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Abstract: Brain tumor segmentation using Magnetic Resonance Imaging (MRI) is vital for clinical
decision making. Traditional deep learning-based studies using convolutional neural networks have
predominantly processed MRI data as two-dimensional slices, leading to the loss of contextual infor-
mation. While three-dimensional (3D) convolutional layers represent an advancement, they have not
fully exploited pathological information according to the three-axis nature of 3D MRI data—axial,
coronal, and sagittal. Recognizing these limitations, we introduce a Tri-Axis based Context-Aware
Reverse Network (TACA-RNet). This innovative approach leverages the unique 3D spatial orienta-
tions of MRI, learning crucial information on brain anatomy and pathology. We incorporated three
specialized modules: a Tri-Axis Channel Reduction module for optimizing feature dimensions, a
MultiScale Contextual Fusion module for aggregating multi-scale features and enhancing spatial
discernment, and a 3D Axis Reverse Attention module for the precise delineation of tumor bound-
aries. The TACA-RNet leverages three specialized modules to enhance the understanding of tumor
characteristics and spatial relationships within MRI data by fully utilizing its tri-axial structure.
Validated on the Brain Tumor Segmentation Challenge 2018 and 2020 datasets, the TACA-RNet
demonstrated superior performances over contemporary methodologies. This underscores the critical
role of leveraging the three-axis structure of MRI to enhance segmentation accuracy.

Keywords: medical image segmentation; brain tumor; three-axis based network; multi-scale fusion;
axis reverse attention

1. Introduction

Gliomas are the most common primary brain tumors in adults, accounting for 70%
of all malignant primary brain tumors [1]. They can be classified as high-grade gliomas
(HGGs) and low-grade gliomas (LGGs), with HGGs being more aggressive and invasive
than LGGs [2]. Magnetic Resonance Imaging (MRI) is commonly used for the diagnosis
and treatment planning of brain tumors owing to its high resolution, soft tissue contrast,
and non-invasive nature [3]. For gliomas, four MRI modalities (T1, T1ce, T2, and FLAIR)
are typically employed. Multimodal imaging facilitates the capture of a wide range of
histopathological parameters, effectively reducing informational uncertainty and enhancing
the precision of clinical diagnoses [4].

Identifying gliomas in MRI is crucial for the clinical diagnoses and formulation of
treatment plans. However, the traditional segmentation process for diagnosis, which in-
volves manually inspecting MRI volumes slice-by-slice, is time consuming and depends
significantly on the experience of the radiologists [5]. Moreover, the significant individual
variability in tumors’ location, size, shape, margins, and density makes it challenging to
manually distinguish gliomas in MRI data [2]. Additionally, morphological uncertainty
complicates the process, as the outer layers of brain tumors consist of edematous tissue,
making the edges of the tissue surrounding the tumor ambiguous and the tumor contours
difficult to define [1].
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These challenges have prompted research on automatic brain tumor segmentation.
With the advancement of deep learning, numerous studies have been conducted utilizing
deep learning-based methods. In particular, the introduction of U-Net [6], a U-shaped convo-
lutional network, has aided various brain tumor segmentation studies using convolutional
neural networks (CNNs). Initially, two-dimensional (2D) convolution was predominantly
used, thus employing three-dimensional (3D) MRI data as sliced 2D data. Previous studies
have proposed cascade structures or multitask methods that leverage 2D convolution
for precise brain tumor segmentation [7–11]. However, these 2D-based models often lose
crucial contextual information present in volumetric data and face challenges in accurately
distinguishing pathological features as the volume of data increases. Recently, numerous
methods that employ 3D data have been explored. These approaches have been augmented
by leveraging 3D convolution to enhance the segmentation performance [12–14]. Nonethe-
less, the reliance on 3D CNNs alone has limitations due to variability in the size and
location of brain tumors. To address these limitations, studies have proposed the use of
atrous convolution [15] and hierarchical feature pyramid structures to detect tumors of
varying sizes and utilize multi-scale features [16,17]. Attention mechanisms have been
integrated to concentrate on areas where tumors are present [18–21].

However, despite significant advancements in automatic brain tumor segmentation
research, researchers have often overlooked the full potential of leveraging the unique
characteristics of 3D MRI data. While 3D-based models align more closely with the intrinsic
volumetric nature of MRI data, processing 3D data with convolution layers that utilize
3 × 3 × 3 kernels fails to fully exploit the unique characteristics of MRI. MRI inherently
comprises three dimensions—axial, coronal, and sagittal—each providing unique and
critical perspectives on brain anatomy and pathology, as illustrated in Figure 1. Focusing
on the axial, coronal, and sagittal dimensions is essential because each dimension offers a
different view of the brain’s anatomy, revealing various aspects of tumors, such as their
spread, volume, and interaction with surrounding tissues [22,23]. This highlights the need
for a novel approach that not only preserves the rich contextual and spatial nuances inherent
in MRI data but also enhances tumor segmentation precision by deeply prompting the
understanding of the multi-axis structure of MRI data.

Figure 1. Three-axis visualization of Magnetic Resonance Imaging (MRI) data. (a) Axial, (b) coro-
nal, (c) sagittal. The colors indicate regions of tumors. Red: necrosis and non-enhancing tumor
(NCR/NET); yellow: enhancing tumor (ET); green: edema (ED).

In this paper, we propose a Tri-Axis based Context-Aware Reverse Network (TACA-
RNet), which is a novel approach that carefully considers the axial, coronal, and sagittal
perspectives of MRI data. This method was designed to address the aforementioned chal-
lenges by leveraging the unique 3D spatial orientations inherent in MRI data, aiming to
significantly enhance the accuracy and precision of brain tumor segmentation through
a comprehensive understanding and utilization of the volumetric information provided
by MRI technology. Our approach was validated using the Brain Tumor Segmentation
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Challenge (BraTS) 2018 and 2020 datasets [24–26]. The experimental results demonstrate
that the proposed TACA-RNet outperforms other recent networks.

The main contributions of this research are summarized as follows:

• We introduce the TACA-RNet, a novel framework specifically designed to leverage
the axial, coronal, and sagittal MRI directions. This approach enables a deeper under-
standing of the complex spatial relationships inherent in volumetric MRI data.

• Our approach integrates three specialized modules: a Tri-Axis Channel Reduction
module (TACR), which targets dimension reduction and feature enhancement across
MRI’s axial, coronal, and sagittal planes; a MultiScale Contextual Fusion module
(MSCF), which integrates features from multiple scales to enhance spatial discernment;
and a 3D Axis Reverse Attention module (ARA), which concentrates on essential
details for precise tumor segmentation.

• We evaluated the efficiency of the proposed network using the BraTS 2018 and 2020
datasets. The results demonstrate that our approach generates a superior segmentation
performance and outperforms other recent CNN methodologies.

The remainder of this paper is organized as follows. Section 2 provides a discussion of
existing research related to our study. Section 3 details the method and design of this study.
In Section 4, we outline the datasets utilized, describe the preprocessing steps, present the
evaluation metrics, and detail the experimental configurations; this is then followed by
comparison and ablation experiments. Finally, conclusions are presented in Section 5.

2. Related Work
2.1. 2D MRI Data-Based Brain Tumor Segmentation Methods

Typically, 2D MRI data-based brain tumor segmentation methods leverage 2D MRI
data generated by slicing the 3D data along the axial axis. Ranjbarzadeh et al. [7] proposed
preprocessing methods and utilized a cascade CNN to emphasize the smaller regions of
brain images for brain tumor segmentation. Havaei et al. [8] employed a cascade CNN
with a two-pathway architecture designed to learn both the local details and the broader
context of brain tumors. MTAU [9] implemented a U-Net-based model with three identical
structures for multitask brain tumor segmentation based on 2D data. Shen et al. [10] used a
multitask framework based on a fully convolutional network to predict tumor boundaries
and regions. AGResU-Net [11] utilizes attention gates to enhance local feature expression,
addressing the issue of failing to detect small-scale tumors owing to dimension reduction
caused by downsampling.

However, models utilizing 2D MRI data often fail to accurately learn voxel-level
features and relationships within the 3D data. Consequently, there is growing interest in
research utilizing 3D MRI data to exploit volumetric information more effectively and
improve the segmentation accuracy.

2.2. 3D MRI Data-Based Brain Tumor Segmentation Methods

Existing 3D MRI data-based brain tumor segmentation methods utilize 3D MRI data,
which are resized or cropped to create inputs of a uniform size.

CNN based network. The 3D U-Net [12] employs 3D data as input and adapts the
architecture of the 2D U-Net by replacing 2D operations, such as convolution, max pooling,
and up-convolution, with their corresponding 3D operations, thereby enabling 3D brain
tumor segmentation. Huang et al. [13] utilized a multitasking approach that incorporates
segmentation and distance decoders for accurate brain tumor segmentation. CANet [14]
employs a feature interaction graph between glioma cells and their surrounding pixels to
resolve inter-class ambiguity among different tumor types.

Multi-scale based network. Utilizing a CNN alone poses challenges in identifying
brain tumors of various sizes and leveraging multi-scale features effectively. AFPNet [16]
overcomes the problems of reduced feature map resolution and loss of information on small
tissues by implementing 3D atrous convolution [15]. This method enables the detection of
tumors of various sizes utilizing multi-scale features through atrous convolution. DenseAF-



Electronics 2024, 13, 1997 4 of 19

PNet [17], which aims at efficient learning in deep networks, utilizes a densely connected
CNN and employs a 3D hierarchical feature pyramid to learn multi-scale features, further
enhancing its ability to capture the complexity of brain tumors.

Attention based network. Attention mechanisms are employed to focus on features
within the regions of interest where tumors are present. AMMGS [18] and Single-Level
U-Net3D [19] implement channel and spatial attention blocks in their respective 3D U-Net
and atrous convolution-based models to concentrate on pixels related to tumors. NLCA-
VNet [20], based on V-Net [27], utilizes a nonlocal block module and a convolutional
block attention module [28] to focus on brain tumors. The scSE-NLV-Net [21] leverages a
Squeeze-and-Excitation (SE) block [29] to exploit the spatial dependencies among features,
further emphasizing critical areas for accurate tumor segmentation.

These 3D data-based approaches aim to enhance the brain tumor segmentation per-
formance utilizing techniques such as 3D convolution, atrous convolution, and attention
mechanisms. However, they do not exploit information according to the three axes of 3D
medical data. In particular, studies employing 3D convolution typically use a 3 × 3 × 3
kernel size and overlook the distinct characteristics of each axis. Therefore, we propose
the TACA-RNet, which was designed to leverage the unique information present along
each axis of 3D medical data, addressing this gap and aiming for more accurate and
comprehensive brain tumor segmentation.

3. Proposed Method

In this section, we present the overall network framework. We then introduce the
designed components: the TACR, partial decoder (PD), Multi-Resolution Fusion (MRF),
MSCF, and 3D ARA modules.

3.1. Overview of Network

As shown in Figure 2, the proposed network consists of six main components: an
encoder composed of convolution blocks, a TACR module, a PD, MRF, an MSCF module,
and a 3D ARA module.

Figure 2. Overview of the proposed TACA-RNet for automatic brain tumor segmentation.

The encoder, which is composed of convolution blocks, extracts high-dimensional se-
mantic features related to gliomas. Each convolution block within the encoder is structured
with group normalization, a 3 × 3 × 3 convolution layer, and a ReLU activation function.
This setup is used to classify and analyze the sub-level local pixel values of gliomas on
MRI. We consider only high-level features {fi, i = 3, 4, 5} among the features {fi, i = 1, . . . , 5}
extracted from the encoder because low-level features demand more computational re-
sources owing to their large spatial resolution compared to high-level features, yet they
contribute less to the performance [30]. To optimally leverage the unique 3D characteristics
of the MRI data, including their axial, coronal, and sagittal orientations, we integrated the
TACR module. This strategic addition supplements the conventional Receptive Field Block,
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previously situated before the PD [30], with a more sophisticated mechanism tailored to
the three-axis structure of the MRI. Subsequently, we present a PD method that generates a
global map to serve as an initial guide. Simultaneously, to preserve the details of tumors of
varying sizes while minimizing irrelevant information, our approach incorporates MRF.
Subsequently, the MSCF module is employed to integrate the global contextual information
and accommodate the diverse resolutions inherent in the volumetric data. Finally, guided
by the features generated by the PD, the 3D ARA module transforms the suppressed details
from the downsampling process into emphasized features, thereby enhancing the focus
on locally important information. The network details of the TACA-RNet are provided in
Appendix A.

3.2. Tri-Axis Channel Reduction Module

The TACR module refines the high-level feature maps {fi, i = 3, 4, 5} extracted by the
encoder, directly addressing the unique 3D spatial orientations (axial, coronal, and sagittal)
found in MRI data. This module decreases dimensionality while accentuating the salient
features that are vital for accurate tumor segmentation.

As illustrated in Figure 3, the TACR module comprises four branches, each initially
using a 1 × 1 × 1 convolution to adjust the number of channels. The first branch of the mod-
ule, denoted as B0, utilizes a 3 × 3 × 3 convolution to capture a broad spectrum of features
across the data, establishing a baseline for feature extraction. The subsequent branches,
denoted as B1 for axial, B2 for coronal, and B3 for sagittal, employ specialized convolutions
with varying kernel sizes, such as 3 × 3 × 1, 1 × 3 × 3, and 3 × 1 × 3, to capture features
pertinent to each orientation. After processing through branches B1, B2, and B3, the outputs
are concatenated, merging the unique spatial features captured in each direction (axial,
coronal, and sagittal). The specific expression for the concatenation process is as follows:

B123( fi) = C(B1( fi), B2( fi), B3( fi)) (1)

where C denotes the concatenation operation. Following feature integration, an SE block [29],
denoted as SE, dynamically recalibrates channel-specific responses, enhancing important
features and diminishing less relevant ones through global information analysis. Subse-
quently, the outputs from B0 and the outputs enhanced by the SE block are unified, creating
a feature map that incorporates both wide-ranging and orientation-specific characteris-
tics. Finally, shortcut connections seamlessly integrate the initial input with the output of
the model, enhancing learning and feature representation while preventing information
loss and gradient dissipation. The specific implementation can be mathematically defined
as follows:

ti = C(B0( fi), SE(B123( fi))) + fi (2)

Additionally, to reduce model complexity, the channel count for the output ti of each
TACR module was reduced to 32.

Figure 3. Tri-Axis Channel Reduction module. Here, k denotes the kernel size.
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3.3. Partial Decoder

As mentioned in Section 3.1, we strategically incorporated a PD [30] within our
model to significantly reduce information loss by enhancing the detail capture capability,
particularly in the context of the encoder’s downsampling process. This decoder was
designed to process only high-level features {ti, i = 3, 4, 5} obtained from the TACR module.
For the highest feature layer i = 5, we directly use the feature from the corresponding
layer, setting tc5 = t5. For features where i < 5, each feature ti is updated by multiplying it
element-wise with deeper layer features. The specific expression for the updating process
is as follows:

tci = ti ⊙
5

∏
j=i+1

Conv(Up(tj)), i ∈ [3, 4] (3)

where Up represents the upsampled feature by a factor 2j−i, Conv denotes a 3 × 3 × 3
convolutional layer, and ⊙ denotes element-wise multiplication. To integrate multi-level
features {tci , i = 3, 4, 5}, we employ an upsampling and concatenating strategy. The specific
expression for the integration process is as follows:

tcintegrated = C(tc4 , Conv(Up(tc5))) (4)

Pg = Conv1×1×1(C(tc3 , Conv(Up(tcintegrated)))) (5)

where Up denotes an upsampling operation that doubles the spatial dimensions through
transposed convolution, Conv is a 3 × 3 × 3 convolutional layer, C represents the concate-
nation operation, and Conv1×1×1 is a 1 × 1 × 1 convolutional layer. This strategic use of
high-level features via parallel connections in the partial decoder efficiently generates a
global map Pg. This map effectively guides the accurate determination of tumor shape, lo-
cation, and size, enhancing our model’s precision with optimized computational efficiency.

3.4. Multi-Resolution Fusion

The MRF process utilizes the high-level features {ti, i = 3, 4, 5} obtained from the
TACR module, scaling them up or down to match their unique resolutions. Following
this adjustment, the features of the three distinct resolutions are made compatible for
concatenation by aligning them with the scale of each layer. The specific implementation
can be mathematically defined as follows:

MRF3 = C(t3, Up(t4), Up(Up(t5))) (6)

MRF4 = C(Down(t3), t4, Up(t5)) (7)

MRF5 = C(Down(Down(t3)), Down(t4), t5) (8)

In these equations, Up represents an upsampling operation that doubles the spatial
dimensions using transposed convolution, Down denotes a downscaling operation that
halves the spatial dimensions using convolution, and C indicates the concatenation op-
eration. By harmonizing the features across different resolution layers, MRF enables the
integration of diverse spatial information, thereby enhancing the segmentation capabilities
of the network.

3.5. MultiScale Contextual Fusion Module

To enhance the network’s ability to accurately segment brain tumors, we introduced
the MSCF module to reflect the complexity and variability of tumor sizes and their spatial
distribution in the MRI data. This module, inspired by Atrous Spatial Pyramid Pooling
(ASPP) [31] and the Contextual Feature Pyramid (CFP) [32], aims to innovatively capture
and integrate contextual information at multiple scales through a hybrid approach.

As shown in Figure 4, the MSCF module employs a combination of ASPP and CFP
to comprehensively represent the spatial and contextual details necessary for accurately
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identifying tumor boundaries. The ASPP component within the MSCF employs atrous
convolution operations with a set of dilation rates rASPP ∈ {1, 6, 12, 18}. This enables the
network to extract features from a wide range of receptive fields, capturing both local
and global contextual information without a loss of resolution. Concurrently, the CFP
component employs a series of convolutions with an increasing sequence of dilation rates
rCFP ∈ {1, 2, 4}. This setup progressively captures larger contextual features, thereby
enhancing the network’s ability to discern spatial relationships at various scales. Varying
levels of 3D padding are employed as necessary in the ASPP and CFP components to ensure
that the outputs have compatible resolutions for concatenation. After applying ASPP and
CFP, the features are concatenated to form a comprehensive, multi-level feature map. This
map is then adjusted to the appropriate channel count using a 1 × 1 × 1 convolution.

Figure 4. MultiScale Contextual Fusion Module. Here, k denotes the kernel size, and r represents the
dilation rate.

3.6. 3D Axis Reverse Attention Module

The 3D ARA module, designed to capture high-resolution details critical for delineat-
ing tumor boundaries, is closely aligned with the intrinsic characteristics of the MRI data,
particularly considering its axial, coronal, and sagittal orientations. While the MSCF module
effectively identifies tumor regions across various scales, it may lack the precision needed
for the fine-grained delineation of tumor margins. The 3D ARA module complements this
by focusing on the critical details to ensure more accurate segmentation outputs.

As shown in Figure 5, 3D ARA components comprise bifurcated complementary
mechanisms: axis attention (AA) and reverse attention (RA). The AA mechanism di-
vides the 3D space into 2D planes, applying three separate 2D attentions across the di-
mensions of height, width, and depth. To facilitate this, the input is restructured into
a 2D format where one dimension corresponds to the space of interest (height, width,
or depth) and the other dimension combines the remaining two spatial dimensions. For in-
stance, in the case of Attentionh, width and depth are merged into a single dimension,
while height is kept separate, thus tailoring the input to suit 2D attention requirements.
This approach mirrors the unique anatomical orientations found in MRI data: the height
dimension within the axial plane, the width dimension in the coronal plane, and the
depth dimension through the sagittal plane. The AA mechanism is defined by the equa-
tion AAi = Attentiond(Attentionw(Attentionh(mi))) + mi. Here, Attentionh, Attentionw,
and Attentiond were specifically designed to process features corresponding to height,
width, and depth, respectively. For instance, Attentionh focuses attention within each
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individual height plane, functioning across the 2D planes of width and depth. The vari-
able mi represents the output of the MSCF module for i = 3, 4, 5. Following the AA
phase, the RA mechanism reclaims and emphasizes features that may have been overshad-
owed during the initial focusing process. The RA mechanism is defined by the equation
Ri = ⊖(S(UP(Pi+1))), where UP(.) denotes an upsampling function that enhances the
resolution of the feature map, S(.) applies sigmoid activation for a non-linear effect, and ⊖
represents the subtraction of this activated output from a unitary matrix. The variable Pi+1
indicates the output generated from a preceding processing stage in the cascade structure,
with i = 3, 4, and 5 indicating the sequence of each layer. Notably, P6 is designated as Pg.
The culmination of the 3D ARA process involves the integration of the AA and RA mecha-
nisms to produce a refined feature map that accurately delineates the tumor boundaries.
The final representation of this process, which combines the focused and refocused features,
is expressed as

ARAi = AAi ⊙ Ri (9)

In this equation, ⊙ denotes element-wise multiplication, merging the AA and RA
maps to form a feature map that is rich in detail and effectively captures the true edges
of the tumors. This sophisticated mechanism of the 3D ARA module, emphasizing the
height, width, and depth attentions in alignment with MRI’s axial, coronal, and sagittal
orientations of the MRI, not only identifies the general area of the tumor but also maps its
precise contours.

Figure 5. 3D Axis Reverse Attention module.

3.7. Deep Supervision

To ensure thorough learning across various abstraction levels and improve segmen-
tation reliability, our network employs a deep supervision strategy. This strategy entails
applying deep supervision to both the global map Pg and the outputs of the i-th layer,
{Pi, i = 3, 4, 5}. To calculate the loss, we used upsampling to adjust the output of each layer
to the same size as that of the ground truth. Therefore, the final loss can be expressed as

Ltotal = Wg · L(G, Pg) +
5

∑
i=3

Wi · L(G, Pi) (10)

where Wg and Wi are the weights for the output of each layer, being a constant of 0.3 for Wg,
and 1, 0.5, and 0.4 for Wi, respectively. While deep supervision is employed during training
to enhance learning at multiple levels, the final output of the network is specifically P3,
which is optimized for the most detailed and accurate segmentation results.
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In building on this foundation, our loss function is defined as the sum of the soft
Dice loss function [27] and binary cross entropy (BCE) loss [33], calculated in a voxel-wise
manner as follows:

LDice(G, P) = 1 − 2
J

J

∑
j=1

2 ∑I
i=1 Gi,j · Pi,j

∑I
i=1 G2

i,j + ∑I
i=1 P2

i,j
(11)

LBCE(G, P) = −1
I

I

∑
i=1

J

∑
j=1

Gi,j · logPi,j + (1 − Gi,j) · log(1 − Pi,j) (12)

L(G, P) = LDice(G, P) + LBCE(G, P) (13)

where G and P are the ground truth and predicted values, respectively, and I and J are the
numbers of voxels and classes, respectively.

4. Experimental Results
4.1. Datasets

The datasets used in this study were sourced from the BraTS datasets for 2018 and
2020 [24–26]. In the BraTS 2018 and 2020 datasets, the training sets consisted of 285 and
369 cases, and the validation sets consisted of 66 and 125 cases, respectively. The training sets
from both datasets consisted of 3D MRI data from four modalities (T1, T1ce, T2, and FLAIR),
including voxel-wise ground truth labels. The labels comprised distinct categories for
different tumor regions: necrotic and non-enhancing tumor core (NCR/NET), peritumoral
edema (ED), enhanced tumors (ET), and non-tumor regions. Commonly used modalities
(T1, T1ce, T2, and FLAIR) play important roles in segmenting different types of brain tumor
regions, such as ED, NCR/NET, and ET. An example of multimodal MRI for brain tumor
segmentation is shown in Figure 6. The segmentation accuracy was assessed using the Dice
score and 95% Hausdorff Distance metrics for specific tumor regions: enhanced tumor (ET),
whole tumor (WT, comprising NCR/NET, ED, and ET), and tumor core (TC, involving
NCR/NET and ET) regions. The volume of each MRI data is 240 × 240 × 155. Labels for the
validation data were not provided; hence, all segmentation results were evaluated using
the Center for Biomedical Image Computing and Analytics (CBICA) Image Processing
Portal (https://ipp.cbica.upenn.edu/ (accessed on 20 January 2024)).

Figure 6. Examples of multimodal MRI. The colors indicate regions of tumors. Red: necrosis and
non-enhancing tumor (NCR/NET); yellow: enhancing tumor (ET); green: edema (ED).

4.2. Implementation Details

The proposed model was implemented using PyTorch and trained on four GeForce
RTX 3090 GPUs for 500 epochs with a batch size of 16. We utilized the AdamW optimizer,
setting the learning rate at 0.001 and a weight decay of 1 × 10−2. The input data for
our network consisted of multiple channels (number of modalities), spatial resolution
H × W, and the depth dimension D (number of slices), represented as C × H × W × D.
The raw input resolution of the images was 240 × 240 × 155. These images were resized to
128× 128× 128 via random cropping. We also applied z-score normalization to standardize
the input data. Additionally, we applied two data augmentation techniques: random mirror

https://ipp.cbica.upenn.edu/


Electronics 2024, 13, 1997 10 of 19

flipping and random intensity shifting. For inference, we used a sliding window approach
with an overlap of 0.5 for neighboring voxels.

4.3. Evaluation Metrics

Two widely used evaluation metrics in brain tumor segmentation, the Dice score
and 95% Hausdorff Distance, were employed to evaluate the superiority of the proposed
model. Both metrics assess the similarity between the predicted results and the ground
truth. A higher Dice score and lower Hausdorff Distance indicate a higher similarity.
The definitions of these two evaluation metrics are as follows:

Dice(G, P) =
2 ∑I

i=1 Gi · Pi

∑I
i=1 Gi + ∑I

i=1 Pi
(14)

HD(G′, P′) = max{max
g′∈G′

min
p′∈P′

∥g′ − p′∥ max
p′∈P′

min
g′∈G′

∥p′ − g′∥} (15)

where Gi and Pi represent the ground truth and predicted values of voxel i, and G′ and P′

denote the set of surface points of the ground truth and predicted values, respectively.

4.4. Comparison with Other Methods

To validate the efficiency of our method for brain tumor segmentation, we conducted
extensive comparisons with recent 2D and 3D segmentation methodologies. For 2D-
based models, our comparative analysis included MTAU [9], Probabilistic U-Net [34],
and AGResU-Net [11], all of which employ attention mechanisms to enhance the segmen-
tation accuracy. For 3D-based models, we compared our method with several advanced
architectures. These include the 3D U-Net [12], Huang [13], CANet [14], and Deep Su-
pervision CNN [35]; models leveraging multi-scale information such as AFPNet [16],
DenseAFPNet [17], and an MR Encoder–Decoder [36]; and models utilizing attention
mechanisms, including NLCA-VNet [20], scSE-NLV-Net [21], Single-Level U-Net3D [19],
and AMMGS [18].

Tables 1 and 2 present the average Dice scores and Hausdorff Distance metrics for
these methods and our model for the BraTS 2018 and 2020 validation sets, respectively.
The performance evaluation results for all the models were obtained either by citing the
respective papers or through online validation available on official websites, with bold font
indicating the highest scores achieved for each category, and underlined text marking the
second highest scores.

Table 1. Comparison of different methods on BraTS 2018 validation set. A higher Dice score (↑) and
a lower Hausdorff Distance (↓) indicate better performance. Bold font indicates the highest scores
achieved for each category, while underlined text marks the second highest scores.

Methods
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓

ET WT TC AVG. ET WT TC AVG.

3D U-Net [12] 73.44 86.38 76.58 78.80 9.370 12.000 10.370 10.580
AFPNet [16] 72.55 84.94 75.00 77.50 – – – –
DenseAFPNet [17] 75.25 86.42 77.38 79.68 – – – –
AGResU-Net [11] 77.20 87.20 80.80 81.73 3.570 5.620 8.360 5.850
Huang et al. [13] 71.70 80.10 75.90 75.90 9.900 13.200 15.200 12.767
CANet [14] 76.70 89.80 83.40 83.30 3.859 6.685 7.674 6.073
NLCA-VNet [20] 75.00 87.00 78.00 80.00 5.390 7.060 9.890 7.447
Single-Level U-Net3D [19] 74.20 88.48 80.98 81.22 6.670 10.830 10.250 9.250
Ours 77.32 90.21 84.66 84.06 3.441 5.101 5.872 4.805

For the BraTS 2018 validation set (Table 1), our model achieved Dice scores of 77.32%,
90.21%, and 84.66% for the ET, WT, and TC regions, respectively, complemented by Haus-
dorff Distances of 3.441 mm, 5.101 mm, and 5.872 mm, respectively. These results had an
average Dice score of 84.06% and an average Hausdorff Distance of 4.805 mm, positioning
our model at the forefront of the performance metrics across all evaluated regions on
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the BraTS 2018 dataset. In the realm of ET, AGResU-Net was identified as the leading
contender in the literature. Our proposed model exhibited incremental improvements in
ET, with a 0.12% increase in the Dice score and a 0.129 mm reduction in the Hausdorff
Distance. For the WT and TC scenarios, CANet delivered optimal outcomes. Additionally,
our model demonstrated improvements in the Dice score of 0.41% and 1.26% and in the
Hausdorff Distance of 1.584 mm and 1.802 mm for WT and TC, respectively, underscoring
its proficiency in delineating small tumor regions.

Table 2. Comparison of different methods on BraTS 2020 validation set. A higher Dice score (↑) and
a lower Hausdorff Distance (↓) indicate better performance. Bold font indicates the highest scores
achieved for each category, while underlined text marks the second highest scores.

Methods
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓

ET WT TC AVG. ET WT TC AVG.

3D U-Net [12] 68.76 84.11 79.06 77.31 50.983 13.366 13.607 25.985
MTAU [9] 57.00 73.00 61.00 63.67 47.220 24.030 31.530 34.260
Huang et al. [13] 75.00 86.00 77.20 79.40 34.600 6.700 15.100 18.800
Deep Supervision CNN [35] 70.40 87.94 77.31 78.55 – – – –
MR Encoder–Decoder [36] 66.00 87.00 80.00 77.67 47.330 6.910 7.800 20.680
Probabilistic U-Net [34] 68.89 81.90 71.68 74.16 36.886 41.524 26.275 34.895
scSE-NLV-Net [21] 64.70 81.80 75.90 74.13 44.400 10.000 14.600 23.000
NLCA-VNet [20] 67.00 87.60 76.90 77.17 50.800 9.400 12.500 24.233
Single-Level U-Net3D [19] 72.91 88.57 80.19 80.56 31.970 10.260 13.580 18.603
AMMGS [18] 78.03 88.31 81.72 82.69 23.615 7.169 7.988 12.924
Ours 75.52 90.43 84.51 83.49 25.104 5.047 5.410 11.854

For the BraTS 2020 validation set (Table 2), our methodology had Dice scores of
75.52%, 90.43%, and 84.51% for ET, WT, and TC, respectively, with Hausdorff Distances
of 25.104 mm, 5.047 mm, and 5.410 mm, respectively. Consequently, the proposed model
attained an average Dice score of 83.49% and an average Hausdorff Distance of 11.854 mm
across these regions. Aside from the ET region, our model demonstrated superior perfor-
mances in terms of both Dice scores and Hausdorff Distances for WT and TC regions in
the BraTS 2020 dataset compared to other models. In the ET region, the AMMGS model
attained the highest performance. Our model showed a slight decline in performance
for ET of 2.51% in Dice score and 1.489 mm in Hausdorff Distance but exhibited notable
improvements in the WT and TC regions, with increases in the Dice score of 2.12% and
2.79% and decreases in the Hausdorff Distance of 2.122 mm and 2.578 mm, respectively.
Our model exhibited the best performance when averaged across all considered regions for
both the Dice scores and Hausdorff Distances.

The demonstrated efficacy of the TACA-RNet on the BraTS 2018 and 2020 validation
sets underscores its superior capability to harness the full spectrum of inherent 3D spatial
orientations of MRI. By meticulously integrating the axial, coronal, and sagittal perspectives,
the TACA-RNet provides a deeper understanding of complex spatial relationships within
volumetric MRI data. This comprehensive approach allows for the precise identification
of tumor boundaries across various tumor types and scales, facilitated by innovative
modules of the model designed for multi-scale contextual information processing and
focused dimensional reduction. Moreover, the remarkable performance of the TACA-
RNet in distinguishing small tumor regions and its ability to effectively integrate multi-
scale contextual information affirm its advancements over conventional methodologies.
Our comparative experiments validated not only the model’s efficiency in enhancing the
segmentation accuracy but also its potential in setting a new benchmark for brain tumor
segmentation research, demonstrating its superiority by surpassing existing approaches
across all evaluated regions.

4.5. Ablation Study

In this section, we describe an in-depth ablation study conducted to evaluate various
modules in the segmentation task using the BraTS 2020 dataset. Due to the absence of
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ground truth labels in the official validation dataset, we divided the training dataset into a
randomized 9:1 split. This split produced a validation set, which constituted 10% of the
training dataset and was used primarily for visualization purposes. All visualizations were
exclusively performed with this validation set. The quantitative evaluation results of the
ablation studies, presented in the tables, were validated using an official website to confirm
their robustness and ensure an accurate performance comparison.

4.5.1. Analysis of the Impact of Tri-Axis Integration within the TACR

The first ablation study was conducted to validate the efficacy of utilizing all the three
axis orientations within the TACR module of the proposed TACA-RNet. This experiment
was structured to assess the performance variations when employing the TACR module
aligned exclusively along the axial, coronal, and sagittal axes, in addition to a configuration
in which all three axes were integrated. We conducted four experiments under consistent
conditions, where the B0 branch of the TACR module was consistently used, and the
branches designated as B1 for axial, B2 for coronal, and B3 for sagittal were selectively
applied. For instance, a TACR module using only the axial orientation employs only B0 and
B1. The results are presented in Table 3, in which the highest performance is highlighted
in bold.

Table 3. Evaluation results of the TACR module across individual and combined anatomical axes
(axial, coronal, and sagittal) on the BraTS 2020 validation dataset. A higher Dice score (↑) and a lower
Hausdorff Distance (↓) indicate better performance. Bold font indicates the highest scores achieved
for each category.

Method
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓

ET WT TC ET WT TC

TACR (Axial) 74.69 89.56 82.63 30.229 7.807 9.554
TACR (Coronal) 72.46 88.78 80.17 33.343 8.520 15.090
TACR (Sagittal) 74.34 89.23 81.02 33.280 6.467 11.413
TACR (Axial + Coronal + Sagittal) 75.86 90.07 83.09 25.242 5.239 6.351

In our experiments on the BraTS 2020 dataset, integrating the axial, coronal, and sagit-
tal orientations within the TACR module of the TACA-RNet resulted in an enhanced
segmentation performance compared to configurations where the TACR module was
aligned exclusively along a single axis. While the axial orientation typically used in 2D
models showed a higher performance than the other individual axial, coronal, and sagittal
orientations, it was surpassed by the integrated module that leveraged all three orienta-
tions. This improvement underscores the significance of TACR in the model architecture,
particularly during the process of channel reduction across the encoder’s high-level fea-
tures. In meticulously designing TACR to emphasize the unique 3D spatial orientations
inherent in MRI data, our approach not only deepens the understanding of complex spatial
relationships within volumetric MRI data but also significantly boosts the accuracy and pre-
cision of brain tumor segmentation. This advancement demonstrates the need to consider
the three-axis structure of MRI to enhance the segmentation performance, validating the
effectiveness of our method in leveraging the full spectrum of MRI volumetric information.

Figure 7 illustrates the tumor segmentation outputs of the TACR module across
various anatomical orientations on the BraTS 2020 dataset. From left to right, each column
shows the segmentation results with the TACR module aligned separately in the axial,
coronal, and sagittal orientations, followed by the integrated approach using all three
orientations, and finally, the ground truth for comparison. In the visualization results,
the performance of the NCR/NET regions, marked in red, and the ED region, highlighted
in green, was inaccurately predicted by all models except for the one integrating all three
orientations. Specifically, in the first row, models exclusively employing axial, coronal,
or sagittal orientations incorrectly identified normal tissue as ED in the same slice, and a
review of the 3D-rendered results revealed a failure to predict within NCR/NET regions.
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Furthermore, in the second row, all models, except the one integrating all three orientations,
incorrectly identified normal tissue as the ED region.

Figure 7. Visual comparison of tumor segmentation outputs from the TACR module across different
anatomical orientations on the BraTS 2020 dataset. The colors indicate regions of tumors. Red:
NCR/NET; yellow: ET; green: ED.

4.5.2. Assessment of Impact of Proposed Modules

In the second ablation study, meticulous evaluations were performed to discern the
individual contributions of each component module to the overall performance of the pro-
posed model. This comparative analysis involved the base network (BN), which comprised
a CNN encoder and a PD, as well as variations in the base model enhanced with additional
modules: the TACR, MSCF, and 3D ARA modules. These modules were methodically
integrated to examine their individual and collective impacts on segmentation accuracy.
The results are presented in Table 4, with the best performances highlighted in bold.

In our experiments on the BraTS 2020 dataset, the introduction of our designed mod-
ules led to notable improvements in the segmentation performance compared to the BN.
Specifically, the Dice scores increased by 1.05%, 1.27%, and 3.09% for the ET, WT, and TC tu-
mor regions, respectively. Moreover, the Hausdorff Distances showed significant reductions
of 5.791 mm, 3.11 mm, and 15.925 mm across these regions. These enhancements attest to
the effectiveness of our modules in brain tumor segmentation tasks. The implementation of
the TACR module led to improved performance in all tumor regions, both in terms of Dice
scores and Hausdorff Distances. This improvement can be attributed to TACR’s capability
to handle unique 3D spatial orientations of MRI data (axial, coronal, and sagittal), enabling
the model to accurately capture and emphasize critical features. Further integration of the
MSCF module yielded higher Dice scores and lower Hausdorff Distances. This outcome
demonstrates the capacity of the MSCF module to reflect the complexity and variability of
tumor sizes and their spatial distribution within the MRI data. When the 3D ARA module
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was added, without the MSCF module, there was a slight decrease in Dice scores com-
pared to configurations using the MSCF module. However, the 3D ARA module’s focus on
capturing essential details for accurate tumor boundary delineation resulted in improved
accuracy in terms of Hausdorff Distances. This highlights the importance of high-resolution
feature capture for enhancing segmentation precision. Ultimately, integrating all modules
resulted in the highest segmentation accuracy, confirming the synergistic benefits of our
comprehensive module design.

Table 4. Evaluation results of assessing the impact of proposed modules on the BraTS 2020 validation
set. BN: base network (consists of a CNN encoder), PD: partial decoder, TACR: Tri-Axis Channel
Reduction module, MSCF: MultiScale Contextual Fusion module, 3D ARA: 3D Axis Reverse Attention
module. The “+” in “BN + PD” signifies that the Conv Block has replaced the receptive field block
between the encoder and PD, and another plus sign indicates that the corresponding components
were directly added to the original model. A higher Dice score (↑) and a lower Hausdorff Distance (↓)
indicate better performance. Bold font indicates the highest scores achieved for each category.

Method
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓

ET WT TC ET WT TC

BN + PD 74.81 88.80 79.19 31.033 8.349 22.276
BN + PD + TACR 74.82 89.32 81.44 30.253 6.798 21.103
BN + PD + TACR + MSCF 75.25 90.03 82.19 28.007 6.075 12.733
BN + PD + TACR + 3D ARA 75.18 89.51 82.01 25.551 5.890 8.625
BN + PD + TACR + MSCF + 3D ARA 75.86 90.07 83.09 25.242 5.239 6.351

Figure 8 presents visualization results of the ablation study for the configuration mod-
ules on the BraTS 2020 dataset. From left to right, each column represents the base model,
the model incorporating the TACR module, the model introducing both the TACR and
MSCF modules, the model introducing both the TACR and 3D ARA modules, the model
with all the modules integrated, and ground truth. In the visualization results, the perfor-
mance in the ED region, marked in green, was inaccurately predicted across all models,
excluding the model incorporating all modules. Specifically, in the first row, there was a fail-
ure to predict the ED region located on the right side, which aligned with the ground truth.
Conversely, in the second row, normal tissue was erroneously identified as the ED region.

4.5.3. Effectiveness of MultiScale Contextual Fusion Module

The third ablation study was conducted to demonstrate the efficacy of MSCF in har-
nessing the complexity and variability of tumor sizes, as well as their spatial distribution
across MRI data. Inspired by the ASPP and CFP, the MSCF module implements a hybrid
approach that encapsulates contextual information across various scales and achieves a
synergistic effect. The ASPP aspect of MSCF utilizes a series of dilation rates to extract
features from a broad range of receptive fields without compromising resolution. Concur-
rently, CFP introduces a sequence of dilation rates designed to progressively capture larger
contextual features, thereby enhancing the network’s spatial discernment across scales.
Table 5 presents the comparative analysis results for the BraTS 2020 validation dataset,
focusing on the performance of the MSCF module, with the best scores highlighted in bold.
The superiority of Full MSCF, which achieved the highest Dice scores and lowest Hausdorff
distances when all components were integrated, is clearly demonstrated. These improve-
ments are crucial because the Full MSCF module ensures a comprehensive representation
of the spatial and contextual nuances essential for accurately delineating tumor boundaries.
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Figure 8. Visual comparison of tumor segmentation outputs from different configurations of the
proposed model on the BraTS 2020 dataset. The colors indicate regions of tumors. Red: NCR/NET;
yellow: ET; green: ED.

Table 5. Evaluation results of the effectiveness of the MSCF module on the BraTS 2020 validation set.
ASPP and CFP components, integral to the MSCF structure, were individually assessed to discern
their contribution to the module’s efficacy. A higher Dice score (↑) and a lower Hausdorff Distance (↓)
indicate better performance. Bold font indicates the highest scores achieved for each category.

Method
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓

ET WT TC ET WT TC

MSCF w/o ASPP 74.13 88.69 81.52 34.032 5.759 12.957
MSCF w/o CFP 75.67 89.38 82.21 32.811 5.347 11.636
Full MSCF 75.86 90.07 83.09 25.242 5.239 6.351

Figure 9 presents a visual comparison of the tumor segmentation outputs across
various MSCF configurations on the BraTS 2020 dataset. From left to right, each column rep-
resents the MSCF without the ASPP component (MSCF w/o ASPP), MSCF without the CFP
component (MSCF w/o CFP), Full MSCF with all components integrated, and the ground
truth for comparison. In the visualization results, the performance in the NCR/NET regions,
marked in red, was inaccurately predicted by all models except Full MSCF. Specifically,
in the first row, the MSCF without the ASPP component failed to accurately predict the
NCR/NET regions that matched the actual values. Moreover, the MSCF without the CFP
component predicted only a small portion of this region. Additionally, in the second row,
the same slices reveal that both MSCF without the ASPP component and MSCF without
CFP component failed to predict the NCR/NET regions. These outcomes were further con-
firmed through 3D-rendered visualization results. While the Full MSCF predicts NCR/NET
regions that closely resemble that of the ground truth, both the MSCF without the ASPP
component and the MSCF without the CFP component failed to accurately predict the
NCR/NET regions.
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Figure 9. Visual comparison of MSCF module variations for tumor segmentation on the BraTS
2020 dataset. The colors indicate regions of tumors. Red: NCR/NET; yellow: ET; green: ED.

5. Conclusions

In this study, we introduced the TACA-RNet, which was designed to automate the
segmentation of brain tumors from multimodal MRI data. The TACA-RNet uniquely
incorporates the TACR module to leverage the distinct spatial orientations of MRI data
(axial, coronal, and sagittal), thereby enhancing the model’s understanding and processing
of volumetric information. This was further complemented by the integration of PD, MSCF,
and 3D ARA modules, each contributing to the model’s ability to accurately delineate
brain tumors. Our comprehensive evaluations using the BraTS 2018 and 2020 datasets
demonstrated the superiority of the TACA-RNet over existing segmentation techniques,
with significant advancements in the segmentation accuracy and precision. Ablation studies
further validated the significance of the TACR module in the TACA-RNet for brain tumor
segmentation using MRI data. This evaluation demonstrated the central role of TACR in
harnessing the unique 3D spatial orientations of MRI data. Subsequently, the contribution of
individual modules within the model was examined, emphasizing their collective impact on
achieving precise segmentation across various tumor ranges and sizes. Finally, the analysis
of the impact of the MSCF module in multi-scale fusion settings revealed its effectiveness
in capturing the variability and complexity of tumor sizes and their spatial distribution.

Our approach not only aids the precise localization and diagnosis of brain tumors
but also shows promise in addressing the challenges of multimodal brain tumor MRI
segmentation. However, the issue of missing modalities in MRI data is often encountered in
clinical practice, which significantly affects segmentation tasks. Therefore, it is crucial to de-
velop segmentation methods capable of handling missing modalities. Future research could
explore strategies to enhance the segmentation performance in the presence of missing
modalities, aiming to bolster the robustness and clinical applicability of the TACA-RNet.
This direction promises to refine the utility of the TACA-RNet for clinical applications,
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offering valuable tools for medical professionals in the diagnosis of brain tumors. Further-
more, TACA-RNet’s potential extends beyond diagnostic imaging. In the context of drug
development for brain tumors, TACA-RNet could play a pivotal role in clinical trials by
monitoring tumor responses to new therapeutic agents. This capability facilitates quicker
assessment of drug efficacy, enhancing the overall efficiency of drug development.

Author Contributions: Conceptualization, H.K.; data curation, H.K.; methodology, H.K.; super-
vision, S.P.; validation, H.K. and Y.J.; visualization, H.K.; writing—original draft, H.K. and Y.J.;
Writing—review and editing, H.K., Y.J. and H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Research Foundation (NRF) funded by the
Korean government (MSIT) (No. RS-2023-00229822).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets were provided by BraTS 2018 Challenge and BraTS
2020 Challenge and are allowed for personal academic research. The specific link to the datasets is
https://ipp.cbica.upenn.edu/ (accessed on 20 January 2024).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

In this Appendix, we provide the network details of the TACA-RNet in Table A1.

Table A1. The design details of our proposed TACA-RNet. Conv3 denotes a 3 × 3 × 3 convolutional
layer with specified number of filters; GN denotes group normalization (groups = 8); i denotes the
i-th layer. Note that the size of the input image is 4 × 128 × 128 × 128.

Stage Block Name Details Output Size

CNN Encoder

EnBlock (i = 1)
[

GN, ReLU, Conv3 (32 filters)
]
× 1 32 × 128 × 128 × 128

DownSample1 Max pooling 3d 32 × 64 × 64 × 64

EnBlock (i = 2)
[ GN, ReLU, Conv3 (64 filters)

GN, ReLU, Conv3 (64 filters)
]
× 2 64 × 32 × 32 × 32

DownSample2 Max pooling 3d 128 × 16 × 16 × 16

EnBlock (i = 3)
[ GN, ReLU, Conv3 (128 filters)

GN, ReLU, Conv3 (128 filters)
]
× 2 128 × 16 × 16 × 16

DownSample3 Max pooling 3d 256 × 8 × 8 × 8

EnBlock (i = 4)
[ GN, ReLU, Conv3 (256 filters)

GN, ReLU, Conv3 (256 filters)
]
× 2 256 × 8 × 8 × 8

DownSample4 Max pooling 3d 512 × 4 × 4 × 4

EnBlock (i = 5)
[ GN, ReLU, Conv3 (512 filters)

GN, ReLU, Conv3 (512 filters)
]
× 4 512 × 4 × 4 × 4

TACR Module TACR 32 × 128/2i−1 × 128/2i−1 × 128/2i−1

PD PD 96 × 32 × 32 × 32

MRF MRF 96 × 128/2i−1 × 128/2i−1 × 128/2i−1

MSCF Module MSCF 32 × 128/2i−1 × 128/2i−1 × 128/2i−1

3D ARA Module 3D ARA 3 × 128/2i−1 × 128/2i−1 × 128/2i−1

Deep Supervision Final Layer Trilinear interpolation 3 × 128 × 128 × 128

https://ipp.cbica.upenn.edu/
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