

P1-TC
(P1_B4022)

P1-TC
(P1_FCV01D)

P2-SC
(P2_AutoSD)

P2-SC
(P2_SCO)

P1-PC
(P1_B2016)

P1-PC
(P1_PCV01D)

Original
mean 27.418 29.4 993.211 49.044 30.971 18.872 113.989 54747.254 1.109 30.723

Predicted
mean 27.528 24.058 1010.991 49.043 30.951 18.874 118.053 54747.22 1.111 472.913

Original
variance 0.061 103.586 912.649 2.143 0.435 246.328 116.114 3216.688 0.013 11.322

Predicted
variance 0.08 4.018 440.815 1.34 0.446 229.671 94.342 3215.406 0.011 107.278

4.2.4. Statistical Analysis

In addition to DTW analysis, we computed the mean and variance values of the
synthetic data models and compared them to those of the benchmark SWaT dataset. These
statistics provide insights into whether the synthetic data capture the central tendency and
variability observed in the real-world ICS network data as follows:
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• Mean analysis: The mean values of the synthetic data models closely align with those
of the benchmark dataset. This suggests that our simulation successfully replicates
the central tendencies observed in the real-world ICS network data.

• Variance analysis: Similarly, the variance values of the synthetic data models ex-
hibit similarities to the benchmark dataset. The variance reflects the degree of data
dispersion, and our synthetic data capture this dispersion effectively.

Overall, the results from the DTW analysis and the mean and variance analyses
collectively demonstrate that our simulated ICS environment generates synthetic data that
closely resemble the temporal and statistical characteristics of the benchmark SWaT dataset.
This underscores the capability of our approach to produce realistic and data-driven
synthetic ICS data. In conclusion, the experimental results validate the effectiveness of our
data-driven ICS network simulation method for synthetic data generation. By replicating
both the temporal patterns and statistical characteristics of real-world ICS network data,
our approach provides a valuable resource for researchers in the field of ICS optimization,
security, and data-driven studies.

4.3. Computational Complexity Analysis

In this section, we provide a detailed analysis of the computational complexity of our
proposed simulation architecture, which involves recreating the entire ICS environment in
software and autonomously generating control logic from existing data.

4.3.1. ICS Environment Recreation

The computational complexity of simulating the ICS environment predominantly lies
in the virtualization of containers and the establishment of communication protocols to
mimic real-world scenarios. The use of virtualized containers ensures the absence of physi-
cal hardware, but it introduces computational overhead. Specifically, the computational
demands can be broken down into the following components:

• Virtualized container operations: The creation, maintenance, and communication be-
tween virtualized containers introduce overhead, and the scalability of the simulation
relies on the efficiency of these operations. Analyzing the time complexity of container-
related tasks is crucial for understanding how the computational demands grow with
the size and complexity of the simulated ICS environment.

• Communication protocol overheads: Simulating the Modbus/TCP protocol for intercon-
tainer communication adds another layer of complexity. Understanding the computa-
tional demands of encoding, transmitting, and decoding messages within the simu-
lated environment provides insights into the scalability and efficiency of our approach.

4.3.2. Autonomous Control Logic Generation

The computational complexity of autonomously generating control logic from existing
data involves various stages, each contributing to the overall demands of the approach,
as follows:

• Abductive inference: The correlation analysis between input and output signals and
subsequent application of linear regression introduce computational complexities.
The time complexity of abductive inference relies on the size of the dataset and the
efficiency of linear regression algorithms.

• Hidden Markov model learning: The Baum–Welch algorithm used for learning the pa-
rameters of the hidden Markov model (HMM) contributes to computational demands.
Analyzing the time complexity of the Baum–Welch algorithm provides insights into
the efficiency of our setpoint generation approach.

• Reflection on computational efficiency: While our proposed approach offers a compre-
hensive simulation architecture for ICS environments, it is essential to acknowledge
the computational demands associated with the virtualization of containers, com-
munication protocol simulation, and autonomous generation of control logic. The
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scalability of our approach depends on the efficiency of container management, com-
munication protocol emulation, and algorithms employed for abductive inference and
HMM learning.

Efforts to optimize these computational aspects, potentially through parallelization,
algorithmic enhancements, or leveraging hardware acceleration, could further improve the
efficiency of our simulation architecture. Additionally, considering the potential compu-
tational overhead in large-scale scenarios is crucial for practical applications and system
integration.

In conclusion, a nuanced understanding of the computational complexity associated
with our proposed approach provides valuable insights into its scalability and efficiency.
Ongoing efforts to optimize these computational aspects will contribute to the practicality
and applicability of our simulation architecture in real-world ICS scenarios.

5. Conclusions

In conclusion, this paper presented a novel data-driven method for generating realistic
synthetic data for industrial control system (ICS) networks. This approach eliminates the
need for expensive hardware by simulating the entire ICS environment using software. We
replicated the control logic of PLCs based on existing data and employed stochastic setpoint
generation to introduce natural variability into the collected data. This simulated envi-
ronment, built on virtualized containers, mimics the behavior of real ICS components like
PLCs and SCADA systems, ensuring the generated data’s fidelity to real-world scenarios.

Our experiments validated the effectiveness of our approach, demonstrating the
generated data’s close resemblance to actual ICS network characteristics. Comparisons
with benchmark datasets confirmed the similarity in key statistical properties, such as mean
and variance. This success paves the way for utilizing our synthetic data in various kinds
of data-driven ICS research studies, including optimization and security studies.

Our work offers a valuable solution to the challenges of cost, hardware, and control
logic complexity in ICS data generation. This software-based method empowers researchers
to access diverse and realistic datasets, ultimately contributing to advancements in ICS
research and improved system optimization and security.

6. Discussion and Future Work

In this section, we delve into the limitations of our current study and propose po-
tential avenues for future research to enhance the understanding and applicability of our
simulation architecture.

6.1. Limitations

While our simulation architecture presents a novel approach to reproducing ICS envi-
ronments and generating synthetic datasets, several limitations should be acknowledged:

• Lack of real-world control logic: The inability to access the actual control logic from the
PLCs in datasets like SWaT or HAI poses a significant challenge. Our abductive infer-
ence method relies on correlations between input and output signals, and although
effective, it may not capture the intricate details of the original control logic. Future
research could explore methods to directly obtain or approximate the control logic to
improve the fidelity of the simulated environment.

• Assumed linearity in control logic inference: Our current approach employs simple linear
regression for control logic inference, assuming a linear relationship between input
and output signals. This assumption may not hold in all scenarios, particularly
when dealing with complex control systems. Future work could investigate more
sophisticated machine learning models to capture nonlinear relationships and enhance
the accuracy of control logic replication.

• Stochastic setpoint generation complexity: While our stochastic setpoint generation using
hidden Markov models (HMMs) is effective, the chosen model might oversimplify
the complexity of real-world systems. Future research could explore alternative
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probabilistic modeling approaches, such as Bayesian networks or recurrent neural
networks, to better capture the dynamic nature of setpoints in ICS environments.

• Limited validation metrics: Our evaluation of the simulated ICS environment primarily
relies on qualitative comparisons and synthetic dataset generation. Introducing quan-
titative metrics and validation methodologies, such as comparing statistical properties
of the simulated and real datasets, would strengthen the reliability of our simulation
architecture.

6.2. Future Research Directions

Building upon the identified limitations, several promising directions for future re-
search emerge:

• Enhanced control logic inference: Investigate methods to enhance the fidelity of control
logic inference, potentially exploring machine learning techniques that can generalize
complex relationships from limited data. Access to more comprehensive datasets with
detailed control logic information would be invaluable for improving the accuracy of
control logic replication.

• Advanced probabilistic setpoint modeling: Explore advanced probabilistic modeling tech-
niques beyond HMMs for setpoint generation. Bayesian methods or deep learning
approaches could offer more nuanced representations of the temporal characteristics
of ICS setpoints, allowing for a more realistic simulation.

• Dynamic adjustment of simulation parameters: Develop mechanisms for dynamically
adjusting simulation parameters based on the evolving nature of ICS environments.
Incorporating adaptive learning algorithms could enable the simulation architecture
to continuously improve its accuracy and adapt to changes in control logic or setpoint
patterns.

• Security and anomaly injection: Integrate security-related features into the simulation
architecture, allowing researchers and practitioners to test the resilience of ICS systems
against cyberthreats. Additionally, explore methods to inject realistic anomalies into
the simulated environment to evaluate the robustness of detection mechanisms.

• Collaborative simulation frameworks: Investigate the development of collaborative sim-
ulation frameworks that allow multiple entities to contribute to the creation and
improvement of simulated ICS environments. This collaborative approach could lead
to more diverse and representative datasets, benefiting the entire research community.
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Abbreviations
The following abbreviations are used in this manuscript:

ICS Industrial control system
SCADA Supervisory control and data acquisition
DCS Distributed control system
PLC Programmable logic controller
HMI Human–machine interface
GAN Generative adversarial network
VAE Variational autoencoder
PAR Periodic autoregressive
PMU Phasor measurement unit
HMM Hidden Markov model
BGAN Boundary-seeking GAN
ST Structured text
LSM Least square method
AR Autoregressive
MA Moving average
ARIMA Autoregressive integrated moving average
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