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Abstract: The future generation of mobile networks envision Artificial Intelligence (AI) and the
Internet of Things (IoT) as key enabling technologies that will foster the emergence of sophisticated
use cases, with the industrial sector being one to benefit the most. This survey reviews related works
in this field, with a particular focus on the specific role of network softwarization. Furthermore, the
survey delves into their context and trends, categorizing works into several types and comparing
them based on their contribution to the advancement of the state of the art. Since our analysis
yields a lack of integrated practical implementations and a potential desynchronization with current
standards, we finalize our study with a summary of challenges and future research ideas.

Keywords: IIoT; AI; ML; softwarized networks; 5G networks; B5G; 6G networks

1. Introduction

The concept of Beyond 5G (B5G), alongside the sixth generation of cellular networks
(6G), centers on the recognition of Internet of Things (IoT) and Artificial Intelligence (AI) as
fundamental technologies, as asserted by Letaief et al. [1]. The broad interlinking of devices
at the network periphery, as underscored by Kong et al. [2], is anticipated to amplify the
overall intelligence of the network. Consequently, a seamless amalgamation of computing
and networking components will ensue, giving rise to a continuum termed edge-to-cloud,
cloud-to-thing, or simply, the cloud continuum, delineated by Gkonis et al. [3].

Among the vertical sectors involved in future 6G networks, the industrial-smart
factory sector is driving many of the diverse key use cases [4–6], bolstered by forums like 5G
Alliance for Connected Industries and Automation (5G-ACIA) [7]. The progression within
the industrial sector, particularly in Industry 4.0 and beyond, holds significant promise.
Precision plays a pivotal role in industrial processes, influenced by factors such as safety
requirements, while communication reliability becomes paramount, particularly given
the obstacles posed by substantial metal components. The incorporation of AI-enabled
Industrial IoT (IIoT) emerges as a potential enhancement in this context, as examined by
Cabrini et al. [8].

However, despite the potential benefits, these IIoT networks feature a plethora of het-
erogeneous IoT elements, posing challenges for automation. Moreover, the establishment of
standards and practical implementation in such environments still lacks specificity. Many
current research endeavors heavily rely on conceptual scenarios and simulations, often
lacking adequate empirical validation for their proposed solutions [9]. In this scenario,
Software-Defined Networking (SDN) coupled with Network Function Virtualization (NFV),
and together with cloudification and distributed computing [10], have emerged as crucial
enabling technologies of softwarized networking, poised to streamline that variety of
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devices, especially within IIoT environments, facilitating a holistic integration of AI and
Machine Learning (ML) in data-centric network deployments.

Therefore, this survey reviews works related to Industry 4.0 and beyond, focusing
on the integration of AI and IIoT, leveraging softwarization technologies (SDN, NFV, and
edge and cloud computing), towards the implementation of emerging communication
standards like 6G. By incorporating insights from these studies, our analysis gains a deeper
understanding of current trends, challenges, and opportunities in these fields, which will
be outlined at the end of our survey.

More specifically, Section 2 summarizes basic definitions, reviews similar surveys, and
highlights our contributions. Afterward, in Section 3, we detail the methodology followed
to look for related works and illustrate their trends to have a chronological overview of
their importance. The survey is implemented in Section 4, in which works are categorized
using the classification studied in the previous section. Finally, in Section 5, we discuss
trends from our survey and future challenges, and we draw conclusions in Section 6.

2. Definitions, Related Work, and Contribution of this Survey
2.1. Introduction

To highlight the contributions of our survey, we first provide short fundamental
definitions of technologies, which serve as a subsequent point of reference in our survey.
Afterward, we offer a succinct overview of pertinent surveys and reviews, beginning with
the most generalized and earliest and progressing towards the latest and more tailored to
the field of this article.

For that overview, all works are condensed in Tables 1 and 2, organized according to
the following parameters and sorted by publication year:

• Article: Authors and reference.
• Year: Publication year.
• Venue: Venue type in which the work was published (conference, journal, book, etc.),

as well as quality indicators associated with the year of publication, if applicable (e.g.,
Journal Impact Factor (JIF) from Clarivate’s Journal Citation Reports (JCR) or Scimago
Journal & Country Rank (SJR)).

• Description: Concise overview of the contributions of the research work.
• Relevance: Overall relevance to the topic studied in our survey, considering the

percentage covered for AI, IIoT, and network softwarization, as well as its comprehen-
siveness (from 0 to 3 stars, being 3 the highest score).

Table 1. Summary of related surveys and reviews (1/2).

Article Year Venue Description Relevance

Rajnai et al. [11] 2017 Conference Industry 4.0 and implications of AI

Ehrlich et al. [12] 2018 Conference SDN as a key enabler in Industry 4.0

Patel et al. [13] 2018 Journal (JIF Q1/SJR Q1) AI for smart manufacturing

King et al. [14] 2019 Conference Experts opinions on AI for industry

Niewiadomski et al. [15] 2019 Conference AI maturity of IT tools

Peres et al. [16] 2020 Journal (JIF Q2/SJR Q1) AI for Industry 4.0

Yang et al. [17] 2020 Journal (JIF Q2/SJR Q1) SDN + AI for smart manufacturing

Smyth et al. [18] 2021 Conference AI for supply chain industry

Fornasiero et al. [19] 2021 Conference AI and big data for process industry

Yangüez et al. [20] 2021 Book AI for Industry 4.0 in Latin America

Babu et al. [21] 2021 Journal AI for Industry 4.0

Dphil et al. [22] 2021 Conference AI for Industry 4.0 + capability maturity model

Wan et al. [23] 2021 Journal (JIF Q1/SJR Q1) AI for customised manufacturing
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Table 1. Cont.

Article Year Venue Description Relevance

Bousdekis et al. [24] 2021 Journal (JIF Q2/SJR Q1) AI and big data for Industry 4.0

Huang et al. [25] 2021 Journal (JIF Q2/SJR Q1) AI for DT implementation in Industry 4.0

Fraga-Lamas et al. [26] 2021 Journal (JIF Q2/SJR Q1) AI for green IoT in Industry 5.0

Urrea et al. [27] 2021 Journal (JIF Q2/SJR Q1) SDN for IIoT

Mahmood et al. [28] 2022 Journal (JIF Q2/SJR Q1) AI/ML algorithms for 6G applications

Quadir et al. [29] 2022 Journal (JIF Q2/SJR Q2) AI for quality prediction in Industry 4.0

Tambare et al. [30] 2022 Journal (JIF Q2/SJR Q1) AI for quality management in Industry 4.0

Terziyan et al. [31] 2022 Conference Explainable AI for Industry 4.0

Regona et al. [32] 2022 Journal (SJR Q1) AI for construction industry

Emaminejad et al. [33] 2022 Journal (JIF Q1/SJR Q1) Trust in AI for AEC industry

Table 2. Summary of related surveys and reviews (2/2).

Article Year Venue Description Relevance

Beshley et al. [34] 2022 Conference Enabling technologies for digital transformation

Yin et al. [35] 2023 Journal (JIF Q1/SJR Q1) AR-assisted DT in industry

Nabizadeh et al. [36] 2023 Journal (SJR Q1) Human-centered AI for AEC industry

Luley et al. [37] 2023 Conference Effect of data-centric AI in industry for SMEs

Rane et al. [38] 2023 Open archive ChatGPT for human-machine communication
improvement in AI-based industry

El-Brawany et al. [39] 2023 Journal (JIF Q1/SJR Q1) AI for prognostics in Industry 5.0

Ghildiyal et al. [40] 2023 Journal (JIF Q1/SJR Q1) 6G-based Industry 4.0 and 5.0

Chi et al. [41] 2023 Journal (JIF Q1/SJR Q1) SDN + AI for 6G-based Industry 5.0

Jiang et al. [42] 2023 Journal (JIF Q1/SJR Q1) AI-enabled SDN technologies to improve the security
and functionality of IIoT

Agrawal et al. [43] 2024 Conference DL techniques for Industry 4.0

Walia et al. [44] 2024 Journal (JIF Q1/SJR Q1) AI-empowered fog/edge resource management for IoT

Rezaee et al. [45] 2024 Journal (JIF Q2/SJR Q1) AI and SDN for fog offloading and task management

Alanhdi et al. [46] 2024 Journal (JIF Q2/SJR Q1) AI and blockchain for edge-computing environments

Finally, after the basic definitions and analysis of related works (that is, related sur-
veys), we summarize the key contributions of our survey, which will serve as a departing
point for the actual survey, performed in Section 4.

2.2. Technology Definitions

Before delving into the analysis of related works and presenting our survey, this
subsection briefly defines key technologies for the three topics involved in it: AI/ML, IIoT,
and network softwarization:

• AI refers to the simulation of human intelligence processes by machines, particularly
computer systems. These processes include learning (the acquisition of information
and rules for using the information), reasoning (using rules to reach approximate or
definite conclusions), and self-correction.

• ML is a subset of AI that enables computer systems to learn from data patterns and
make decisions without being explicitly programmed. ML algorithms use statistical
techniques to allow computers to improve their performance on a specific task as they
are exposed to more data over time.

• IoT refers to the network of interconnected devices embedded with sensors, software,
and other technologies that enable them to collect and exchange data over the Internet.
IoT devices span various sectors, including consumer electronics, healthcare, trans-
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portation, and smart homes, and enable remote monitoring, automation, and control
of physical objects.

• IIoT is a subset of the broader IoT ecosystem focused on connecting industrial devices
and machinery to improve efficiency, productivity, and safety in sectors such as
manufacturing, energy, agriculture, and logistics. IIoT applications include predictive
maintenance, asset tracking, supply chain optimization, and remote monitoring of
industrial processes.

• SDN is an approach to networking that abstracts the control plane from the data plane,
allowing network administrators to dynamically adjust network configuration via
software applications. SDN separates the network’s control logic from the underlying
routers and switches, enabling centralized management and programmability of
network resources.

• NFV is a network architecture concept that involves decoupling network functions,
such as firewalls, load balancers, and intrusion detection systems, from proprietary
hardware appliances and running them as software on virtual machines or containers.
NFV aims to increase network agility, scalability, and cost-effectiveness by leveraging
standard IT virtualization techniques.

• Edge Computing is a distributed computing paradigm that brings computation and
data storage closer to the source of data generation, i.e., the “edge” of the network. By
processing data locally, near the devices or sensors that produce it, edge computing
reduces latency, bandwidth usage, and reliance on centralized data centers. This
enables real-time processing and analysis of data, making it ideal for applications
requiring low latency or offline operation.

• Multi-access Edge Computing (MEC) is an edge-computing architecture from the
fifth generation of mobile technologies (5G), B5G and 6G that brings computation and
data storage closer to the network edge, typically within the Radio Access Network
(RAN) or Central Office (CO). By processing data locally rather than in centralized
data centers, MEC reduces latency, enhances real-time application performance, and
enables new use cases for mobile and IoT applications.

2.3. Analysis of Related Works

In our examination of the current state of the art, one of the earliest works, by Rajnai
et al. [11], offers initial insights into Industry 4.0, the impacts of AI, and employment effects.
Meanwhile, Ehrlich et al. [12] present one of the pioneering surveys to highlight SDN as a
crucial facilitator for future industrial network management. Similarly, Patel et al. [13] are
among the first to present use cases demonstrating the integration of AI and data for smart
manufacturing.

Following in time, in the realm of AI and generally in industry, King et al. [14] inves-
tigate expert perspectives on AI’s application in industry, while Niewiadomski et al. [15]
augment these insights by analyzing the maturity of IT tools within the AI domain. Ad-
ditionally, Smyth et al. [18] conduct a comprehensive review of AI utilization within the
supply chain sector. Fornasiero et al. [19] provide a concise overview of AI and big data ap-
plications within the process industry, encompassing sectors such as cement, chemicals, and
steel production. In a related domain, Regona et al. [32] conduct a survey on AI’s utilization
within the construction industry. Furthermore, Emaminejad et al. [33] evaluate trust levels
in AI implementation within the Architecture, Engineering & Construction (AEC) industry.
Similarly, Nabizadeh et al. [36] delve into this area, with a focus on human-centered AI
applications within the AEC industry.

Focusing more specifically on Industry 4.0 and beyond, Yangüez et al. [20] conduct
an analysis of AI utilization specifically within the Latin American region. Highlighting
a potential challenge, Luley et al. [37] suggest that Small and Medium-sized Enterprises
(SMEs) may face limitations in data collection, which could impact the implementation
of AI-driven architectures for their industrial operations. Exploring diverse applications,
Babu et al. [21] explore various potential uses of AI within the context of Industry 4.0,
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including the integration of chatbots. Another example of applications in industry is the
use of Augmented Reality (AR)-assisted Digital Twins (DTs) surveyed by Yin et al. [35],
which also includes the potential use of AI. Examining maturity models, Dphil et al. [22]
delve into the application of AI for Industry 4.0, proposing a capability maturity level
model. In the context of quality management, Quadir et al. [29] review AI techniques for
quality prediction within the framework of Industry 4.0. Tambare et al. [30] investigate the
advantages of a data-driven approach to Industry 4.0, leveraging technologies such as AI,
IoT, and edge computing for enhanced quality management. Terziyan et al. [31] emphasize
the significance of explainable AI within the context of Industry 4.0. Rane et al. [38] propose
ChatGPT as a potential tool to enhance human-machine interaction within AI-driven
industries. Offering a broad perspective, Yang et al. [16] conduct a comprehensive review
of industrial AI systems, presenting both challenges and opportunities. They identify
five enabling technologies pertinent to the field: data, analytics, platform, operations,
and human-machine interaction. In a focused study, Wan et al. [23] deliver an extensive
overview of AI’s role in customized manufacturing, including the categorization of AI types
and presenting a case study of architectural design (AIaCM) for customized manufacturing.
Bousdekis et al. [24] conduct an analysis of AI and big data applications within Industry 4.0,
accompanied by a case study focusing on the steel industry. Shifting the focus to future
industrial paradigms, El-Brawany et al. [39] review the utilization of AI for prognostics in
Industry 5.0, aiming to anticipate potential failures and maintenance needs. Meanwhile,
Huang et al. [25] undertake a comprehensive survey of AI-driven implementation in Digital
Twins within the context of Industry 4.0. In relation to sustainability, Fraga-Lamas et al. [26]
argue that while edge AI has the potential to enhance sustainability in Industry 5.0, its
current impact is limited. They provide various insights and propose future research
directions to realize green IIoT environments.

Including softwarized networks or SDN in industry, while fewer surveys are available,
Urrea et al. [27] investigate the application of SDN for IIoT, including an analysis of poten-
tial SDN controllers, or Raspberry Pi (Raspberry Pi (RPi)) as an IIoT platform. Additionally,
Beshley et al. [34] identify key enabling technologies for digital transformation, listing IoT
and SDN separately and highlighting the industrial sector as a potential beneficiary of
these technologies.

Finally, in the intersection of AI and softwarized networks (like 5G and 6G) within the
IIoT domain, Yang et al. [17] explore the advantages of combining SDN with AI for smart
manufacturing in Industry 4.0. They propose an architectural design and discuss future
challenges and opportunities. Expanding the technological landscape, Ghildiyal et al. [40]
offer insights into the role of 6G communication in facilitating advancements in Industry 4.0
and beyond. Exploring applications, Mahmood et al. [28] review diverse AIML algorithms
for wireless networks, and specifically towards 6G, including the implementation of smart
facilities like IIoT. Similarly, Chi et al. [41] undertake a review of network automation
technologies for IIoT, encompassing AI and SDN, toward the realization of Industry 5.0
based on 6G infrastructure. Jiang et al. [42] highlight how AI-enabled SDN technologies
enhance the security and functionality of IIoT systems, contributing to a more robust
industrial ecosystem. Walia et al. [44] review the specific case of resource management
leveraging AI in fog and edge-computing environments, including IIoT. Rezaee et al. [45]
also review algorithms for fog offloading and task management leveraging AI, SDN, and
including IIoT as a use-case scenario. Finally, Alanhdi et al. [46] survey the integration of AI
and blockchain for edge-computing frameworks in different domains, including Industry
4.0 among them.

2.4. Contributions of Our Survey

From our analysis of related surveys, we observe that most of them only cover some
parts of the three topics of our survey (AI, IIoT, and network softwarization), hence partially
covering the scope of our survey, but not completely. Additionally, many of the surveys are
focused either on very specific case studies from industry or research ideas from academia
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and are not implemented in real testbeds. More specifically, we could state that the closest
works to our survey are Yang et al. [17], Chi et al. [41], and Jiang et al. [42]. However, the
first one strictly focuses on big data, the second does not consider network softwarization
(only IoT as the use case of 5G), and the third one is specific for security applications.

Accordingly, the main contributions of our survey are:

• To the best of our knowledge, it is the first survey that analyzes works integrating
AI and IoT (as envisioned by 6G) for the implementation of softwarized industrial
networks.

• We analyze and classify these works in diverse categories and according to related use
cases in 6G.

• We measure the contributions of each work in terms of feasibility in real environments
(considering the type of implementation and evaluation, as well as available open-
source code of their solutions).

• We compare all analyzed works with current architectures defined by Standards
Development Organizations (SDOs) and sketch future challenges and research trends.

3. Survey Methodology and Statistics

To conduct a comprehensive analysis of the current state of the art, we scrutinized
related works by leveraging diverse resources, including Google Scholar. Our focus was
primarily on articles published within the last decade, particularly those containing any of
the following keywords or combinations thereof, relevant to the emerging trends in smart
industrial networks: far/extreme edge, cloud continuum, IIoT, AI, AI industry, Industry 4.0 and
beyond, SDN industry and SDN–IoT.

Figure 1 depicts the trend of keywords in relation to our investigation, illustrating the
emergence of these keywords, particularly from 2020. We can also observe a clear growing
peak for the cloud continuum, a generally increasing trend for AI-related topics, and a
stable tendency for the rest, although far and extreme edge and SDN industry seem to be
declining, probably because the cloud continuum keyword has supplanted them.
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Figure 1. Trend of keywords in relation to AI-empowered softwarized IIoT networks since 2014.

It is crucial to emphasize that this trend only reflects the popularity of certain keywords
in research. Consequently, a decrease in the number of keywords may indicate the maturity
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of certain technologies, which have now been integrated into the industry ecosystem.
Consequently, associated research in these areas may decline. For instance, taking the case
of SDN, according to Gartner’s projections, the SD-WAN market surpassed $5 billion by the
end of 2023, with a market penetration of 60 percent, and anticipates a sustained expansion
of the market [47,48]. Therefore, even though SDN remains a foundational technology, it
might not be prominently featured in Figure 1.

Additionally, we have represented the distribution of citations among these articles
in Figure 2. It is divided into two subgraphs representing, from top to bottom, the total
number of citations in the category and the distribution of citations in each category. For
example, according to Figure 1, Industry 4.0 and beyond has been an established topic since
2020, so there are quite a few papers. This makes it the most cited category, with a total
of about 14,000 citations, as the top half of Figure 2 shows. In addition, focusing on the
bottom half of Figure 2, 12% of the papers have between 101 and 1000 citations, and 1%
have between 1001 and 10,000 citations, so there are relevant papers in this area that are
highly cited. Conversely, the field of cloud continuum, despite being the category with the
most indexed papers, has garnered fewer citations, possibly due to its significant growth in
recent years. This visualization underscores the influence of these publications, particularly
highlighting the importance of research in the realm of IIoT.
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Figure 2. Analysis of citations illustrating the total number of citations by category (top) and articles
with a certain amount (range) of citations, classified per keyword (bottom).

As a third step, we have compiled all the words from the titles of the analyzed articles
and generated a word cloud, as illustrated in Figure 3. This word cloud represents the
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most frequently repeated words in the titles of the articles referenced with the previous
keywords, with industry emerging as the most common term. Additionally, the word
cloud reveals additional keywords related to our analysis, including security, sustainability,
blockchain, manufacturing, management, energy, adoption and architecture.
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Figure 3. Word cloud created with the titles of analyzed works.

Finally, based on the previous examination, we categorized all works in diverse
prevalent topics, namely reconfiguration (which encompasses all works in relation to
network management and control flexibility), energy, Time-Sensitive Networking (TSN),
DT, Cyber-Physical System (CPS), security, data and information management, whose
trends are illustrated in Figure 4 (steadily increasing since 2017, with a small decrease
in 2023 and 2024, probably of works still to be published). We organized our survey
into these seven categories, with one section dedicated to each of them. Within these
sections, we selected the most relevant works from the indexed papers for our analysis
(those that covered the three topics: AI, IIoT, and network softwarization), which are the
papers analyzed in our survey. In addition, we included two sections on case studies and
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PhD/MSc theses, bringing the total number of sections to nine. These are described in
detail in the following section.
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Figure 4. Trend of categories as classified in our analysis.

4. A Survey on AI-Empowered Softwarized IIoT

In the ensuing sections, we examine various interconnected research articles, classified
into the following categories (as defined in Section 3): reconfiguration solutions (network
management and control flexibility, as a key feature of softwarized networks), energy-
related solutions, TSN-related solutions, DT-related solutions, human-related and CPSs,
security-related solutions, and data-related solutions (Certain works encompass multiple
categories; hence, we have categorized them according to the primary field they address.).
Additionally, at the end of this section, we highlight relevant case studies and PhD/MSc
theses pertaining to the topic addressed in this survey.

For each of these sections, all works are encapsulated in an initial table akin to the one
for surveys and reviews, featuring the following parameters:

• Article: Authors and reference.
• Year: Publication year.
• Description: Concise overview of the contributions of the research work.
• Evaluation and Tools: Noteworthy facets of the evaluation and tools utilized in the

solution/proposal.
• Contribution: Overall contribution to the state of the art, considering diverse parame-

ters such as quality of evaluation or implementation feasibility (from 0 to 3 stars, being
3 the highest score).

Regarding the last parameter (Contribution), it was calculated based on the following
criteria (with a minimum of 0.5 stars and a maximum of 3 stars even if surpassed):

• Implementation type (i.e., to what extent the proposal had a practical design for
industry or not):

– 0.5 stars—Analytical study.
– 1.0 stars—Simulation.
– 1.5 stars—Emulation.
– 2.0 stars—Practical/real environment.
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• Additional parameters:

– Two or more of the previous implementation steps have been developed (for
example, simulation and real environment to demonstrate coherence in results).

– +0.5 stars—The proposal is compared with other works.
– +0.5 stars—The evaluation is thorough and tests various scenarios and/or an

adequate number of repetitions are performed.
– +0.5 stars—The proposal has the code of the implementation published openly

and accessible.
– +0.5 stars—Any other remarkable aspect in comparison with works of the same

category.

4.1. Reconfiguration, Network Management and Control Flexibility

This subsection begins with an analysis of proposals based on SDN, moves on to
those rooted in AI, and culminates with an exploration of how these two technologies are
integrated into comprehensive end-to-end reconfiguration solutions. In addition, we have
compiled and summarized all related work in Tables 3 and 4 for easy reference.

Table 3. Summary of related works about reconfiguration (1/2).

Article Year Description Evaluation and Tools Contribution

Li et al. [49] 2018 Enhanced IIoT data transmission through
adaptive strategies utilizing SDN and EC

Simulation. Matlab.
100˜200-node topologies

Govindaraj et al. [50] 2018 SDN and edge computing for IIoT surveillance
and technical support Theoretical design

Bedhief et al. [51] 2019 Self-adaptive fog computing architecture using
SDN for IIoT and Industry 4.0

Emulation. ONOS + Mininet
(BOFUSS)

Bonada et al. [52] 2020 AI for improvement of equipment efficiency in
the manufacturing industry Theoretical study + Simulation

Mohamed et al. [53] 2020 ML for wireless communication
prediction/detection in industrial 5G/6G Simulation

Qu et al. [54] 2020 Blockchained federated learning framework for
Industry 4.0 Simulation

Zemrane et al. [55] 2020 Benefits of SDN for IIoT Theoretical study

Yang et al. [56] 2020 Cloud reference architecture for SDN-based edge
computing for Industry 4.0 Theoretical design

Reddy et al. [57] 2020 SDN solution for IoT in Industry 4.0
Real testbed. ONOS + RPi with
OpenWRT (OVS). ESP32
motes/sensors. Tree topology

Okwuibe et al. [58] 2020 Enhancement of SDN solution for IIoT using
containers

Real testbed. HP6600-24G, ODL
+ Mininet(OVS). Docker

Yang et al. [17] 2020 Smart edge-cloud infrastructure combining SDN
and AI Conceptual framework

Papagianni et al. [59] 2020 Smart edge-cloud infrastructure using AI/ML Proof of concept. Docker

Josbert et al. [60] 2021 Fast resilience mechanism based on SDN for
industrial networks

Emulation. OpenNet (ns-3) +
ODL + Mininet (OVS)

Josbert et al. [61] 2021 Follow-up to previous work Real testbed.

Focusing on SDN-based proposals, Li et al. [49] introduce an innovative approach to
address the growing demand for efficient data exchange in Industry 4.0 and IIoT environ-
ments. By leveraging SDN and edge computing, they propose a solution that categorizes
data streams into ordinary and emergent streams, each with tailored strategies to meet
varying latency requirements. In low-deadline scenarios, a coarse-grained transmission
path algorithm identifies paths within the hierarchical IoT infrastructure. This is followed
by selecting optimal routing paths based on factors such as time deadlines, traffic load
balancing, and energy consumption using the Path Difference Degree (PDD) metric. In
high-deadline situations, a fine-grained transmission scheme, including an adaptive power
method, is utilized to achieve low latency. Through simulation in MATLAB, the proposed
approach is validated, demonstrating superior performance compared to traditional meth-
ods across metrics such as average time delay, goodput, throughput, and download time.
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This research contributes significantly to the field by providing a promising solution for
effectively managing diverse data flows in IIoT networks, therefore reducing strain on
backbone infrastructure and facilitating the realization of efficient smart factory and In-
dustry 4.0 systems. Another example is Govindaraj et al. [50], who take advantage of the
flexibility of network management provided by SDN to investigate the feasibility of surveil-
lance and technical assistance systems for IIoT in combination with the edge-computing
paradigm for future factory automation systems. Unlike previous research focusing on
multimedia or automotive applications, this paper highlights the relevance of European
Commission (EC) and SDN in industrial settings, presenting two prominent industrial use
cases: proactive system surveillance and intelligent technical assistance. The paper outlines
challenges and suggests solutions for implementing these applications with EC and SDN,
while also pinpointing future research directions in factory automation. This includes em-
phasizing context-based information selection, dynamic resource allocation, and addressing
safety concerns.

Table 4. Summary of related works about reconfiguration (2/2).

Article Year Description Evaluation and Tools Contribution

Padhi et al. [62] 2021 6G IIoE framework Theoretical design

Wan et al. [23] 2021 Tailored production architecture design
utilizing artificial intelligence

Case study in a
candy-wrapping production
line

Rahman et al. [63] 2021 A SDN + NFV IIoT computing platform Emulation. >50 nodes

Mezair et al. [64] 2022 ML/DL for fault detection in 6G-enabled
Industry 4.0 Simulation

Aminabadi et al. [65] 2022 AI/ML for product quality in Industry 4.0 Simulation

Rojek et al. [66] 2022 AI/ML for product quality in Industry 4.0 Simulation. Matlab

Gong et al. [67] 2022 ML (DRL) for MEC in 6G-enabled IIoT
networks Simulation

Ji et al. [68] 2022 AI-driven orchestration of network slicing
using SDN/NFV in IIoT

Simulation (Matlab) and
Emulation (OSM, OpenStack,
Ryu and OVS)

Alam et al. [69] 2023 SDN-based reconfigurable edge network
architecture for IIoT

Real testbed. POX + OVS +
RPi + ESP8266. ˜10 nodes

Patel et al. [70] 2023 AI-based predictive maintenance in
Industry 4.0 Simulation. IBM Watson ML

Eichelberger
et al. [71] 2023 AI-based platform for edge-computing

applications in Industry 4.0 Real testbed. AXC F 3152

Mahmood et al. [72] 2023 AI-based framework for 6G IIoT networks Conceptual framework

Similarly, Yang et al. [56] also introduce a reference architecture for SDN-based edge
computing in Industry 4.0 environments, termed Software-Defined Cloud Manufactur-
ing (SDCM). Their work explores future industrial trends and incorporates software-
defined networking concepts to propose the SDCM model, emphasizing real-time response,
reconfiguration, and operations in manufacturing systems. The proposed reference architec-
ture comprises six layers: abstractions, gateways, Software-Defined Virtual Entities (SDVE),
software-defined network, manufacturing services, and manufacturing applications. SDN
enables flexible reconfiguration and effective scheduling of network resources to enhance
resource utilization and meet industrial demands. SDCM integrates emerging technologies
to drive innovation across R&D, design, production, logistics, and operations, facilitat-
ing a shift towards intelligent, productive, and sustainable industries. Future research
will focus on standardization, collaborative models, AI algorithms, and prototype system
implementation for SDCM. Bedhief et al. [51] also propose a self-adaptive SDN-based
architecture for IIoT and Industry 4.0 applications, but relying on a fog computing architec-
ture, instead of an edge computing. Their proposal aims to enhance operational efficiency
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and productivity in industrial settings by integrating SDN and fog computing. Unlike the
SDCM model, which emphasizes edge computing, this approach highlights the utilization
of fog computing to address similar industrial challenges. The paper offers a flexible and
scalable solution to meet the diverse requirements of IIoT applications, such as reliability,
scalability, and low latency. It presents deployment scenarios for dynamically managing
fog nodes and evaluates their performance in terms of latency and throughput through sim-
ulation. The results demonstrate the effectiveness of locally deployed fog nodes in reducing
latency. Furthermore, the paper outlines ongoing work to enhance the proposed frame-
work by incorporating AI and ML methodologies to increase autonomous management
intelligence and explores the possibility of replacing SDN equipment in fog nodes with
controller instances.

Additionally, Zemrane et al. [55] focus specifically on the benefits of SDN for the IIoT.
It delves into the realm of smart cities, emphasizing the evolution of various sectors and
the interconnectedness of IoT ecosystems. Focusing particularly on the latest iteration of
industry, IoT Smart Factories Ecosystems. The paper highlights the pivotal role of digitaliza-
tion in industrial processes, facilitated by sensor data collection, network communication,
and actuator-driven responses, culminating in the production of smart products. By in-
tegrating Software-Defined Technology, the authors propose a novel architecture termed
the Software-Defined Internet of Thing Smart Factories Ecosystem, aiming to enhance
communication, reduce network resource consumption, and optimize energy usage in
data centers. Reddy et al. [57] also take advantage of the benefits offered by SDN to solve
specific challenges in IoT networks, such as handling critical traffic. Their work discusses
the configuration of devices in the network to establish appropriate topology and routing
tables within the SDN controller. Additionally, the chapter outlines the process of integrat-
ing various sensors into motes to collect information, store it in the cloud, or feed it into a
feedback system for environmental regulation. By separating the control plane from the
data plane in the border router using OpenWRT and employing SDN with tools like Open
Network Operating System (ONOS) and Open vSwitch (OVS), the authors aim to reduce
latency for critical traffic. In contrast to the previous work, the authors have implemented a
testbed architecture to demonstrate the efficacy of their solution, showing reduced latency
for critical traffic compared to traditional methods. However, the proof of concept does not
incorporate any AI-related aspects. The chapter concludes by highlighting the importance
of SDN technology in efficiently routing critical traffic in IoT networks and outlines future
directions for enhancing security and implementing algorithms in the SDN controller.

Setting aside solutions primarily tailored for IoT-exclusive networks, Okwuibe et al. [58]
provide an architecture that combines SDN, MEC, and container orchestration technologies
within the domain of IIoT applications. By developing a practical testbed framework,
the authors delve into the intricacies of reactive MEC service migration facilitated by
Kubernetes, a container orchestration platform, to manage a video streaming application.
They conduct real-time assessments of latency, jitter, and service disruptions, providing
empirical evidence of the system’s performance. Moreover, in contrast to prior studies, the
authors have publicly released the source code on Github [73]. Their investigation not only
underscores the operational benefits of integrating SDN, MEC, and container orchestration
but also sheds light on the energy trade-offs associated with containerization. Notably, the
authors envision future enhancements, including the implementation of preemptive MEC
application migration models driven by ML algorithms. Additionally, they discuss the
potential integration of visual AI applications to augment industrial control and automation
systems, therefore emphasizing the practicality and scalability of their proposed solution,
substantiated by a real testbed environment. This comprehensive examination not only
contributes to the theoretical understanding of IIoT frameworks but also provides valuable
insights for the development of robust and efficient industrial applications in the future.

Josbert et al. [60,61] focus on resilience for Software-Defined Industrial Networks
(SDIN), introducing a novel approach based on Mixed Fast Resilience (MFR) to address
the challenge of balancing restoration and protection mechanisms in network failure re-
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covery scenarios. This method optimizes recovery time and end-to-end latency without
compromising network performance under normal conditions. The architecture of SDIN
resilience consists of an infrastructure layer encompassing gateways, field devices, and
industrial backhaul networks, a control layer with dual controllers for managing switches
and routing policies, and an application layer housing resilience and industrial applications.
Through a simulated testbed using Mininet and OpenDaylight (ODL), they evaluate the
MFR method’s effectiveness, demonstrating significant improvements in failure recovery
time, packet loss, and end-to-end latency. Notably, in the extended work, they conduct a
real testbed utilizing Raspberry Pi gateways for IIoT sensors, ODL as the controller, and
Mininet for backhaul emulation, emphasizing the practical applicability of their proposed
solution in industrial settings. Precisely, Alam et al. [69] also focus on reconfiguration
techniques in IIoT networks by providing programmable edge network architecture. They
emphasize the need for dynamic service provisioning at resource-constrained edge devices,
and their solution provides an architecture that includes programmable layers for reconfig-
uring sensor/actuator networks and application services, with the lower layer handling
communication parameters, a middle layer featuring an SDN controller for dynamic pro-
gramming, and a top layer implementing a priority forwarding mechanism for SDN core
communication. In contrast to the approach by Josbert et al., Alam et al.’s work introduces
a focus on dynamic service provisioning and reconfiguration at the edge, highlighting
the programmability of their architecture to adapt to changing network conditions. The
contributions include a reconfigurable edge architecture, a Quality of Service (QoS)-aware
data forwarding mechanism, and a task programming approach to mitigate latency issues
during offloading. Performance evaluation through simulations and a testbed demonstrates
significant improvements in actuation latency and energy efficiency compared to existing
solutions, validating the effectiveness of the proposed architecture. The experimental
testbed setup replicates an industrial automation scenario involving motion and ultrasonic
sensors, demonstrating real-world applicability. Concluding remarks emphasize the ar-
chitecture’s suitability for various applications involving sensor and actuator operations
and outline future directions, including fault handling and learning-based techniques for
QoS-aware decision-making.

Regarding AI-based solutions, Bonada et al. [52] discuss the application of AI and ML
solutions to enhance industrial process monitoring and optimization within the framework
of Industry 4.0. They highlight Industry 4.0’s data-driven nature enabled by CPS, hybrid
Internet of Things architectures, and big data analytics, emphasizing their competitive
advantages in productivity, quality, and efficiency. Specifically, the focus is on Overall Equip-
ment Efficiency (OEE) as a Key Performance Indicator (KPI) in manufacturing, considering
its three components: availability, quality, and performance. The paper explores various AI
and ML solutions that can significantly impact OEE, illustrating their effectiveness through
real use cases and research project results. Conclusively, the authors underscore the impor-
tance of leveraging available process data to enhance predictive capabilities and provide
insights for process improvement, with a particular emphasis on predictive maintenance,
virtual sensor solutions, predictive quality algorithms, and case-based reasoning for cycle
time optimization. They anticipate further advancements in OEE through emerging AI
trends and technologies, such as Reinforcement Learning (RL) approaches, Deep Learn-
ing (DL) for image processing, and collaborative human-AI systems, positioning them as
crucial for the progression towards Industry 5.0. In contrast, Mezair et al. [64] also utilize
the Industry 4.0 paradigm in terms of addressing the existing limitations in fault detection
algorithms for 6G-enabled industrial networks. They propose an advanced DL framework
for fault diagnosis, combining Long Short-Term Memory (LSTM), Convolutional Neural
Networks (CNN), and graph CNN to handle heterogeneous data formats, such as images,
videos, time series, and graphs, aiming to output accurate fault diagnoses using all avail-
able information. Additionally, they introduce a branch-and-bound optimization strategy
for hyperparameter tuning, intelligently exploring the hyperparameters space to enhance
efficiency. While both papers contribute to Industry 4.0 advancements, Mezair et al.’s



Electronics 2024, 13, 1979 14 of 33

work specifically addresses the need for more effective fault detection algorithms, offering
a comprehensive solution capable of outperforming state-of-the-art methods in terms
of detection rate, running time, and energy consumption. Moreover, their framework’s
ability to handle heterogeneous data with a single computational device presents a more
sustainable fault detection approach for 6G-enabled Industry 4.0 applications.

Continuing with the Industry 4.0 paradigm, Aminabadi et al. [65] introduce a novel
in-line and fully automated closed-loop process control system for the injection molding
process. The system, compliant with Industry 4.0 standards, integrates fully automated
in-line measurements, in-line data analysis, and an AI control system utilizing the Open
Platform Communications Unified Architecture (OPC UA) communication protocol. They
leverage DL models, including the ResNet-18 convolutional neural network, to evaluate
the surface quality of injection molded parts and predict quality features such as weight,
surface quality, and dimensional properties using data from various sensors. Through a
heuristic model predictive control method, the control system adjusts machine parameters
during production to ensure specified part quality features are met. Their experiments
demonstrate successful control of surface quality and linear dimensions, highlighting
the potential for further refinement and expansion into multi-objective process control in
future research. Similarly, Rojek et al. [66] also contribute to control systems but in the
context of medical devices. They integrate AI into the quality inspection process, increasing
efficiency and adaptability, aligning with the overarching goals of Industry 4.0. While
both studies underscore the transformative potential of AI/ML techniques in optimizing
manufacturing processes, Aminabadi et al.’s work specifically addresses closed-loop
process control in injection molding, providing a comprehensive solution for real-time
quality monitoring and control. In contrast, Rojek et al. focus on quality inspection in
medical device manufacturing, emphasizing the importance of integrating AI for efficient
and adaptable quality control processes. These studies collectively highlight the significance
of real-time monitoring, predictive analytics, and automated decision-making to ensure
product quality and operational excellence in the era of Industry 4.0.

Also, in the context of Industry 4.0 but focusing on maintenance tasks, Patel et al. [70]
present a scalable platform aimed at predictive maintenance solutions. Their proposed AI
software architecture stack facilitates the development of various AI applications, including
anomaly detection, failure pattern analysis, and asset health prediction, for many industrial
assets. In contrast to Aminabadi et al.’s work on closed-loop process control and Rojek
et al.’s focus on quality inspection, Patel et al. address the critical aspect of predictive
maintenance in Industry 4.0. Their platform offers a comprehensive solution for leveraging
AI techniques to predict asset failures and optimize maintenance schedules, contributing to
improved operational efficiency and reduced downtime. The AI Model Factory’s layered
architecture comprises bottom layers leveraging existing open-source libraries like MLFlow
and Ray for scalable model training, while the middle layers, including the Model Factory
runtime and core, contribute significantly to system development, through a demonstration
of an Asset Health Forecasting Application, which predicts the future health of assets using
historical data. The end user initiates the application by providing input data organized
in S3-compatible COS buckets or a local file system and application-specific parameters
like asset ID, timestamp, input feature, output target, and prediction window size. Once
executed, the end user can track the process’s progress and receive detailed reports on
project status, validation metrics, and more. Finally, the trained models can be deployed
to ML model server platforms, with current support for IBM Watson Machine Learning.
Patel et al.’s work addresses the growing demand for predictive maintenance solutions
in Industry 4.0, offering a scalable and adaptable platform that integrates seamlessly into
existing industrial infrastructures.

In terms of AI solutions applied to 5G environments and beyond, Mohamed et al. [53]
propose an interdisciplinary approach that integrates wireless sensor networks with ML-
enabled industrial plants to develop reasoning ability, termed as the sixth sense technology.
They focus precisely on fault detection and prediction in 5G wireless communications.
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The proposed system architecture comprises vertical-specific components overlaid by a
5G communication network, with modules including holistic system models, resilient net-
work communication, ML-based fault detection and prediction, adaptive decision-making
framework, and virtual reality visualization. While their work addresses fault detection
and prediction in 5G wireless communications, it does not specifically emphasize the inad-
equacies of existing 5G networks in facilitating Internet of Everything (IoE) applications
or the transition towards 6G wireless systems. In contrast, Padhi et al. [62] identify the
current inadequacies of 5G networks to facilitate IoE applications, prompting extensive
global research efforts toward the development of 6G wireless systems. With the advent
of the fifth industrial revolution, IoE is transitioning into increasingly complex Industrial
IoE (IIoE) projects, presenting new opportunities and challenges across industries. Through
an exhaustive literature review, the study presents a novel theoretical framework for the 6G-
enabled IIoE (hereafter referred to as 6GIIoE) system, identifying priority areas, challenges,
and relevant applications. A sequential methodology is employed to explore various
adaptive approaches, providing a solid foundation for future research in 6GIIoE system
development. Key contributions include the creation of a comprehensive theoretical frame-
work for the 6GIIoE system and the identification of future research directions in this field.
Although the study acknowledges some limitations, such as the lack of empirical testing
of the proposed theoretical model, it lays the groundwork for further investigation into
6GIIoE and its implications in industrial settings, thus advancing knowledge in the domain
of emerging wireless technologies and industrial applications. While Padhi et al.’s work
does not directly address fault detection and prediction in 5G wireless communications
like Mohamed et al., it fills the gap by providing a comprehensive theoretical framework
for the development and deployment of 6G-enabled IIoE systems, thus contributing to the
advancement of industrial wireless communication technologies.

With respect to the application of AI to new networking paradigms such as MEC,
Gong et al. [67] delve into the realm of intelligent MEC augmented with Deep Reinforce-
ment Learning (DRL) for the forthcoming era of 6G-enabled IIoT. They elucidate the
impending transition of 6G networks towards connected intelligence, particularly in the
context of IIoT encompassing sensors, controllers, and actuators. While their work focuses
on optimizing task scheduling and resource allocation for diverse applicationsthrough
MEC services integration, it does not explicitly address the evaluation of AI-based plat-
forms or the deployment of AI services on industrial edge devices. In contrast, Eichelberger
et al. [71] also work with edge-computing applications in an industrial context. They eval-
uate the performance of an AI-based platform, named IIP-Ecosphere, to facilitate flexible
AI deployment on industrial edge devices by employing a highly configurable low-code
approach. Through experiments conducted on an industrial demonstrator, the authors
evaluated the impact of deploying AI from a central server to the edge. While their work
focuses on assessing the performance of AI inference on industrial edge devices and the
integration of AI services into existing production environments, it does not specifically
delve into the optimization of task scheduling and resource allocation in MEC-enabled IIoT
systems. While both studies contribute to the advancement of edge-computing applica-
tions in industrial contexts, Gong et al.’s work focuses on optimizing task scheduling and
resource allocation through MEC integration, while Eichelberger et al. evaluate the perfor-
mance and integration of AI-based platforms on industrial edge devices, providing insights
into the deployment challenges and optimizations required for efficient AI execution in
industrial environments.

AI is also used in combination with new decentralized technologies, such as blockchain.
Qu et al. [54] introduce a novel blockchain-based Federated Learning (FL) framework,
termed D2C (Decentralized Paradigm for Big Data-Driven Cognitive Computing), tailored
for Industry 4.0 applications. The framework combines FL and blockchain technologies
to address challenges such as privacy concerns, data efficiency, and protection against
poisoning attacks. FL mitigates the issue of “data islands” by enabling privacy-preserving
and efficient processing, while blockchain ensures a decentralized and secure environment
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resistant to attacks. The integration of these technologies accelerates convergence, enhances
verification processes, and facilitates member selection. Evaluation results demonstrate
the effectiveness of the D2C platform in comparison to existing models, showcasing im-
provements in computational processing efficiency for intelligent manufacturing. Future
research aims to optimize performance metrics and develop a reward system to incen-
tivize the participation of public devices in the industry. A comprehensive overview of
the transformative role of DL in Industry 4.0 is provided in Agrawal et al. [43]. They
highlight the pivotal role of Industry 4.0 in transforming manufacturing by integrating
data acquisition, analysis, and modeling to create intelligent production ecosystems. DL,
as a critical component of AI, is instrumental in this transformation, facilitating real-time
monitoring, predictive maintenance, adaptable production, and enhanced customization.
The paper discusses various DL techniques, including Autoencoders, CNN, Recurrent
Neural Networks (RNNs), Generative Adversarial Network (GAN), and DRL, elucidating
their functions and applications in manufacturing domains such as predictive maintenance,
quality control, and resource optimization. Despite its transformative potential, imple-
menting DL in manufacturing poses challenges such as data quality and quantity, model
interpretability, computation demands, and scalability. To address these challenges, future
research directions include explainable AI, FL, edge computing, and collaborative robotics.
The integration of DL with Industry 4.0 is poised to revolutionize manufacturing practices,
fostering adaptive, efficient, and data-driven production ecosystems despite the challenges
posed by data quality, interpretability, and scalability. This paper complements Qu et al.’s
study by focusing on the utilization of DL techniques specifically in the manufacturing
domain, emphasizing its role in predictive maintenance, quality control, and resource
optimization, while the first paper addresses the integration of AI with decentralized tech-
nologies like FL and blockchain to tackle privacy concerns and enhance data efficiency in
Industry 4.0 applications.

Finally, the integration of SDN and AI for reconfiguration purposes has also been a
notable and interesting topic for analysis. Yang et al. [17] propose iCMfg, a novel edge-
cloud collaborative architecture for Industry 4.0 manufacturing, which combines AI and
SDN. The architecture can autonomously ingest real-time data in a plug-and-play manner
and make intelligent decisions. It also provides real-time control panels to quickly monitor
the quality of operations and resource consumption, providing a collaborative edge-cloud
infrastructure that is adaptable to different processing speeds and workloads. However,
it only proposes the idea without providing any test or proof of concept. In addition,
some challenges need to be addressed prior to its development, such as the definition of
standards to enable inter-machine or inter-factory communication and other open issues,
such as security risks that will arise due to the flexibility and openness of the proposal.
While Yang et al.’s work focused more on proposing an architecture in the edge-cloud,
the following work focuses more on 5G networks. Papagianni et al. [59] highlight the
potential of 5G networks, which uses SDN, to drive new vertical industry-led applications
through the 5Growth project. Their architecture employs AI using a closed-loop ML to
improve the monitoring services and the orchestration mechanisms. They provide the
theoretical design of the architecture and perform a proof-of-concept test by virtualizing
the architecture monitoring module with Docker. Wan et al. [23] also present their own
AI-driven smart factory architecture, AIaCM, which integrates intelligent devices with
a flexible manufacturing line to enhance the global manufacturing process. It focuses
on the role of AI as a key enabling technology for smart factories that accelerate the
manufacturing process in production lines through dynamic reconfiguration and self-
organizing scheduling, which, in conjunction with cloud/edge-computing paradigms,
provides a potential solution for customized manufacturing. They present a theoretical
case study of their AIaCM framework, a candy-wrapping production line. They propose
the use of smart devices and an industrial communication network to enable the remote
operation and control of the production line. Through the cloud computing paradigm,
customers can interact with the production line and modify the production according
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to the customers’ preferences. In addition, big data using AI is provided for preventive
maintenance, improving the overall operation of the factory.

Some proposals offer more realistic and less theoretical architectures, such as
Rahman et al. [63], which introduces EdgeSDN-I4COVID, a framework architecture de-
signed to enhance the management of IIoT networks in the context of Industry 4.0, particu-
larly during the COVID-19 pandemic. The architecture leverages SDN and NFV to ensure
efficient control of IoT sensor data, with the goal of facilitating contactless operations and
maintaining uninterrupted industrial ecosystems. Furthermore, they envision the possi-
bility of AI or ML techniques. They emulate a scenario with the Mininet-Wi-Fi software
in topologies composed of more than 45 nodes and measure throughput, response times,
and packet loss rates, comparing them with traditional models. Also, Ji et al. [68] presents
an SDN/NFV framework for dynamic, AI-enabled network slicing orchestration aimed at
minimizing deployment costs while ensuring efficient operation in the IIoT. The role of
SDN and NFV in achieving centralized optimization and configuration of network param-
eters is critical to address the latency and network scale requirements, which, combined
with the network slicing system, represents a significant advancement for smart factories
in the IIoT paradigm. The study confirms the effectiveness of the proposed network slicing
algorithms in the context of IIoT by simulating their network slicing orchestration paradigm
in Matlab. They also emulate an intelligent manufacturing testbed using Open-Source
MANO (OSM), OpenStak, Ryu, and OVS, verifying the feasibility of the solution.

Other authors such as Mahmood et al. [72] introduce a functional architecture specifi-
cally designed for future 6G IIoT networks, emphasizing the integration of special-purpose
functionalities and advanced technologies, for which, while not explicitly mentioning SDN,
they leverage it. The proposal incorporates ML and AI algorithms along with auxiliary
functions to predict traffic arrivals, track channel conditions, and manage interference
within the network, addressing the complex requirements of IIoT applications. However,
they only provide a theoretical example of use in an industrial scenario.

4.2. Energy Efficiency and Optimization

First, we summarize all related works in Table 5.

Table 5. Summary of related works about energy efficiency.

Article Year Description Evaluation and Tools Contribution

Sodhro et al. [74] 2021 ML-based energy-efficient mechanism for
industrial networks Simulation. Matlab

Mukherjee et al. [75] 2021
Distributed AI-based strategy for
energy-efficient resource allocation in
massive 6G-enabled IIoT networks

Simulation

Jiang et al. [76] 2021 AI + SDN for energy-efficient routing in
B5G

Simulation. Matlab, Python.
COST266 topology

Almuntasheri
et al. [77] 2023 SDN-based energy-efficient routing in

Industry 4.0 Emulation. Ryu + Mininet

Sodhro et al. [74] present an AI-based framework aiming to improve Quality of
Experience (QoE) in the optimization of 6G industrial networks. This framework combines
networks, wearable technology, QoE measurement tools, high-definition displays, and
feedback analyzing/reporting mechanisms. It adaptively monitors and adjusts variables to
minimize the usage of resources. To tackle the challenge of dynamic mobile IoT nodes, they
propose a mobility management solution powered by ML that enhances energy efficiency
while improving QoE and QoS. Their approach underlines the importance of optimizing
resources by balancing risks and criticalities, assessed through indicators such as latency
and risk analysis.

In exploring IIoT within 6G infrastructures, Mukherjee et al. [75] develop a strategy
that employs data mining and cluster analysis. This strategy aims to control scattered
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sensor nodes effectively, optimizing the allocation of resources and reducing energy use. It
incorporates the Distance Vector (DV)-Hop algorithm to increase the prediction precision
of management agents’ placements within clusters. Furthermore, the use of CNN and
Gaussian Copula theory improves the accuracy of observational data and the examination
of data interdependencies, which aids in sophisticated energy and resource management.

Almuntasheri et al. [77] introduce the Routing Decisions Through Energy-Cost Esti-
mation (RDEC), a protocol designed to enhance energy efficiency and balance loads across
industrial networks. This protocol is initiated by thoroughly mapping the network struc-
ture and identifying viable communication routes. It assesses energy expenses associated
with each route and selects the most energy-efficient path based on the energy needed
for distance transmission and the average usage by nodes in transit, therefore optimizing
energy consumption.

Lastly, Jiang et al. [76] propose an innovative strategy for routing optimization in
adaptable wireless networks, with a focus on energy efficiency. Their strategy integrates a
mathematical optimization model with AI methodologies, revising link weights to reflect
energy use and bandwidth needs. An intelligent routing algorithm discerns the most
energy-efficient routes, enabling dynamic resource management to lower energy use and
enhance service quality. This study highlights the critical role of AI and ML in the efficient
administration of networks, envisaging the future of 6G and beyond in terms of industrial
network sustainability and performance.

4.3. Time-Sensitive IIoT

First, we summarize all related works in Table 6.
Zeng et al. [78] unveil a strategy aimed at amplifying QoS within industrial settings

through the deployment of a Software-Defined Industrial Ethernet (SDIE) network, distin-
guished by its novel use of time slots. This methodology involves allocating specific time
intervals to diverse traffic types, therefore ensuring prioritization of real-time critical traffic
over less imperative communications. The adoption of SDIE enables a more agile and
adaptive management of network resources, allowing dynamic modifications in response
to the evolving demands of real-time industrial applications, a hallmark of the Industry
4.0 revolution.

Table 6. Summary of related works about TSNs.

Article Year Description Evaluation and Tools Contribution

Zeng et al. [78] 2019 TSN-based SDN framework for real-time
QoS in Industry 4.0 Real testbed. POX

Balasub-ramanian
et al. [79] 2021 SDN architecture for TSNs in IIoT Simulation. Python

Bulbu et al. [80] 2021 SDN-based self-configuration TSNs for IoT Simulation. OMNeT++

Progressing from this premise, Balasubramanian et al. [79] propose a SDN architec-
ture designed to refine network management in environments where time-sensitivity is
paramount, such as in IIoT contexts. This architecture addresses the essential requirements
for accurate time synchronization and management, critical for delivering real-time data.
Leveraging the SDN framework, which effectively separates the control and data planes,
this approach ensures centralized and flexible control over network devices , offering a scal-
able and adaptable framework well suited to multifaceted demands of IIoT environments.

Extending these insights, Bulbu et al. [80] present the implementation of a SDN archi-
tecture tailored for the self-configuration of time-sensitive IoT networks. This initiative
aims to enhance network management in scenarios where time synchronization and preci-
sion are crucial. The strategy involves segregating the control plane from the data plane,
enabling centralized and programmable control over network devices. The introduction of
SDN-based self-configuration empowers enactment of specific QoS policies to guarantee
timely and reliable data delivery, particularly for real-time applications within industrial
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contexts. Moreover, the inherent flexibility of this architecture allows for network to adjust
to dynamic demands and environmental changes adeptly, therefore elevating efficiency
and responsiveness of real-time network operations, albeit with a generalized focus not
confined solely to industrial networks.

4.4. Digital Twinning in IIoT

This section encompasses a comprehensive review of extant literature pertinent to
the utilization of AI for the enhancement of SDN networks to augment the performance
of Virtual Reality (VR)/Mixed Reality (MR) solutions within IIoT environments that are
predicated on DTs. Existing related works are summarized in Table 7.

Table 7. Summary of related works about DTs.

Article Year Description Evaluation and Tools Contribution

Xu et al. [81] 2021 DRL-based architecture for 6G-enabled IIoT Simulation. Matlab

Guo et al. [82] 2022 DRL-based architecture for 6G-enabled IIoT
bolstered by D2D communication Simulation

Friederich et al. [83] 2022 Data-driven DT for Industry 4.0 Theoretical study

Tang et al. [84] 2023 MR + AI for DT in Industry 4.0 Simulation

Zhou et al. [85] 2024 DT approach for edge-device collaboration Simulation

Xu et al. [81] acknowledge DTs as an intrinsic component of 6G-enabled IIoT. They
assert that the integration of AI/ML is essential for advancing automation. Consequently,
they propose a DRL architecture to manage appropriately the existing control, communica-
tion, and computing resources. Following previous work, Guo et al. [82] also advocate for a
DRL-based approach in the context of DT within 6G-enabled IIoT. However, they enhance
their approach by incorporating Device-to-Device (D2D) communication. This augmenta-
tion accounts for the limitations of IoT devices at the edge using an FL approach. Following
the same line, Zhou et al. [85] also presents an innovative solution for resource-constrained
Mobile Augmented Reality (MAR) devices, leveraging edge-device collaboration. It pro-
poses a scheme where an edge server constructs and updates a 3D map using camera
frames from an MAR device, minimizing uncertainty in device pose tracking. To address
dynamic uplink data rates and user pose changes, a Bayes-adaptive Markov decision
process problem is formulated, and a DT-based approach is proposed. The DT captures
time-varying uplink data rates for effective 3D map management, while a model-based
reinforcement learning algorithm adapts to these dynamics. Later, Friederich et al. [83]
focus on a specific use case related to manufacturing systems. Hence, they emphasize the
critical role of data-driven development in constructing simulation models for Industry 4.0.
They argue that manual configurations of ML models, which necessitate constant adjust-
ments, are insufficient. To address this, they investigate a potential framework applied to
their use case.

Finally, Tang et al. [84] propose the utilization of MR alongside AI to seamlessly
integrate digital and physical realms in DT for Industry 4.0, but focusing on the cloud and
edge features that can be implemented as NFV functions.

4.5. Human Interfaces and Cybernetics in IIoT

This section provides an analysis of existing works relevant to the application of AI in
the optimization of SDN networks, with the aim of improving Industrial CPS (ICPS). A
summary of these related works is presented in Table 8.
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Table 8. Summary of related works about human interaction and CPSs.

Article Year Description Evaluation and Tools Contribution

Villalonga et al. [86] 2020 Cloud-based solution based on ML (RL) for
ICPSs Real testbed

Mantravadi et al. [87] 2020 Chatbot for user-friendly MES interfaces in
Industry 4.0

Simulation. Matlab.
MNIST dataset

Singh et al. [88] 2021 AI + SDN for human-robot collaboration to
enhance human safety in Industry 4.0 Theoretical design

Degallier-Rochat
et al. [89] 2022 Human augmentation via AI in Industry 4.0 Theoretical study

First, Villalonga et al. [86] address the domain of CPS, specifically focusing on ICPS. They
propose a cloud-based solution for implementing CPS, which relies on two RL techniques.
This approach is tested in a real-world industrial deployment. Later, Mantravadi et al. [87]
extend the discussion specifically to human-machine interaction. Hence, they empha-
size the advantages of employing chatbots as user-friendly interfaces for Manufacturing
Executing System (MES) within the context of Industry 4.0. This indirect utilization of
AI contributes to enhancing the overall user experience. Previous work is enhanced by
Singh et al. [88] that take a novel approach by combining AI and SDN technology. Their
objective is to facilitate human-robot collaboration, with a specific focus on enhancing
human safety within Industry 4.0 environments. Rather than replacing humans, this work
envisions AI a tool to augment their capabilities. Finally, Degallier-Rochat et al. [89] con-
tinue the sentiment that AI should complement human abilities rather than supplant them.
Their perspective aligns with the idea that AI’s role in Industry 4.0 should be supportive,
enhancing human decision-making and productivity.

4.6. Security Aspects in IIoT

First, we summarize all related works in Table 9.

Table 9. Summary of related works about security.

Article Year Description Evaluation and Tools Contribution

Tsuchiya et al. [90] 2018 SDN firewall for Industry 4.0
Emulation. OPC Unified
Architecture. Trema +
OVS

Radu et al. [91] 2019 SDN to enhance cyber protection for CPSs
in IIoT Theoretical study

Holik et al. [92] 2020 industrial network protection with SDN +
AI

Real testbed. ONOS +
SDN switch (Aruba).
Smart grid flow traffic
pattern

Rahman et al. [93] 2020 AI + SDN and blockchain to improve
security in Industry 4.0 Emulation. Mininet

Zainudin et al. [94] 2022 Federated-learning approach for DDoS
attack classification in SDN-enabled IIoT

Simulation.
CICDDoS2019 dataset

Masood et al. [95] 2023
Blockchain-Based Data-Driven
Fault-Tolerant Control System for Industry
4.0

Simulation. Matlab

Alcaraz et al. [96] 2023 Layered protection framework for DT in
6G-enabled Industry 5.0 Theoretical study

Rahman et al. [97] 2023 Blockchain-based protection mechanism for
AI-enabled Industry 4.0 CPS

Simulation. Caliper
evaluation toolkit

Czeczot et al. [98] 2023 AI for IIoT management for cybersecurity
threat prediction in Industry 4.0 and 5.0 Theoretical study

Hajlaoui et al. [99] 2024 Use of blockchain with AI methods to
improve security on Industrial IoT 4.0. Practical proposal
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One of the approaches to improve security in softwarized IIoT networks based on
AI is leveraged on SDN, and we survey some of the papers. Their main difference is that
each article focuses on some aspect related to security. Tsuchiya et al. [90] implement
and test an SDN-based firewall based on a Trema SDN controller and OVS for Industry
4.0 environments. Radu et al. [91] propose SDN to protect IIoT, considering that CPSs
face potential new threat. They also propose SDN-based manufacturing testbed (that
will deployed) and a cybersecurity ontology to be used for the network design stages.
They sketch a framework for SDN-based cybersecurity-resilience protection mechanisms
for IIoT. Holik et al. [92] propose softwarized networks to improve industrial networks,
but they have to face some security threats, so they devise and implement an Industrial
Network Protection System with more advanced traffic handling, such as an application
layer inspection, traffic mirroring (for detailed offline inspection) and QoS traffic control by
setting or modifying Differentiated Services Code Point (DSCP) values. They also propose
automated filtering with AI. They implement it with an ONOS SDN controller.

Blockchain is a popular technique that is used in this field, as we can see in some of
the next articles. The differences between them are related to how they study some parts
or threats regarding security in softwarized IIoT. Rahman et al. [93] present a proposal
to improve the security of Industry 4.0 based on distributed blockchain and softwarized
networks implemented with SDN. They also perform an architecture performance eval-
uation with Mininet. Masood et al. [95] leverage blockchain to benefit the security of a
fault-tolerant control of Industry 4.0. They devise a framework based on two functionalities
of blockchain data integrity and smart contract . They implement an Intrusion Detection
System trained with an Artificial Neural Network (ANN). Then, they test with a simulation
of the framework against two threat models. Alcaraz et al. [96] propose a layered protection
framework for 6G-enabled IIoT environments to protect the 6G ecosystem and consider the
goals of Industry 5.0. Rahman et al. [97] propose blockchain and AI to improve security in
the edge server of Industry 4.0. They implemented an AI algorithm and made a blockchain
performance evaluation. Zainudin et al. [94] study a FL approach for Distributed Denial
of Service (DDoS) attack classification based on local SDN controller that command an
IIoT network. They implement an algorithm that applies a filter-based Pearson correlation
coefficient and achieves great accuracy. Czeczot et al. [98] analyze the role of AI techniques,
such as ML and DL, in predicting IIoT security threats on Industry 5.0.

Finally, Hajlaoui et al. [99] research the use of blockchain with AI methods to improve
security on Industrial IoT 4.0. They train and generate ML models for threat detection.
They protect these models by embedding them on the blockchain. The models are used
by intelligent devices to protect them against cyberthreats. They evaluate their framework
with the dataset called ToN IoT designed for IoT and IIoT that contains nine types of threats.
Their solution reduces overhead compared with previous detection methods.

4.7. Data and Information Management Aspects in IIoT

First, we summarize all related works in Table 10.

Table 10. Summary of related works about data/information management.

Article Year Description Evaluation and Tools Contribution

Schuh et al. [100] 2019 A nomenclature for the AI technology spectrum Theoretical study

Wiedau et al. [101] 2021
Need for direct data exchange between software
platforms to improve process optimization using
AI methods

Theoretical study

Mattioli et al. [102] 2022 Information quality as a cornerstone of AI-based
Industry 4.0 Theoretical study

Pokhrel [103] 2022 Learning from data streams for AI and 6G
convergence.

Theoretical study &
Simulation

Zhang et al. [104] 2022 A learning-based data compression scheme in an
edge-cloud collaborative framework for 6G Case study
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Based on the assumption that the development of AI-based applications follows a
pattern of selection and composition, Schuh et al. [100] derived a nomenclature for the AI
technology spectrum to facilitate the discussion on this topic. They analyzed all the existing
literature on applications in the context of AI to develop a framework based on clusters
of terms and characteristics that allow for the classification of future developments in the
field. This framework is expected to be key for the detection of selection and composition
patterns for future AI-based deployments.

Mattioli et al. [102] highlighted that data/information is a key ingredient for most
data-driven AI applications. AI can help achieve a more holistic approach that would
allow the implementation of a continuous approach addressing products/services but
also processes or any other factors in an outcome-based approach in terms of information
management. In this context, assessing the Information Quality (IQ) in terms of accuracy,
timeliness, precision, reliability, completeness, relevancy, and so on is, therefore, one of
the core aspects of AI. They conclude that the key point is to focus more on the outcome
(quality in use oriented) and not only on the quality of the input (e.g., training dataset for
ML). Moreover, the overall quality of the output must be widely considered.

In the context of Industry 4.0 automation and 6G, Pokhrel [103] identifies the need for
learning from data streams that drive the convergence of AI and 6G. He develops a novel
Semantic Communication (SC) framework based on the FL and Asynchronous Advantage
Actor Critic (A3C) networks and discusses its potential along with transfer learning to ad-
dress most of the new difficulties anticipated in 6G for industrial communication networks.
The proposed framework has been evaluated with extensive simulation results.

Other problems related to 6G application of AI are highlighted by Zhang et al. [104].
They state that data compression is considered to be indispensable for 6G to achieve effi-
cient data transmissions, increase spectrum efficiency, and reduce system latency. They
show how the combination of encoding, deep compressed sensing, dual prediction, model
compression, and distributed model update can help reduce the amount of data to be trans-
mitted over IIoT networks. Accordingly, they propose a learning-based data compression
scheme in an edge-cloud collaborative framework and conduct a case study by simulation.
They showed that their learning-based data transmission methods can effectively reduce
the volume of the transmitted data.

As an example of a different application field, Wiedau et al. [101] stated that current
AI methods can often be ineffective in the process industry, usually due to insufficient data
availability. Data exchange using classic data file formats (PDF, XML, CSV) is a good step
in the right direction, but the state of the art and future technology should and will be
data exchange between software platforms using direct data exchange to improve process
optimization using AI methods. They showed that there is no single standard that meets all
current requirements to effectively apply AI methods in the process industry in the areas of
process optimization, process engineering, and plant maintenance. New standardization is
needed in data exchange platforms, considering both the platform and the data view to
promote data availability and integration in the field.

4.8. Related Case Studies

First, we summarize all related works in Table 11.

Table 11. Summary of related works about case studies.

Article Year Description Evaluation and Tools Contribution

Sasiain et al. [105] 2020 Flexible integration of 5G and IIoT technologies
in Industry 4.0 (Spain) Real testbed. OSM + ONOS

Patalas-Maliszewska
et al. [106] 2020 AI-based model for manufacturing company in

Industry 4.0 (Poland) Simulation. Matlab

Liang et al. [107] 2022 AI-driven low-carbon manufacturing industry
(China) Theoretical study

Ktari et al. [108] 2022 AI framework for water meter recognition in
Industry 4.0 (Tunisia) Simulation. YOLOv4
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In this section, we have focused on case studies related to diverse uses of AI-driven
industry in different countries on three continents. For instance, Sasiain et al. [105]
present a sophisticated framework that combines NFV and SDN technologies within the
scope of Industry 4.0. This framework, denoted as SN4I, is based on an ONOS network
infrastructure and employs virtual services orchestrated by OpenStack and ONOS under
the management of OSM. Moreover, SN4I encompasses a Wireless Sensor Network (WSN)
for the surveillance of environmental variables, therefore supporting IIoT applications
through the utilization of protocols, including IEEE 802.15.4, 6LoWPAN, and Routing
Protocol for Low-Power and Lossy Networks (RPL). To ensure the integrity of service
isolation, which is crucial for the preservation of data confidentiality and the prevention of
performance degradation, the infrastructure employs virtual local area network (VLAN)
segmentation alongside specific policy enactment within the ONOS controller.

Another study conducted by Patalas-Maliszewska et al. [106] presents a novel model
for evaluating automation levels within manufacturing enterprises in the context of Indus-
try 4.0. Utilizing AI and ANN, this model delineates business processes augmented by
Information Technology (IT) systems specifically within the Maintenance Department. It
establishes key effectiveness indicators to measure the performance of these processes and
executes empirical investigations across Polish manufacturing firms. The collected data
supports the development of an ANN-based classification model, which enables the precise
and automated determination of automation levels, therefore assisting in the recognition of
potential enhancement opportunities.

Additionally, Liang et al. [107] present a three-stage production process for the AI-
driven manufacturing industry. This process involves AI technology development, ap-
plication, and upgrade, driving income, intelligence indices, and production efficiency.
Additionally, AI integrated into the process enhances efficiency, reduces costs, and monitors
pollutant emissions. They use a three-stage interactive network DEA model to analyze
efficiency, considering data generation and reuse at each stage. Furthermore, they conduct
a case study on AI-driven low-carbon manufacturing production in 30 provinces in China,
utilizing specific indicators collected from various statistical sources.

Finally, Ktari et al. [108] introduce a DL-based methodology encapsulated within a
software framework. This framework provides symbolic and schematic representations of a
computer system’s components, their interconnections, and interactions. The methodology
encompasses three primary components: the display unit, the image processing unit, and
the data storage unit for the water supplier. To address water consumption effectively, the
researchers employ a hybrid model that detects, computes, and aims to reduce usage, all
while acknowledging technological and infrastructural limitations. The employed image
processing engine encompasses techniques for identifying water meter number contours,
extracting these numbers, and calculating monthly usage. Integration of the Yolo object
detection model with a mobile application is achieved through training and testing on the
Darknet neural network. Furthermore, this study outlines a method for meter number
extraction in the mobile application, utilizing OCR Tesseract for character recognition.

4.9. PhD/MSc Theses

Finally, in this section, we briefly overview the three related theses found in relation to
the objectives of this paper.

De Coninck [109] devises the integration of the IoT in the manufacturing process is a
key enabler, as it delivers the necessary information for context-aware assistance of people,
machines, and robots active on the production floor in the execution of their tasks. With
manufacturing moving to high-mix, low-volume production with high cycle rates, factory
CPSs must be able to flexibly accommodate changing production floor configurations.
Agile manufacturing thus requires a CPS software design that adheres to the principles
of modularity, service orientation, and decentralization. Sensors, actuators, factory robots,
and cloud-hosted components should be dynamically discovered as services that can be
combined to realize distributed CPS applications. This work presents the design and
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implementation of a middleware solution allowing developers to build CPSs comprised of
services communicating through well-defined service interfaces. It deploys an optimized
component runtime on sensor gateways, robots, and the (edge) cloud that abstracts the
deployment and communication between these components. The middleware dynamically
discovers attached robots and sensors and exposes these as a service to other components.
One key feature of the middleware is the advanced support for components that make
use of ANNs. ANNs can generalize system input and are very well suited to discovering
data patterns and take similar decisions in similar conditions. This is important in realistic
environments, where various factors may impact the fidelity of sensor data, such as light
conditions, noise based on time of the day, etc. These deep neural networks are very useful
at both sensing and actuation endpoints of CPSs, e.g., for image classification, speech
recognition, and visuomotor robotic control. Finally, a preliminary proof of concept was
used for illustration purposes. Unfortunately, no particular study of available networking
frameworks was conducted.

While De Coninck devises the integration of IoT in manufacturing processes, em-
phasizing the importance of context-aware assistance and the principles of modularity,
service orientation, and decentralization in CPS software design, Loorpuu [110] works
on facilitating the adoption of AI-based Predictive Maintenance Technology (PdM) in the
manufacturing industry. The main problems highlighted in this research can be reduced to
the following three relevant barriers: business case building for PdM; trust in AI-based PdM
(lack of trust in big data analytical results) and data management for PdM (the challenge of
collecting the data, utilizing it and making sense of it), in order to develop a best practices
reference checklist for predictive maintenance project implementation that supports organi-
zations by illustrating and bringing awareness to best practices that other organizations
have been following during PdM implementation. The results were qualitatively validated
by an expert panel. As with the previous work, it does not analyze the networking side of
the picture.

Finally, Ravishankara [111] thesis tries to identify and address the current challenges
associated with validating the AI software used in autonomous vehicles. Data-related
issues, model-related issues, and security-related issues were identified as the main threats.
Of these, this work mainly focuses on data-related issues. To address these issues, a
framework and evaluation metrics were proposed and tested via experimentation. Based
on the results of the experiments, a recommendation was made to improve the type of
approval or safety assessment process.

5. Discussion: Research Trends and Open Challenges

Following the analysis detailed in Section 4, the following sections explore the key
open challenges and research opportunities within the realm of AI-driven softwarized IIoT
networks, including future 6G environments. Each challenge is thoroughly addressed in
its own section, accompanied by an examination of potential research and development
avenues associated with it.

5.1. Use Cases and Standards from Industry

Our investigation underscores a notable gap in effectively integrating academic so-
lutions into practical environments or real-world specifications. Many existing studies
predominantly rely on simulation, often without a qualitative assessment of the implica-
tions when implemented in actual platforms or standards. This gap consequently reduces
the potential impact on industrial solutions. The challenge stems from the necessity of
merging expertise from both computer science and computer networks to leverage AI in
IIoT. This often results in either highly conceptual proposals, where AI expertise dominates,
or overly simplistic AI models, where networking knowledge takes precedence.

Therefore, our recommendations encompass the following aspects:

• Research works concentrating on AI-enabled softwarized network environments
(and not exclusively IIoT) should incorporate a final section that discusses recent
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platforms or standardization efforts, highlighting the feasibility of integration. For
instance, in the specific case of 6G, as highlighted in the introduction, European
Telecommunications Standards Institute (ETSI)’s MEC [112] and constrained MEC
(cMEC) [113], as well as 3rd Generation Partnership Project (3GPP)’s EdgeApp [114]
and SideLink [115] should be considered.

• Open-source communities can play a pivotal role as intermediaries between aca-
demic research and standards by developing small proof-of-concept projects, offering
comprehensive documentation, and establishing mailing lists to facilitate a smooth
learning curve for newcomers whenever feasible. Encouraging this collaborative effort
is essential, particularly with support from relevant industries, including the Linux
Foundation, with which both the Open Networking Foundation (ONF) [116] and
ETSI [117] have recently affiliated.

5.2. Leveraging Real Infrastructures and Testbeds

In relation to the previous aspect, it is worth noting that many current research
ideas, regardless of whether they address industry aspects, often overlook the implications
of implementing their concepts in real infrastructures and testbeds. This oversight can
limit the potential benefits of the idea, as it may prove to be non-scalable or entail high
implementation costs in practice.

Therefore, our recommendations encompass the following aspects:

• Research works should, at a minimum, incorporate an analysis, if not an implementa-
tion, of their associated ideas on real hardware. Moreover, if infrastructure is unavailable,
platforms such as IoT-Lab [118] or SLICES [119] are recommended as alternatives.

• Programmable hardware for Unmanned Aerial Vehicles (UAVs) or Automated Guided
Vehicles (AGVs) (which represent common devices in IIoT scenarios) is not widespread,
particularly in scenarios where performance is critical. Additionally, common AR/VR
frameworks often present challenges for modification, functioning akin to proprietary
hardware (for instance, Meta Quest headsets lack provisions for additional commu-
nication interfaces or the ability to distribute computational tasks). Consequently,
further research efforts are necessary in this field.

• Additionally, it is also relevant to consider existing legacy and proprietary devices
when designing AI-empowered IIoT networks. For instance, it is crucial to seamlessly
integrate wired and wireless communication links. For that reason, all techniques and
protocols need to embrace this diversity in their design principles, and following a
progressive hybrid SDN [120] deployment might be desirable.

5.3. Model Training and Generation of Synthetic Network Traces

Although the integration of AI/ML in IIoT environments presents clear advantages,
many techniques require input data, usually labeled, for model training. While utilizing
publicly available repositories [121] is a possibility, they are scarce. Furthermore, each IIoT
environment typically has unique characteristics, which presents challenges in training
models with external data.

Consequently, the collection and harmonization of data, as mentioned earlier, along
with the generation of synthetic network traces, emerge as potential solutions to facilitate
model training. The synthesis of datasets has become essential in training ML and deep
learning models, especially across various domains such as communication networks. This
procedure relies heavily on GANs, an artificial intelligence model introduced in 2014 [122].
In the realm of communication networks, GANs plays a crucial role in advancing model
training and performance by improving the quality and diversity of datasets [123]. In par-
ticular, the synthesis of high-fidelity network traces has attracted significant attention [124].

Therefore, our recommendations encompass the following aspects:

• Promoting the creation of new datasets and their public availability is paramount.
Platforms like the Softwarized Network Data Zoo [121] or Kaggle’s datasets [125]
offer valuable resources in this regard. While numerous editorials advocate for these
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datasets, additional incentives within academia are required to encourage researchers
to share their datasets.

• Further exploration of GANs for diverse IIoT environments could significantly con-
tribute to the implementation of AI-enabled scenarios.

6. Conclusions

In this survey, we have comprehensively revised the state of the art in relation to AI-
empowered softwarized IIoT networks as a pivotal use case of future 6G deployments. First,
we have provided basic definitions and set up the context and motivation, by analyzing
related works. Subsequently, we have established a methodology for the study performed
in our survey, and afterward, we have classified all works in the main driving categories
following our examination. For each category, we summarized and compared these works
both in text and with summary tables, particularly checking their contributions in the realm
of advancing the state of the art of this 6G vertical sector.

Our study yields a relevant lack of integrated solutions, implementing practical scenar-
ios leveraging AI and IoT for industrial environments. In general, many of the proposals
are either very theoretical for AI or based on very simplified scenarios for AI when using
simulation frameworks or platforms in relation to IoT, which limits the validation of results.
Furthermore, none of the works reflect design ideas from standardization efforts such as
3GPP, which depletes their contributions. Since we are aware that this is a complex task
(mixing expertise from industry and academia), the last section of this survey provides a
final guide of potential ideas and recommendations that we hope serve as inspiration for
future research efforts in the field.
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SDIE Software-Defined Industrial Ethernet
SDIN Software-Defined Industrial Networks
SDN Software-Defined Networking
SDO Standards Development Organization
SDVE Software-Defined Virtual Entities
SJR Scimago Journal and Country Rank
SLICES Scientific Large-Scale Infrastructure for Computing/Communication

Experimental Studies
SME Small and Medium-sized Enterprise
TSN Time-Sensitive Networking
UAV Unmanned Aerial Vehicle
UE User Equipment
VLAN virtual local area network
VM Virtual Machine
VR Virtual Reality
WSN Wireless Sensor Network
XR eXtended Reality
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