A Data Attack Detection Framework for Cryptography-Based Secure Aggregation Methods in 6G Intelligent Applications
Abstract
:1. Introduction
- New network with native AI. Researchers believe that AI can be integrated into mobile communication systems, resulting in a new intelligent network technology. Consequently, 6G-network users will not only generate data but also undertake data processing and analysis tasks;
- Enhanced wireless-transmission technologies. As heterogeneous networks become widely interconnected through terahertz communications, users in any geographic location can interact with application service providers in real time, reducing the spatial limitations of applications;
- Native network security. As cross-domain data sharing becomes more frequent, basic security functions, such as secure multi-party computation and secure aggregation algorithms such as homomorphic encryption [2], will be embedded in the network architecture, providing a fundamental trust guarantee for 6G intelligence applications.
- We present a comprehensive data attack detection framework tailored for secure aggregation methods, which effectively identifies malicious activities such as data tampering, data resale, data poisoning, and free-riding attacks, all while preserving the confidentiality of 6G user data;
- We provide a general design pattern for ensuring data integrity, verifying ownership, and evaluating contribution levels in encrypted states. Additionally, we analyze typical algorithmic cases and offer recommended strategies;
- We demonstrate the viability of our proposed framework within next-generation 6G networks through a comprehensive security analysis and evaluate the limitations of these approaches.
2. Related Work
2.1. Secure Aggregation Algorithms in the Context of 6G
2.2. Data Security Issues Arising in 6G Networks
3. Threat Model
3.1. Tampering Attacks on Encrypted Data
3.2. Resale Attacks on Encrypted Data
3.3. Poisoning Attacks on Encrypted Data
3.4. Free-Riding Attacks on Encrypted Data
4. Details of Our Framework
4.1. The Overview of Our Proposed Framework
4.2. Correctness Verification for Ciphertext-Oriented Tampering Attacks
4.3. User Data-Ownership Authentication against Ciphertext Resale Attacks
4.4. Ciphertext Data-Contribution Assessment for Poisoning and Free-Riding Attacks
5. Security Analysis
5.1. Verification of the Correctness of Transmission, Encryption/Decryption, and Aggregation
5.2. Legitimacy Verification of Encrypted-Data Sources
5.3. Validation of Participants’ Contribution Assessment
6. Experiments Evaluation
6.1. Secure Aggregation Data Correctness Verification
6.2. Ciphertext Data-Ownership Authentication
6.3. Evaluation of the Contribution of Ciphertext Data
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hüseyin, A.; Dogan-Tusha, S.; Yazar, A. 6G vision: An ultra-flexible perspective. ITU J. Future Evol. Technol. 2020, 1, 121–140. [Google Scholar] [CrossRef]
- Das, D. Secure cloud computing algorithm using homomorphic encryption and multi-party computation. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 391–396. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, J.; Feng, B.; Wang, Q.; Shen, C.; Li, Q. SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning. IEEE Trans. Dependable Secur. Comput. 2022, 19, 3329–3342. [Google Scholar] [CrossRef]
- Pillutla, K.; Kakade, S.; Harchaoui, Z. Robust Aggregation for Federated Learning. IEEE Trans. Signal Process. 2019, 70, 1142–1154. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, M.; Yu, H.; Sinnott, R.; Liu, H. Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation. IEEE Trans. Netw. Sci. Eng. 2023, 10, 205–222. [Google Scholar] [CrossRef]
- Elkordy, A.; Avestimehr, A. HeteroSAg: Secure Aggregation With Heterogeneous Quantization in Federated Learning. IEEE Trans. Commun. 2020, 70, 2372–2386. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, N.; Tao, M. Clustered federated learning with weighted model aggregation for imbalanced data. China Commun. 2022, 19, 41–56. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Deng, X.; Wan, S. FedCPF: An Efficient-Communication Federated Learning Approach for Vehicular Edge Computing in 6G Communication Networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 1616–1629. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, J.; Chu, X.; Gao, S.; Yao, Y.; Gu, R.; Tang, Y. VFChain: Enabling verifiable and auditable federated learning via blockchain systems. IEEE Trans. Netw. Sci. Eng. 2021, 9, 173–186. [Google Scholar] [CrossRef]
- Fu, A.; Zhang, X.; Xiong, N.; Gao, Y.; Wang, H.; Zhang, J. VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT. IEEE Trans. Ind. Inform. 2020, 18, 3316–3326. [Google Scholar] [CrossRef]
- Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 911–926. [Google Scholar] [CrossRef]
- Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. Deepchain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2438–2455. [Google Scholar] [CrossRef]
- Shin, Y.; Noh, G.; Jeong, I.; Chun, J. Securing a Local Training Dataset Size in Federated Learning. IEEE Access 2022, 10, 104135–104143. [Google Scholar] [CrossRef]
- Zheng, Y.; Lai, S.; Liu, Y.; Yuan, X.; Yi, X.; Wang, C. Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization. IEEE Trans. Dependable Secur. Comput. 2022, 20, 988–1001. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 2020, 35, 234–241. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu l Liu, Y. Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet Things J. 2020, 8, 1817–1829. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 2019, 16, 4177–4186. [Google Scholar] [CrossRef]
- Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! targeted clean-label poisoning attacks on neural networks. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Nelson, B.; Barreno, M.; Chi, F.J.; Joseph, A.D.; Rubinstein, B.I.; Saini, U.; Sutton, C.; Tygar, J.D.; Xia, K. Exploiting machine learning to subvert your spam filter. LEET 2008, 8, 16–17. [Google Scholar]
- Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. In Proceedings of the International Conference on Machine Learning; PMLR: Long Beach, CA, USA, 2019; pp. 634–643. [Google Scholar]
- Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [Google Scholar] [CrossRef]
- Shen, S.; Tople, S.; Saxena, P. Auror: Defending against poisoning attacks in collaborative deep learning systems. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Los Angeles, CA, USA, 5–9 December 2016; pp. 508–519. [Google Scholar]
- Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Fung, C.; Yoon, C.J.M.; Beschastnikh, I. Mitigating sybils in federated learning poisoning. arXiv 2018, arXiv:1808.04866. [Google Scholar]
- Qu, X.; Wang, S.; Hu, Q.; Cheng, X. Proof of federated learning: A novel energy-recycling consensus algorithm. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2074–2085. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, W.; Chen, Y. Data Quality Detection Mechanism Against Label Flipping Attacks in Federated Learning. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1625–1637. [Google Scholar] [CrossRef]
- Li, L.; Yu, X.; Cai, X.; He, X.; Liu, Y. Contract-Theory-Based Incentive Mechanism for Federated Learning in Health CrowdSensing. IEEE Internet Things J. 2023, 10, 4475–4489. [Google Scholar] [CrossRef]
- Lin, X.; Wu, J.; Li, J.; Zheng, X.; Li, G. Friend-as-Learner: Socially-Driven Trustworthy and Efficient Wireless Federated Edge Learning. IEEE Trans. Mob. Comput. 2023, 22, 269–283. [Google Scholar] [CrossRef]
- Qi, J.; Lin, F.; Chen, Z.; Tang, C.; Jia, R.; Li, M. High-Quality Model Aggregation for Blockchain-Based Federated Learning via Reputation-Motivated Task Participation. IEEE Internet Things J. 2022, 9, 18378–18391. [Google Scholar] [CrossRef]
- Ranathunga, T.; Mcgibney, A.; Rea, S.; Bharti, S. Blockchain-Based Decentralized Model Aggregation for Cross-Silo Federated Learning in Industry 4.0. IEEE Internet Things J. 2023, 10, 4449–4461. [Google Scholar] [CrossRef]
- Wan, J.; Xun, H.; Zhang, X.; Feng, J.; Sun, Z. A privacy-preserving and correctness audit method in multi-party data sharing. In Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies, Guangzhou, China, 4–6 December 2020. [Google Scholar]
- Sun, Z.; Wan, J.; Wang, B.; Cao, Z.; Li, R.; He, Y. An Ownership Verification Mechanism Against Encrypted Forwarding Attacks in Data-Driven Social Computing. Front. Phys. 2021, 9, 739259. [Google Scholar] [CrossRef]
- Sun, Z.; Wan, J.; Yin, L.; Cao, Z.; Luo, T.; Wang, B. A blockchain-based audit approach for encrypted data in federated learning. Digit. Commun. Netw. 2022, 8, 614–624. [Google Scholar]
- Zhou, C.; Fu, A.; Yu, S.; Yang, W.; Wang, H.; Zhang, Y. Privacy-Preserving Federated Learning in Fog Computing. IEEE Internet Things J. 2020, 7, 10782–10793. [Google Scholar] [CrossRef]
- Fan, H.; Huang, C.; Liu, Y. Federated Learning-Based Privacy-Preserving Data Aggregation Scheme for IIoT. IEEE Access 2023, 11, 6700–6707. [Google Scholar] [CrossRef]
- Kalapaaking, A.; Stephanie, V.; Khalil, I.; Atiquzzaman, M.; Yi, X.; Almashor, M. SMPC-Based Federated Learning for 6G-Enabled Internet of Medical Things. IEEE Netw. 2022, 36, 182–189. [Google Scholar] [CrossRef]
- Ma, J.; Naas, S.; Sigg, S.; Lyu, X. Privacy-preserving federated learning based on multi-key homomorphic encryption. Int. J. Intell. Syst. 2021, 37, 5880–5901. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, R.; Jin, Y.; Liang, K.; Ning, J. Distributed Additive Encryption and Quantization for Privacy Preserving Federated Deep Learning. Neurocomputing 2020, 463, 309–327. [Google Scholar] [CrossRef]
- Kalapaaking, A.; Khalil, I.; Rahman, M.; Atiquzzaman, M.; Yi, X.; Almashor, M. Blockchain-Based Federated Learning with Secure Aggregation in Trusted Execution Environment for Internet-of-Things. IEEE Trans. Ind. Inform. 2023, 19, 1703–1714. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, G.; Huang, Y.; Dai, H.; Xiang, Y. Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing. IEEE Trans. Inf. Forensics Secur. 2023, 18, 565–580. [Google Scholar] [CrossRef]
- Sun, Z.; Li, W.; Liang, J.; Yin, L.; Li, C.; Wei, N.; Zhang, J.; Wang, H. A Blockchain-Based Fairness Guarantee Approach for Privacy-Preserving Collaborative Training in Computing Force Network. Mathematics 2024, 12, 718. [Google Scholar] [CrossRef]
- Mohammadi, S.; Sinaei, S.; Balador, A.; Flammini, F. Optimized Paillier Homomorphic Encryption in Federated Learning for Speech Emotion Recognition. In Proceedings of the 2023 IEEE 47th Annual Computers 2023, Software, and Applications Conference (COMPSAC), Torino, Italy, 26–30 June 2023; pp. 1021–1022. [Google Scholar] [CrossRef]
- He, C.; Liu, G.; Guo, S.; Yang, Y. Privacy-Preserving and Low-Latency Federated Learning in Edge Computing. IEEE Internet Things J. 2022, 9, 20149–20159. [Google Scholar] [CrossRef]
Notations | Description |
---|---|
H1(x) | Additive Homomorphic Hashing |
H2(x) | Multiplicative Homomorphic Hashing |
Enc() | Paillier Encryption Process |
Dec() | Paillier Decryption Process |
DOi | Data Owner |
mi | Original Data Item |
ci | Encrypted Data |
Ci | Pedersen Commitment Value |
ri | Random Factor for Commitment Generation |
gu | u-th Power of Generator g |
hv | G v-th Power of Generator h |
R | A Challenge Response |
Ce | e-th Power of Ciphertext C |
Lri | Local Loss of Device i |
Lcj | Local Loss of Device j |
Lij | Quality Assertion of Device i and Device j |
ϵ3 | Threshold Definition for Free-rider Device Identification |
mri | Decrypted Aggregate Gradient of Device i |
mcj | Decrypted Aggregate Gradient of Device j |
Correctness | Privacy | Efficiency | Scalability | |
---|---|---|---|---|
ZKP [35] | √ | √ | ||
Paillier [36] | √ | √ | √ | |
SMPC [37] | √ | √ | √ | |
MTH [38] | √ | √ | ||
ATH [39] | √ | √ | ||
Blockchain [40] | √ | √ |
Encrypted Message Length (bit) | 30 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
Paillier_Enc | 2.79 | 2.92 | 3.40 | 4.12 | 4.86 |
Paillier_Dec | 2.86 | 2.87 | 2.87 | 2.89 | 2.89 |
Encrypted Message Length (bit) | 30 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
Paillier_Enc | 2.79 | 2.92 | 3.40 | 4.12 | 4.86 |
H1(x) | 0.09 | 0.12 | 0.23 | 0.40 | 0.58 |
H2(x) | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
Encrypted Message Count | 5 | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|---|
H1(x) | 0.59 | 0.06 | 0.62 | 0.64 | 0.66 | 0.70 |
H2(x) | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.93 |
Paillier_Dec | 2.90 | 2.94 | 2.98 | 3.10 | 3.19 | 3.31 |
Privacy | Scalability | High Communication Efficiency | High Computational Efficiency | |
---|---|---|---|---|
Pedersen [33] | √ | √ | ||
ZKP [35] | √ | √ | √ | |
HE [38] | √ | |||
VC [41] | √ | √ | √ |
Commit Message Length (bit) | 30 | 50 | 100 | 200 | 300 | 600 | 1200 |
---|---|---|---|---|---|---|---|
PCC | 2.38 | 2.42 | 2.52 | 2.70 | 2.88 | 3.44 | 4.54 |
PCR | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
PCV | 0.70 | 0.73 | 0.83 | 1.00 | 1.20 | 1.77 | 2.86 |
Commit Message Length (bit) | 300 | 600 | 1200 | 2400 |
---|---|---|---|---|
10 | 4.19 | 5.34 | 7.52 | 11.99 |
20 | 4.26 | 5.44 | 7.60 | 12.01 |
30 | 4.36 | 5.49 | 7.69 | 12.21 |
Aggregate Decryption | H1(x) | H2(x) | Pedersen Commitment |
---|---|---|---|
5.99 | 0.16 | 0.87 | 2.17 |
Protection Model Parameters | Identify Malicious Data | High Communication Efficiency | High Computational Efficiency | |
---|---|---|---|---|
BCP | √ | √ | ||
Paillier | √ | |||
Method from Literature [42] | √ | √ | √ | √ |
OPHE [43] | √ | √ | √ | √ |
PL-FedIPEC [44] | √ | √ |
Encrypted Message Length (bit) | 30 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
BCP_Enc | 4.86 | 4.87 | 4.87 | 4.87 | 4.88 |
Paillier_Enc | 2.79 | 2.92 | 3.4 | 4.12 | 4.88 |
Method from literature [42]_Enc | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Encrypted Message Length (bit) | 30 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
BCP_MK_Dec | 9.77 | 9.78 | 9.78 | 9.78 | 9.78 |
Paillier_Dec | 7.34 | 7.34 | 7.34 | 7.34 | 7.34 |
BCP_PK_Dec | 4.87 | 4.87 | 4.87 | 4.87 | 4.87 |
Number of Participants | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|
BCP_MK_Dec | 45.95 | 89.03 | 132.11 | 175.19 | 229.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Liang, J.; Yin, L.; Xu, P.; Li, C.; Wan, J.; Wang, H. A Data Attack Detection Framework for Cryptography-Based Secure Aggregation Methods in 6G Intelligent Applications. Electronics 2024, 13, 1999. https://doi.org/10.3390/electronics13111999
Sun Z, Liang J, Yin L, Xu P, Li C, Wan J, Wang H. A Data Attack Detection Framework for Cryptography-Based Secure Aggregation Methods in 6G Intelligent Applications. Electronics. 2024; 13(11):1999. https://doi.org/10.3390/electronics13111999
Chicago/Turabian StyleSun, Zhe, Junxi Liang, Lihua Yin, Pingchuan Xu, Chao Li, Junping Wan, and Hanyi Wang. 2024. "A Data Attack Detection Framework for Cryptography-Based Secure Aggregation Methods in 6G Intelligent Applications" Electronics 13, no. 11: 1999. https://doi.org/10.3390/electronics13111999
APA StyleSun, Z., Liang, J., Yin, L., Xu, P., Li, C., Wan, J., & Wang, H. (2024). A Data Attack Detection Framework for Cryptography-Based Secure Aggregation Methods in 6G Intelligent Applications. Electronics, 13(11), 1999. https://doi.org/10.3390/electronics13111999