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Abstract: In this study, the problem of a limited number of data samples, which affects the detection
accuracy, arises for the image classification task of steel plate surface defects under conditions of
small sample sizes. A data enhancement method based on generative adversarial networks is
proposed. The method introduces a two-way attention mechanism, which is specifically designed
to improve the model’s ability to identify weak defects and optimize the model structure of the
network discriminator, which augments the model’s capacity to perceive the overall details of the
image and effectively improves the intricacy and authenticity of the generated images. By enhancing
the two original datasets, the experimental results show that the proposed method improves the
average accuracy by 8.5% across the four convolutional classification models. The results demonstrate
the superior detection accuracy of the proposed method, improving the classification of steel plate
surface defects.

Keywords: image processing; dual-path attention mechanism; data augmentation; generative
adversarial networks

1. Introduction

With the progress of industrial technology, steel products have become widely utilized
across numerous fields, such as aerospace engineering, machinery manufacturing, and
the automobile industry. However, in the production process of steel plates, various
external factors can lead to quality issues. Individual steel plate products often have quality
problems, such as surface cracks, scratches, and inclusions. These problems greatly affect
the corrosion resistance and wear resistance of steel plates, so the detection of surface
defects on steel plates is particularly important [1–3].

To address these issues, researchers have developed various surface defect detection
techniques. Previously, manual inspection was a primary method, but its limitations
have become apparent with the evolution of industrial production and increasing quality
demands. Manual inspections are labor-intensive, inefficient, and costly. Moreover, they are
highly prone to human error and environmental factors, such as lighting changes, leading
to inconsistent and unreliable results. These drawbacks make manual inspection unsuitable
for modern, large-scale, complex industrial settings. In contrast, traditional computer
vision employs industrial cameras to capture images, using standard image processing and
machine learning methods for analysis. For instance, the study by Guo Hui and others
introduced a defect feature extraction technique utilizing a Support Vector Machine (SVM)
for steel plate defect identification [4]. Suvdaa et al. proposed an algorithm using the Scale-
Invariant Feature Transform (SIFT) and voting strategy to solve this problem [5]. Although
traditional computer vision methods have made progress in enhancing detection efficiency
and accuracy, they still exhibit notable limitations. These methods typically rely on specific
image features and algorithms, and they are highly sensitive to changes in steel plate
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surface texture and lighting conditions, which limit their generalization and adaptability.
Furthermore, these methods are confined to the detection of known defect types, and
their performance is often unsatisfactory when confronted with new or unknown defect
types [6]. In conclusion, the conventional approaches for identifying surface defects on
steel plates, from manual examinations to classical machine vision methods, face inherent
constraints in efficiency, precision, and adaptability. Such shortcomings not only impair
inspection accuracy but also impede the quality assurance processes in manufacturing.
Consequently, the development of a more proficient, exacting, and robust defect detection
method is imperative to meet the rigorous standards of quality control required in today’s
manufacturing industries.

In contrast, deep learning methods automatically extract and learn the features of
defect images through convolutional neural networks, which have the advantages of
higher accuracy, speed, and the ability to adapt to different defect types [7]. For instance,
scholars Zhang Guangshi et al. used the structure of a dense connected network (Dense
Net) to improve the feature extraction ability [8]. Luo W and Zhang H proposed an
efficient fine-grained image classification method that focuses on boosting the semantic
strength of sub-features in global features. They achieved this through a clever set of
regularization techniques of channel rearrangement and weighting combinations, and
cleverly incorporated this mechanism into existing models without additional parameters,
enabling end-to-end training. This approach has shown impressive results when relying
only on image-level annotations [9]. Chen Y and Yang J aimed to enhance the robustness of
the model against various noises and its ability to deal with occluded or corrupted images
by introducing an adaptive noise dictionary. This research method focuses on the IRRPCA
method to build an effective noise dictionary through which to improve the recognition
rate of facial images [10]. In addition, although deep learning-based methods offer higher
accuracy, speed, and adaptability to various defect types, there are still challenges in data
enhancement processing for small-sample datasets, and the lack of diversity in training
samples may lead to an insufficient generalization ability of the model. Therefore, it is
necessary to propose a new method to overcome these limitations and further promote the
development of steel plate surface defect detection technology.

The development of deep learning technology is based on the successive development
of the Deep Boltzmann Machine (DBM), Pixel Recurrent Neural Network (PixelRNN),
and generative adversarial network (GAN). Data enhancement using methods such as
generative adversarial networks (GANs) on small-sample data has become a hot research
topic [11]. For example, Goodfellow and others first proposed generative adversarial neural
networks and applied them to handwritten digits and facial image generation [12]. Deep
convolutional generative adversarial networks (DCGANs), proposed by Radford et al., are
an improvement upon generative adversarial networks (GANs) [13] which significantly
improve the generative ability and stability of GANs and offer a powerful tool for the study
of image generation and related fields. Kun Liu, Aimei Li et al. proposed the combination of
generative adversarial networks (GANs) with the One-Class Classifier and the utilization of
GANs for automatic feature learning. The One-Class Classifier was used to detect abnormal
samples, thus improving the accuracy and efficiency of surface defect detection of steel
plates [14]. Shengqi Guan, Jiang Chang, et al. proposed an improved generative adversarial
network (GAN) and EfficientNet to classify strip steel defects; they achieved efficient defect
detection in the industrial field through automatic feature extraction and deep learning
algorithms, yielding remarkable results [15]. Although these methods have improved
the speed and accuracy of detection, they still face challenges when dealing with small-
sample datasets, particularly as the model’s generalizability may be limited when there is
insufficient diversity in the training samples. To address this issue, this paper proposes a
generative adversarial network incorporating a dual-path attention module and a U-Net
structure. This paper aims to overcome the limitations of existing methods. In our study
on generative adversarial networks (GANs), we have introduced a dual-path attention
mechanism into the discriminator, along with the integration of the U-Net architecture
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to enhance its performance. This improvement offers more accurate spatial consistency
feedback to the generative model, significantly enhancing the clarity and detail of the
generated images. Additionally, by fully leveraging the advanced learning capabilities
of GANs, we address the challenges associated with data augmentation in small-sample
datasets, thereby increasing the diversity of the training data and reducing the risk of
overfitting. This enables the model to better adapt to unseen data, subsequently improving
product quality and production efficiency, thus effectively propelling the advancement of
metal surface defect detection technology [16].

2. Research Methods

In this study, we present a generative adversarial network (GAN) that is improved with
a dual-path attention mechanism (DPAT) and incorporates a U-Net-based discriminator.
This network, combined with a predictive model, effectively classifies defects, creating a
system for generating and analyzing steel surface defect images. As illustrated in Figure 1,
the integration of U-Net and the DPAT into the GAN improves the precision and quality of
the images produced.
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Figure 1. Generative model framework flowchart. Figure 1. Generative model framework flowchart.

The generator features layers of fully connected units and activation functions, with a
standardized integration layer for stable training. Importantly, embedding the DPAT within
the generator’s second layer boosts its capacity to pinpoint fine image details, refining
the detection of minuscule defects. This prevents significant data loss in the output and
accelerates the learning of data feature relationships.

We have updated the discriminator from a linear to a U-Net structure, enhancing its
global and local decision-making capabilities. It accurately assesses image authenticity,
performs detailed pixel-level classification, and offers continuous spatial feedback to the
generator. This new discriminator improves the precision of the model, encouraging the
generation of more intricate details in images and elevating the overall quality of the
generated pieces.

In short, this structure’s design balances detail with overall image quality and es-
tablishes a strong link between generative and discriminative models. The enhanced
discriminator and DPAT not only sharpen the detail captured but also boost the model’s
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strength in handling complex images. Furthermore, each layer’s deliberate function and
interaction theoretically allow for the precise detection of minor flaws and complex textures,
thus raising the image generation quality without losing essential features.

2.1. Dual-Path Attention Module

This paper introduces the DPAT module to enhance the detection and classification of
minor defects on steel surfaces through deep learning models [17]. By integrating the DPAT
module into the GAN network and utilizing the outputs of the second layer of the generator
and discriminator as inputs to the DPAT module, the model can learn the detailed texture
of the image. The DPAT module processes self-attentive features by integrating average
and maximum pooling layers, capturing feature correlations, and reducing its reliance
on external data. This boosts the model’s ability to detect minor defects with heightened
sensitivity and precision. The DPAT’s design focuses on effectively identifying subtle,
often-missed defects without losing important image details. Its rapid internal correlation
detection also improves the model’s grasp and application of specific image features, which
are depicted in Figure 2.
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Firstly, the feature map y is obtained through feature extraction from the input defec-
tive image. Subsequently, a 1 × 1 convolution operation is applied to reduce the number of
channels in the feature map y, resulting in a new feature map y1, and then y1 is weighted
and summed with the original y to obtain y2, as computed in Equation (1).

y2 = VAtt

S · M(x)

G(x)F(x)T√
dH(x)

+ y (1)

where S is the activation function, VAtt represents the attention computation, F(x) and G(x)
are the feature vectors utilized for computing the attention weights, and M(x) denotes
the input feature vector. Subsequently, we employ mean pooling and maximum pooling
techniques to compress the spatial dimension of the feature map y2, generating a one-
dimensional vector. Subsequently, this one-dimensional vector is then forwarded to a
multilayer perceptron (MLP), which consists of a 1 × 1 convolutional layer, a LeakyReLU
activation function, and a 1 × 1 convolutional layer. Finally, the results derived from
parallel processing through the average pooling layer and the maximum pooling layer
are weighted and summed. Subsequently, the feature map is generated by applying the
Sigmoid activation function and multiplying it with y2 to obtain y3. The computed feature
map y3 is shown in Equation (2).

y3 = Sig{VMLP[T(y)] + VMLP[Q(y)]} × y2 (2)

In this process, VMLP represents the result computed through the multilayer perceptron
(MLP) layer and T(y) represents the average pooled features, whereas Q(y) represents the
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maximum pooled features. Maximum pooling accentuates local details and helps to
facilitate the capture of important local structures in the image, while average pooling
preserves more global information and aids in understanding the overall scene. During the
multiplication process, the parts with larger weights are emphasized and the parts with
smaller weights are suppressed.

This mechanism enhances the performance of the model on a specific task by spatially
aligning features at different locations, thereby enabling the module to concentrate more
on areas that play a pivotal role in the task.

2.2. The Discriminative U-Net Module

Based on generative adversarial networks, the generator structure has been improved
through the replacement of the original discriminative model structure with the U-Net
structure [18]. This novel structure can handle both global and local information. This
improvement facilitates the generative model in presenting richer image details and also
augments the performance of the discriminative model. Furthermore, the architectural
adjustments made to the discriminative model render it more resilient to spoofing attempts,
and the incorporation of the U-Net structure aims to facilitate more information exchange
and feedback to the generator, which makes the generator more effective in understanding
the structure and content of the input image, ultimately leading to the generation of more
accurate synthetic images that closely resemble real ones. The U-Net structure of the
discriminator is shown in Figure 3.
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Based on this, the loss function is adjusted by adopting the Cutout regularization
method. The central concept of this method involves randomly selecting certain regions in
the image and masking them (setting them to zero or assigning a designated fixed value).
This approach encourages the model to place greater emphasis on the characteristics of the
remaining visible regions, thereby enhancing the model’s generalization capability. The
revised loss function of the discriminative model is shown in Equation (3).

LD = LDenc + LDdec (3)

where LDenc represents the loss function of the encoder portion of the discriminative
model; it serves as a metric to quantify the dissimilarity between the discriminator’s
output for the real data and that for the generated data. LDdec is the loss function of
the decoder part of the discriminative model. This function assesses the discriminator’s
capability to distinguish between the real and generated data, and it is elaborated on in
detail in Equations (4) and (5).

LDenc = −Ex,z{{ln Denc[H(x)] + ln{1 + Denc{H[G(z)]}}}} (4)

LDdec = −Ex,z
{
∑ ln{Ddec [H(x)]

}
+ ∑ ln{1 − {Ddec {H[G(z)]}}}} (5)
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where Denc and Ddec represent the encoder part and the decoder component of the discrimi-
native model, respectively; H stands for the Cutout regularization method. The revised
loss function of the generative model is presented in Equation (6).

LG = −EZ
{

ln Denc{H[G(z)]}+ ∑ ln{Ddec{H[G(z)]}}} (6)

3. Analysis and Comparison of Experimental Results

In our studies, we used the NEU Surface Defect Database and GC10-DET datasets for
testing. The NEU dataset [19], created by Northeastern University, contains 1800 gray-scale
images of steel defects like rolled oxide, plaque, and cracks, each 200 × 200 pixels. The
GC10-DET [20], with 2279 images, captures real-world industrial defects of 10 varieties,
including punched holes and creases, in a 2048 × 1000 resolution. These datasets challenge
our defect detection model with varied defect types and sizes.

We have selected DCGAN [12], Style-GAN [21], SRGAN [22], WGAN [23], and the
method proposed in this paper for comparison in our study. For each of the 16 different
categories, 200 epochs of iterations were performed to generate 600 defective images respec-
tively, and in the image quality assessment experiments, 10 evaluations were performed to
select the optimal result.

3.1. Verification of Image Generation Quality

To verify the quality of the generated images, we conducted experiments using various
algorithmic models to perform Fréchet Inception Distance (FID) tests on both the original
dataset and the expanded dataset, respectively [24]. Test comparisons show the model’s
FID performance on generated defect images in Tables 1 and 2 below. A smaller FID value
represents a higher quality of the generated image. The desired value (DV) represents the
benchmark for the optimal FID scenario for the generated images. It signifies the Fréchet
Inception Distance (FID) achieved when comparing the original dataset with itself.

Table 1. Comparison results of FID parameter metrics for images generated from NEU dataset.

Category CR IN PA PS RS SC

DCGAN 229.7 172.9 190.5 203.6 257.8 323.8
Style-GAN 96.4 150.3 123.1 93.8 112.2 146.7

OUR 76.3 116.2 90.0 75.9 98.7 104.8
DV −2.5 −3.6 −4.6 −5.9 −2.9 −6.0

Table 2. Comparison results of FID parameter metrics for images generated from GC10-DET dataset.

Category Ph Wl Cg Ws Os Ss In Rp Cr Wf

WGAN 206.4 195.4 219.4 187.9 199.2 262.6 239.4 231.5 224.3 188.1
SRGAN 177.6 164.3 159.7 144.7 163.5 135.8 168.9 210.6 193.4 129.4

OUR 113.5 126.1 72.8 126.8 88.6 145.4 120.3 198.3 182.1 132.4
DV −3.7 −4.9 −4.1 −5.4 −6.2 −3.2 −5.2 −7.7 −6.5 −4.7

When observing Table 1, we can see that our algorithm achieves a significant improve-
ment under all six types of labels in the comparison results of the images generated from
the NEU dataset. The reduction in FID values ranges from 10% to 20% relative to DCGAN
and Style-GAN. Among them, the improvement is most evident under CR labeling, where
our algorithm achieves an FID value of 76.3, compared to the values of 229.7 and 96.4
for DCGAN and Style-GAN, respectively. Furthermore, our algorithm achieves a greater
improvement of 29% under SC labeling, followed by significant improvements under all
other labels; for the indicators of IN, PA, PS, and RS, the OUR model improved by 32%,
53%, 63%, and 61% compared with the DCGAN model, respectively.

As can be seen from Table 2, after evaluating the performance of the three models
WGAN, SRGAN, and OUR in terms of FID values, it is observed that the OUR model has
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the best overall performance in all categories of defective image generation, with relatively
low FID values, especially in the categories of Cg and Os, which demonstrate better defect
identification and generation capabilities, but it performs poorly in the categories of Rp, Cr,
and Ss. The reason for this is explained as follows: it is due to category imbalance and insuf-
ficient feature extraction. The SRGAN model also outperforms WGAN in most categories,
especially in the In and Wf categories, which can better preserve image details and textures.
In contrast, the WGAN model has relatively high FID values in most defect categories,
generates lower-quality images, and performs poorly in the Ss, Wf, and Rp categories,
which may be limited by its defect recognition and generation capabilities. In the indicators
of Ph, Wl, and Ws, compared with the basic model, there is a 30%~40% improvement.
Compared to the DV values in the ideal case, the OUR model is closer to the ideal FID
values, followed by SRGAN, while WGAN deviates significantly from the ideal FID values.

Figures 4 and 5 display the results of a comparative analysis of images generated by
multiple models.
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Analyzing the images generated in Figures 3 and 4, the results show that after
200 epochs of training, the OUR model’s results are overall better, and the OUR-type
images are intuitively closer to the original dataset, which suggests that the model performs
well in capturing the core features and details of the dataset. It also exhibits greater similar-
ity to the original dataset in terms of texture and local features. However, the features are
not prominent on Cr and Ss types, which can be attributed to insufficient training samples,
thereby resulting in poor model performance because of overfitting.

In contrast, the Style-GAN model has made significant progress in terms of overall
performance, specifically in visual fidelity and diversity. Nevertheless, there remain certain
deficiencies in the micro-level refinement of image details. In particular, regarding bound-
ary clarity and micro-fine feature expression, the images generated by Style-GAN may
exhibit edge blurring. This limitation may arise from the model’s mechanism not being fully
mature in efficiently capturing and accurately reconstructing local edge features during the
iterative construction of the image. Observing the DCGAN-generated images, it is evident
that DCGAN enhances the spatial structure generation of the images through the utilization
of a deep convolutional structure. However, in the actual output, the general contour of the
object often exhibits softer or even blurred characteristics, and the expressiveness of the
key features is relatively weak. This results in a certain limitation in the recognizability of
the generated images. The root cause of this limitation lies in DCGAN being insufficient at
learning the deep and high-resolution features of the underlying dataset during the training
stage, or because of the inefficient information transfer and retention in the generation path.
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The experimental results show that the OUR model excels at fixing various data defects
and enhancing diversity. It produces images that both complement and enrich the original
dataset’s content and distribution. However, its performance drops in complex situations,
especially with rare sample categories. Despite this, the OUR model still offers significant
improvement and potential for further development compared to the existing models.

3.2. Comparison of Model Prediction Results

To verify the performance of our dataset on the classification models, we utilized four
experimentally commonly used models, ResNet, MobileNet, Vgg, and Transformer, for
testing. The aim was to assess the improvement in prediction accuracy of the models before
and after data augmentation [25]. The comparison results of the NEU dataset, both before
and after augmentation, through several comparison tests, are presented in Table 3.

Table 3. Comparison of dataset before and after augmentation.

ResNet MobelNet-V3 Vgg Transformer

Metrics Before Improved Before Improved Before Improved Before Improved
F1-Score 92.92 96.77 95.64 96.77 94.08 96.89 82.39 85.54
Precision 93.95 96.54 95.65 97.23 94.33 96.91 84.23 86.31

Recall 93.00 95.78 95.73 96.66 94.11 96.89 81.69 83.61

From Table 3, it can be observed that the key performance indicators of F1-score, preci-
sion, and recall demonstrate significant improvements. The models achieved an average
accuracy of over 85% for both F1-score and precision, whereas recall exhibited a positive
growth trend of 1% to 2% when compared to the initial state. In Figures 6 and 7, it is evident
that the augmented training set exhibits a smoother and more gradual performance growth
compared to the original dataset throughout the model training process. The average
increase in accuracy (ACC) across different models surpasses 2.7%, and the performance
on the test set remains satisfactory. Upon analyzing the confusion matrix, it becomes
intuitive that most categories are predicted with high accuracy; however, there exist certain
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categories that are challenging to categorize and are thus misclassified to a certain degree.
Overall, the improvement measures implemented in this study demonstrate substantial
progress across various metrics, thereby offering a referential direction for optimizing and
addressing specific category identification challenges.
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Within the intricate architectures of deep learning models, a profound comprehen-
sion of the individual contribution of each component or parameter to the overall model
performance is absolutely crucial. Such clarity assists in purging superfluous elements,
fine-tuning the functionality of the model, and fostering a deeper intellectual engagement
with how we can build upon the existing framework to achieve enhancement. The method-
ology encapsulated in this paper integrates multiple innovative modules and technological
advances. In an effort to demystify the specific contributions of each segment to the ulti-
mate performance, we have undertaken comprehensive ablation studies. We conducted
controlled experiments with four model setups: the original model, the original model with
DPAT data enhancement (Original + DPAT), the original model combined with the U-Net
structure (Original + U-Net), and a model integrating both the DPAT and U-Net (Original +
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DPAT + U-Net). We rigorously maintained control by training and testing all models on the
same datasets to ensure fairness and comparability. During training, we closely monitored
the key metric, mAP, to precisely assess each model’s performance trends.

As shown in Figures 8 and 9, the experimental findings reveal that the combined
model incorporating both the DPAT and U-Net components (Original + DPAT + U-Net)
outperforms all other experimental models in terms of recognition efficacy; the average
accuracy (mAP) of the two sets is approximately 85% and 80%, respectively. mAP values
improved by about 8.5% compared to the control group that relied only on the basic model.
Of particular note is the fact that while models employing either a single DPAT enhance-
ment strategy or the standalone U-Net architecture do exhibit some level of performance
improvement over the original model, such enhancements are relatively less substantial
when juxtaposed with those achieved by the composite model.
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Upon examining the Original + DPAT + U-Net model, we found that its performance
is erratic in the early training stages, indicating a struggle to adapt initially. This could
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be because of the model’s heightened complexity from added data augmentation and the
intricate U-Net design. As a result, it may need more iterations to fine-tune its parameters
and learn detailed features. Moreover, using the DPAT and U-Net together could slow
down convergence, especially with less-than-ideal initial parameter settings. Finally, the
choice of training strategy also affects how swiftly and steadily the model adapts, with
factors like improper learning rates or too much regularization possibly impeding effective
training and stable progress.

In a further analysis, it is imperative to note the crucial impact that image resolution
has on the difficulty of model training and the predictive results. While high-resolution
images carry abundant information and subtle details, they also demand a higher learning
and processing capacity from the model. In particular, in the GC10-DET dataset, the
number of pixels in a single image increase by approximately 50 times compared to the
NEU dataset. The prediction accuracy of the former is significantly lower than that of the
latter. The amount of information that the model needs to process and learn significantly
increases, causing a complexity surge that even data augmentation techniques struggle
to fully compensate for, resulting in performance degeneration because of insufficient
detail capture. Therefore, during the process of data augmentation and model training,
the judicious selection and adjustment of image resolution, as well as the design of model
architectures that can adapt to different resolution requirements, become key factors in
enhancing model performance.

The ablation studies conducted have further substantiated the pivotal role of the
bidirectional attention mechanism and the U-Net architecture in determining the results, as
well as the robustness of our model when addressing the challenges of learning from small
sample sizes. These experiments furnish our approach with decisive quantitative backing
and carve out a valuable perspective for future research endeavors. We hope that through
these ablation studies, researchers will acquire a clear appreciation of why each design step
was imperative and how they collectively augment the performance of our model. The
transparency and rigor of our experimental approach are intended to serve as a reference
point for researchers who may wish to replicate or refine our methods in future studies.

4. Conclusions

In this paper, the problem of a limited number of data samples, which affects the
accuracy of detection, persists in classifying steel plate surface defect images under small
sample conditions. A data enhancement method based on the generative adversarial
network is proposed. By introducing a dual-path attention module mechanism and im-
proving the discriminator model, the target detection ability in this scenario is effectively
improved. The experimental results demonstrate that the algorithm proposed in this paper
outperforms the comparison algorithm, effectively enhancing the detection accuracy while
guaranteeing the detection efficiency, and improving the accuracy of defect detection on
the steel surface under small sample conditions. The data enhancement method proposed
in this paper has a positive impact on the overall predictive performance of the model and
is expected to provide strong technical support for the development of intelligent defect
detection in the steel manufacturing industry.
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