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Abstract: Federated learning (FL) is a machine-learning framework that effectively addresses pri-
vacy concerns. It harnesses fragmented data from devices across the globe for model training and
optimization while strictly adhering to user privacy protection and regulatory compliance. This
framework holds immense potential for widespread applications in the smart-grid domain. Through
FL, power companies can collaborate to train smart-grid models without revealing users’ electricity
consumption data, thus safeguarding their privacy. However, the data collected by clients often
exhibits heterogeneity, which can lead to biases towards certain data features during the model-
training process, therefore affecting the fairness and performance of the model. To tackle the fairness
challenges that emerge during the federated-learning process in smart grids, this paper introduces
FedCSGP, a novel federated-learning approach that incorporates client sampling and gradient projec-
tion. The main idea of FedCSGP is to categorize the causes of unfairness in federated learning into
two parts: internal conflicts and external conflicts. Among them, the client-sampling strategy is used
to resolve external conflicts, while the gradient-projection strategy is employed to address internal
conflicts. By tackling both aspects, FederCSGP aims to enhance the fairness of the federated-learning
model while ensuring the accuracy of the global model. The experimental results demonstrate that
the proposed method significantly improves the accuracy of poorly performing clients in smart-grid
scenarios with lower communication costs, therefore enhancing the fairness of the federated-learning
algorithm.

Keywords: federated learning; fairness; communication costs

1. Introduction

The rapid development of high-tech technologies such as big data, artificial intelli-
gence, the Internet of Things (IoT), digitization, and intelligence has become the daily work
and lifestyle of people worldwide [1]. However, various industries are currently grappling
with challenges related to fragmented data, limited data sharing, and data silos, which pose
significant obstacles to the further advancement of high-tech technologies. Additionally, as
the frequency of data sharing and utilization increases, concerns regarding data privacy
and security have become more pronounced. To address these concerns, countries around
the world are continuously enacting and refining laws and regulations pertaining to data
security and privacy protection. Examples include the General Data Protection Regulation
(GDPR) [2] in the European Union, the California Consumer Privacy Act (CCPA) [3] in the
United States, and China’s Personal Information Protection Specification (GB/T 35273) [4].
Protecting data privacy and security has become a hot topic of interest for global researchers
and businesses. Consequently, researchers are actively exploring new methods that can
leverage fragmented data for machine learning while ensuring data privacy and security. It
is in response to this demand that federated learning (FL) has emerged.
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Unlike traditional machine learning, in federated learning, each device updates the
model parameters based on local data and then uploads the model parameters to a central
server for aggregation to obtain the global model [5,6]. This approach not only protects
user data privacy but also eliminates data barriers between enterprises, addressing the
issue of data silos. Currently, federated learning finds good applications in smart grids.
First, smart grids involve a large amount of electricity consumption data from users, which
raises privacy concerns. Federated learning enables model training without exposing raw
data, thus protecting user privacy. Second, data in smart grids is often distributed across
different geographical locations or organizations. Federated learning facilitates model
training on distributed data, eliminating the necessity to centralize all the data in a single
location. Moreover, given that smart grids are vital systems pertaining to energy supply
and stability, security emerges as a crucial aspect. Federated learning serves to minimize
the potential risk of data breaches and attacks [7].

Indeed, FL, as a unique distributed machine-learning approach, presents distinct chal-
lenges related to fairness due to its characteristics of device heterogeneity, data heterogene-
ity, and its unique model-training paradigm. Ignoring fairness can lead to discrimination
or bias towards certain participants or groups, giving rise to problems of inequality and
discrimination. Addressing the fairness issue in federated learning helps improve the
performance of the global model, making its application more stable and reliable among all
participants. It also encourages active participation in federated-learning training, fosters
multi-party collaboration, promotes the sustainable development of federated learning, and
ultimately helps break down data barriers and resolve the problem of data silos. Absolutely,
when researching and implementing federated learning, it is crucial to pay close attention
to its potential fairness issues [8].

Agnostic-Fair [9] aims to mitigate disparities and biases in models across different
subgroups by incorporating fairness constraints. FL+HC (hierarchical clustering) [10]
aims to address the challenges of non-IID (non-independent and identically distributed)
data distribution and improve the global model’s performance. Avishek Ghosh et al. [11]
consider heterogeneous data and device characteristics through hierarchical clustering
and reduce the variation and bias of the model across subgroups by introducing fairness
constraints. Smith et al. [12] aims to generate different local models for different clients
based on a global model trained. However, it is important to acknowledge that these
approaches may introduce additional computational and communication overhead.

While existing research efforts have taken potential fairness issues into account in
implementing federated learning, little consideration has been given to cost-effectively
addressing client gradient conflicts. In the process of federated learning, various clients
(or participants) train models using local data and upload their gradient updates to a
central server for aggregation. Significant differences in data distribution, quantity, and
quality among clients can lead to gradient conflicts during global model aggregation. This
conflict inherently reflects unfairness in the model optimization process, as the gradients
from certain clients may have a disproportionate impact on the global model due to their
data volume or quality advantages, potentially sacrificing the interests of other clients. To
ensure fairness, it is crucial to devise reasonable aggregation algorithms and optimization
strategies that balance the contributions of different clients and minimize the impact of
gradient conflicts on the performance of the global model.

To achieve fairness in the global model while ensuring high accuracy and reducing
communication costs during federated learning in smart grids, we introduce a federated-
learning algorithm based on client sampling and gradient projection, referred to as FedC-
SGP (Federated Learning with Client Sampling and Gradient Projection). This algorithm
divides the training process of the global model into two stages: pre-training and formal
training. In the pre-training stage, clients with similar data features are clustered together
using a hierarchical clustering method. In the formal training stage, the central server
selects clients from each cluster to participate in the training. The algorithm checks for
gradient conflicts among clients from different clusters and mitigates conflicts through
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gradient projection. This approach improves the representativeness of participating clients
in each round, alleviates conflicts among different clients, enhances the fairness of the
global model, and reduces communication costs.

The primary contributions of this paper can be summarized as follows:

• We propose a federated-learning algorithm tailored for smart grids, which is based on
client-sampling strategies and gradient-projection techniques. This algorithm divides
the model-training process in federated learning into two stages: pre-training and
formal training.

• In the pre-training stage, a client-sampling strategy is employed to address external
conflicts. In the formal training stage, the gradient-projection algorithm is used to
handle internal conflicts.

• By resolving internal and external conflicts during federated-learning training, the
proposed algorithm enhances the fairness of federated-learning models while ensuring
global model accuracy and reducing communication costs.

The remainder of this paper is organized as follows. Section 2 introduces related
works. Section 3 shows the overall detailed flow of FedCSGP. The performance analyses
are adduced in Sections 4. Finally, conclusions are drawn in Section 5.

2. Related Work

The fairness issue in federated learning was first proposed by Kairouz et al. [13], and
current research in both domestic and international fields can be summarized into the
following three categories for improving the fairness of federated learning:

2.1. Based on Client Weight Allocation Strategies

These methods generally increase computation costs and communication overheads.
For example, Kairouz et al. [13] summarized existing fairness measurement methods and
proposed improving fairness by adjusting weight updating strategies. Mohri et al. [14]
proposed the Agnostic Federated-Learning (AFL) algorithm based on Min-Max optimiza-
tion, which aims to balance the quality of local model updates and the consistency of
global models in each iteration, with a focus on the poorest-performing devices. Wang
et al. [15] proposed the FedNova algorithm. This algorithm utilizes efficient local steps and
aggregated weights to adjust the progress of each client, enabling it to converge to a stable
point of the true objective function and produce accurate results. FedNova retains fast error
convergence while addressing the issue of objective inconsistency. However, the algorithm
lacks adaptive optimization and is not suitable for gossip-based training methods. Hu
et al. [16] proposed the FedMGDA+ algorithm, which modifies the model gradient aggre-
gation weights and performs multi-objective optimization to achieve fairness in federated
learning. Cui et al. [17] used a smooth proxy for the maximum value function to consider
the optimization objectives of all clients, thus making the global model more consistent
across different clients. Hamer et al. [18] introduced a communication-efficient ensemble
method called FedBoost for federated learning. This approach involves training an en-
semble of pre-trained base predictors through federated learning. By solely learning the
ensemble weights via federated learning, the algorithm enables the training of large models
that may not fit within the memory constraints of client devices. Li et al. [19] achieved
fairness by adjusting the client aggregation weights through a loss amplification mechanism
and introducing a hyperparameter q to adjust the weights. Zhao et al. [20] improved global
model fairness by dynamically adjusting the aggregation weights of client losses using a
weight redistribution mechanism. Sun et al. [21] used a reinforcement learning algorithm
to adaptively learn the aggregation weights for fairness, but this method significantly
increased training costs. Li et al. [22] used the method of empirical risk minimization to set
the aggregation weights to achieve a balance between model fairness and accuracy.
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2.2. Based on Client-Sampling Strategies

It can determine the degree of participation of different clients in the training process
and thus affect the degree of preference for the global model. Yang et al. [23] improved
model fairness by allowing less frequently trained clients to participate more in training.
Huang et al. [24] implemented long-term fairness constraints by setting a threshold such
that the probability of each client not being selected for a long time is not less than the
threshold, thus allowing each client to participate in training more fairly. Zhou et al. [25]
improved fairness by selecting whether or not to train each client based on its network
status, ensuring fairness under a certain packet loss rate. Wen et al. [26] proposed a client
selection method called ChFL. ChFL assigns scores to clients based on their local training
loss values and training time, where a higher score indicates a higher probability of a client
being selected. However, ChFL still neglects the impact of data volume on the quality of
local models. Hao et al. [27] improved fairness using zero-shot data augmentation for
some clients to mitigate data heterogeneity. Fraboni et al. [28] improved model fairness
using clustering and sampling to improve the representativeness of clients, but this method
significantly increased training time and costs. Ghosh et al. [29] improved fairness by
clustering clients into different classes and training a global model for each class, but this
method goes against the original intention of federated learning for joint training and
increases training costs.

2.3. Based on Personalized Local Models

This method trains local models simultaneously with the global model to improve model
accuracy but also increases training costs. Li et al. [30] reduced the negative impact of data
heterogeneity by making local updates approach global updates. Tian et al. [31] introduced
FCFL, a performance optimization method that considers multiple data sources. FCFL
assigns appropriate fair constraints, MCF, to each data source. Smoothing the surrogate
maximum function minimizes the loss of the maximum local model and continues to
optimize the model to Pareto optimality under the constraint of minimizing the maximum
loss. However, the disadvantage of this method lies in its lack of robustness against
malicious attacks. Li et al. [32] achieved a balance between fairness and robustness by
adding a regularization term to train more accurate local models, but this significantly
increases computational overheads.

3. Proposed Approach

In this section, we begin by presenting the relevant definitions pertaining to our
proposed FedCSGP algorithm. Subsequently, we provide an overview of FedCSGP. Finally,
we delve into a comprehensive and detailed explanation of FedCSGP.

3.1. Related Definitions

Gradient conflicts [33]: a conflict between client i and client j iff Gi · Gj < 0, where Gi
and Gj denote the gradients of client i and client j, respectively.

Gradient Projection [33]: It is a method that decomposes each gradient by computing
the inner product between each pair of gradients, separating it into a component orthogonal
to other gradients and a component related to other gradients. The calculation formula is
as follows:

Gproj
i = Gi − ∑

j ̸=i

(
Gi · Gj

∥Gj∥2

)
Gj (1)

Internal conflicts [34]: it refers to the existence of gradient conflicts among the clients
participating in the t-th communication round of training.

External conflicts [34]: it refers to the potential gradient conflicts between the partici-
pating clients i and the non-participating clients j during the t-th communication round of
training.
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3.2. Overview: FedCSGP Algorithm

In contrast to the FedAvg algorithm [35], the FedCSGP algorithm introduces a two-
stage approach to the federated-learning training process: pre-training and formal training.
The pre-training stage of the FedCSGP algorithm adopts a framework similar to that of the
FedAvg algorithm, as depicted in Figure 1. Subsequently, the formal training stage follows
a distinct framework, as illustrated in Figure 2.

Figure 1. Framework of the pre-training phase of FedAvg.

Figure 2. Framework of the formal training phase of FedCSGP.

The FedCSGP algorithm framework comprises a central server and a set of clients.
During the pre-training phase, the central server organizes the electric power companies
(referred to as clients) into multiple clusters. Once the formal training commences, the
central server picks clients from each cluster for every training round and dispatches the
global model to them. Using their respective local datasets, these chosen clients proceed
with training and subsequently send their refreshed local models back to the central server.
The central server processes and aggregates these local models to generate a new global
model for the next round. The central server repeats this process by selecting clients from
each cluster and distributing the updated global model. This iterative process continues
until the training reaches the predefined number of rounds or the global model converges.
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The FedCSGP algorithm aims to mitigate unfairness in federated learning by address-
ing external and internal conflicts. First, in the pre-training stage, a client-sampling strategy
based on clustering is employed to alleviate external conflicts, therefore enhancing the
representativeness and fairness of selected clients. This approach leads to reduced training
rounds, lower communication costs, and faster model convergence. Second, in the formal
training stage, the gradient-projection method is utilized to address internal conflicts by
mitigating gradient discrepancies between clients with large and small training losses,
enabling the attainment of a globally optimal model.

3.3. Detailed: FedCSGP Algorithm

The meanings of the notations employed in this paper are summarized in Abbrevia-
tions.

The detailed steps of the FedCSGP algorithm are as follows:

1. Pre-training phase

Step 1: The central server initializes ω0 and sends it to k clients.

Step 2: Each client i trains the received global model ω0 using its local data
through gradient descent. After local iterative training, the client obtains a local
model update ∆ωi and sends it to the central server, where ∆ωi = ω0 − ω1i .

Step 3: The central server receives the uploaded local model updates ∆ωi from
the clients and performs hierarchical clustering on these updates. This process
generates C clusters and calculates the total data quantity NUMj owned by each
cluster.

Step 4: The C clusters are sorted in descending order based on their total data
quantities NUMj. Then, the clusters are merged into m clusters according to
the rule of having an equal data quantity in each cluster. The probability pk of
selecting each client within a cluster is computed.

2. Formal training phase

Step 1: The central server randomly selects m clients from each cluster with
probability pk.

Step 2: The central server sends the current global model ωt to the selected
clients, where ωt represents the global model in the t-th round.

Step 3: The selected clients train their local models ωt
i using their respective local

data through gradient descent. After local iterative training, each client obtains
its local model ωt

i and the corresponding loss value lt
i in the t-th round.

Step 4: The clients send their local models ωt
i and loss values lt

i to the central
server.

Step 5: The central server calculates the local model update WDt
i = ωt − ωt

i for
each client and stores them in W, i.e., W = [WDt

1, WDt
2, WDt

3, . . . , WDt
m].

Step 6: The local model updates in W are sorted in ascending order based on
their corresponding loss values. The sorted updates are stored in WO, i.e.,
WO = [WDt1

i , WDt2
i , WDt3

i , . . . , WDtm
i ], where i represents the client index.

Step 7: For each update WDt′
i in WO, check if WDt′

i · WDt
i < 0 holds, indicat-

ing an internal conflict between WDt′
i and WDt

i , where WDt
i is from WO and

i ̸= i′. If WDt′
i · WDt

i < 0 holds, it implies an internal conflict, and WDt′
i

needs to undergo orthogonal projection to mitigate the conflict. Compute

WDt′
i = WDt′

i − WDt′
i ·WDt

i
|WDt

i |2
· WDt

i .

Step 8: Calculate the sum of the local model updates WDt = 1
m ∑ i = 1mWDt′

i .

Step 9: Scale the sum of the projected local model updates WDt by |WDt |
|WDt | .
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Step 10: The central server updates the global model as ωt+1 = ωt − WDt.

Repeat Steps 1 to 10 until the predetermined training rounds are reached.

The overall steps of the FedCSGP algorithm are shown in Algorithm 1.

Algorithm 1 FedCSGP Algorithm.
Input: ω0, m, k, T
Output: ωt

1: Server sends ω0 to k clients.
2: Client i trains ω0 using its local dataset and obtains the local model update ∆ωi. It then

sends ∆ωi to the server. where i = 1, 2, 3, . . . , k.
3: The server performs hierarchical clustering using ∆ωi as features, resulting in C clusters

and the data quantity NUMj ,where j = 1, 2, 3, . . . , C.
4: The C clusters are sorted in descending order based on their data quantity NUMj, and

then merged into m clusters following the rule of equal data quantity per cluster.
5: for t ∈ [1, 9] do
6: The server randomly selects m clients from the m clusters with probability pk.
7: The server sends the global model ωt to the selected clients.
8: The selected clients train the received global model ωt using their local data Di.
9: The clients obtain their local models ωti and the corresponding loss value lti and

upload them to the server.
10: The server utilizes Algorithm 2, denoted as GPA(ϵt, ϵti, lti), to output WDt′

i .
11: The server calculates WDt =

1
m ∑m

i=1 W∆t′
i .

12: The server scales WDtasWDt =
|W∆t |
|W∆t |WDt.

13: The server updates the global model as ωt+1 = ωt + WDt.
14: end for

Algorithm 2 Gradient project algorithm.
Input: ω0, m, k, T
Output: ωt

1: Server sends ω0 to k clients.
2: Client i trains ω0 using its local dataset and obtains the local model update ∆ωi. It then

sends ∆ωi to the server. where i = 1, 2, 3, . . . , k.
3: The server performs hierarchical clustering using ∆ωi as features, resulting in C clusters

and the data quantity NUMj ,where j = 1, 2, 3, . . . , C.

4. Experiments
4.1. Datasets

We evaluate the performance of FedCSGP on two publicly available datasets: MNIST [36]
and CIFAR-10 [37]. To simulate a real-world scenario, we utilize the Dirichlet distribution [38]
to partition these datasets into non-i.i.d. subsets with label distribution skew. This partitioning
process considers the label distribution of the sample data, allocating different class labels to
clients in disproportionate amounts. Once the number of clients is fixed, the final dataset
distribution is shaped by two key parameters. The parameter b dictates the consistency of data
volume across clients. Specifically, when b = 0, data volume is roughly equal among all clients,
whereas when b = 1, there is a marked disparity in data volume between the clients with the
most and least data. Additionally, the parameter α gauges the imbalance of the data distribution,
ranging from 0.1 to 1. An increase in the value of α results in a more uneven distribution,
heightening data heterogeneity.

For the MNIST dataset, with a total of 100 clients, we set b = 0.5 and α = 0.7. For the
CIFAR-10 dataset, with a total of 100 clients, we set b = 0.6 and α = 0.8. The partitioned
dataset distribution is visualized, where each row corresponds to a client’s local dataset,
and different colors represent different labels. The X-axis represents the size of the dataset
collected by each client, and the Y-axis represents the client ID. The distribution of the
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MNIST and CIFAR-10 datasets is shown in the respective Figure 3a,b. From the figures,
it can be observed that CIFAR-10 exhibits higher data heterogeneity compared to MNIST.
The variations in terms of the number of different labels, the quantity of samples, and the
distribution among different clients are more pronounced in CIFAR-10.

(a) Data distribution of MNIST (b) Data distribution of CIFAR-10

Figure 3. Data distribution of MNIST and CIFAR-10 in experiments. Visualize the distribution of
the partitioned dataset, where each row corresponds to a client’s local dataset, with different colors
indicating various labels. The X-axis represents the quantity or size of the dataset collected by each
client (Number of Samples), while the Y-axis denotes the client ID.

4.2. Experimental Setup

We selected the FedAvg algorithm as the baseline for federated learning. In addition,
we chose the Clustered_Sampling algorithm [28] and the FedFV (federated fair averaging)
algorithm [34] as the comparative approaches for addressing the fairness issues in federated
learning. The experimental environment configuration parameters, including computer
configuration parameters, development environment, and programming language used in
this study, are presented in Table 1.

The other hyperparameters for federated learning are set as follows: the number of
local iterations, denoted by E, is set to 5; the local batch size, denoted by B, is selected from
the range [16, 32, 64]; the learning rate, denoted by η, is chosen from the range [0.01, 0.1].
To ensure fairness, the parameter settings for the four algorithms in the comparative
experiments are kept consistent, and the other parameters are set to their respective optimal
values, as mentioned in their respective papers.

Table 1. Experimental environment configuration parameters.

Parameter Value

Operating System Ubuntu 20.04
Memory 40 GB

CPU and GPU Intel(R) Xeon(R) 8255C CPU, RTX 3080 (10 GB)
Development Framework PyTorch 1.11.0
Programming Language Python 3.8

4.3. Experimental Results

To comprehensively evaluate the fairness performance of the algorithms, accuracy
trend graphs and loss value trend graphs are used to assess the accuracy and convergence
speed of the algorithms on the test set. Experimental fairness is quantified using perfor-
mance metrics related to fairness. The performance metric results are the average values
obtained from five independent experiments. To ensure the reliability of the experimental
results, each experiment is conducted with a different random seed.
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4.3.1. MNIST

Experiments were conducted on the MNIST dataset using the FedCSGP, FedAvg,
Clustered_Sampling, and FedFV algorithms. The accuracy trend graph and loss value
trend graph are shown in Figure 4a,b. From the graphs, it can be observed that the final
accuracy and loss values of these four algorithms converge to a similar level. However, the
FedCSGP algorithm shows significantly faster improvement in accuracy and a faster rate
of loss reduction compared to the other three algorithms. This indicates that the FedCSGP
algorithm has an advantage in convergence speed and achieves a stable state ahead of the
other algorithms. It can be inferred that the FedCSGP algorithm not only ensures accuracy
but also exhibits faster convergence speed, which reduces the number of communication
rounds and lowers communication costs.

(a) Data distribution of MNIST (b) Data distribution of CIFAR-10

Figure 4. The accuracy and loss of the four algorithms on the MNIST Dataset.

Table 2 presents the results of fairness-related performance metrics for the four algo-
rithms on the MNIST dataset. The results show that the FedCSGP algorithm has the smallest
value of Var(ω), with a reduction in variance of 28.37%, 10.17%, and 19.7% compared to
the FedAvg, Clustered_Sampling, and FedFV algorithms, respectively. This indicates that
among the four algorithms, the FedCSGP algorithm achieves the best fairness in the global
model. Compared to the other three algorithms, the FedCSGP algorithm improves the
lowest accuracy of the 100 clients by 2.6%, 2.2%, and 0.16%, respectively, without compro-
mising the overall model accuracy. The accuracy of the worst 5% clients is also improved
by 2.7%, 0.82%, and 1.3%, respectively. This demonstrates that during the training process,
the FedCSGP algorithm promotes fairness in the global model for clients with poorer
performance. Despite the fact that the FedCSGP algorithm necessitates clustering and
gradient-projection operations to be carried out at the server, leading to a longer overall
runtime compared to the FedAvg algorithm, the decrease in the number of communication
rounds needed for FedCSGP to attain equilibrium, coupled with the significance of fairness
considerations for clients, justifies this increase in runtime.

Table 2. Performance Metrics Comparison on MNIST Dataset.

Performance Metric FedCSGP FedAvg FedFV Clustered_Sampling

Var(ω) 0.00106 0.00148 0.00118 0.00132

Lowest Accuracy 0.83266 0.81094 0.81446 0.83132

Highest Accuracy 1 1 1 1

Average Accuracy 0.96062 0.95346 0.96216 0.95458

Top 5% 1 1 1 1

Worst 5% 0.87464 0.85104 0.8675 0.86366

Runtime 843.13628 442.20558 621.50996 1148.10524
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4.3.2. CIFAR-10

The experimental validation was conducted on the FedCSGP algorithm and its three
comparison algorithms. The experimental results show the accuracy and loss trends of
the four algorithms on the test set, as depicted in Figure 5a,b. From Figure 5, it can be
observed that the global model trained by the FedCSGP algorithm achieves significantly
higher accuracy compared to the FedAvg, FedFV, and Clustered_Sampling algorithms.
The FedCSGP algorithm also demonstrates faster convergence with a steeper increase in
accuracy and a quicker decrease in loss, indicating its superior accuracy and convergence
characteristics.

(a) Data distribution of MNIST (b) Data distribution of CIFAR-10

Figure 5. The accuracy and loss of the four algorithms on the CIFAR-10 Dataset.

The fairness-related performance metrics of the four algorithms on the CIFAR-10
dataset are presented in Table 3. Although the FedCSGP algorithm has a variance 0.9%
lower than the Clustered_Sampling algorithm, it outperforms the Clustered_Sampling
algorithm in terms of the highest accuracy, average accuracy, and the accuracy of the worst
5% of clients by 7.9%, 2.5%, and 20.18%, respectively. Compared to the Clustered_Sampling
algorithm, the FedCSGP algorithm achieves a 10.32% reduction in runtime. While the
highest accuracy and top 5% accuracy of the FedCSGP algorithm are 1.9% lower than the
FedFV algorithm among the 100 clients, its variance, lowest accuracy, average accuracy,
and the accuracy of the worst 5% of clients are all significantly better than those of the
FedFV algorithm. This indicates that the FedCSGP algorithm improves the fairness of the
model while enhancing its overall accuracy. Therefore, the FedCSGP algorithm exhibits
superior overall performance.

Throughout the training process, the FedCSGP algorithm significantly boosts the
accuracy of underperforming clients without compromising or even enhancing the overall
precision of the global model. This approach promotes fairness among all clients and
facilitates quicker convergence, therefore cutting down on communication expenses.

Table 3. Performance metrics on the CIFAR-10 dataset.

Performance Metric FedCSGP FedAvg FedFV Clustered_Sampling

Var(ω) 0.01532 0.01796 0.01944 0.01518

Lowest Accuracy 0.31622 0.23714 0.24056 0.29294

Highest Accuracy 0.92018 0.90702 0.93846 0.91292

Average Accuracy 0.59628 0.5628 0.58618 0.58192

Best 5% Accuracy 0.85388 0.85126 0.875 0.8411

Worst 5% Accuracy 0.35244 0.30652 0.33504 0.33226

Runtime (seconds) 3474.92874 1963.22436 2511.23318 3874.9994
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Furthermore, during the experimentation process, it was observed that FedAvg and
Clustered_Sampling algorithms had certain requirements for the learning rate. Specifically,
these algorithms were prone to gradient explosion during training, leading to training
failure. In comparison, FedCSGP and FedFV algorithms exhibited higher tolerance towards
the learning rate and were less susceptible to gradient explosion.

In summary, on the MNIST and CIFAR-10 datasets, compared to the algorithms
chosen in this paper: FedAvg, FedFV, and Clustered_Sampling, the FedCSGP algorithm
demonstrates exceptional performance and advantages in terms of accuracy, loss value,
convergence speed, and stability. The FedCSGP algorithm enhances the accuracy of poorly
performing clients while ensuring the accuracy of the global model, therefore improving the
fairness of the federated-learning approach. In addition, the FedCSGP algorithm reduces
the number of communication rounds, therefore lowering communication overhead. Based
on this, the proposed algorithm is suitable for application in smart-grid scenarios.

5. Conclusions and Future Work

In this paper, we propose the FedCSGP algorithm for the smart grid, which divides
the model-training process into federated learning into two stages: pre-training and formal
training. In the pre-training stage, external conflicts are mitigated through a client-sampling
strategy based on clustering, while in the formal training stage, internal conflicts are
alleviated using the gradient-projection algorithm, therefore improving the fairness of
the model. Additionally, experimental results on the MNIST and CIFAR-10 datasets
demonstrate that FedCSGP achieves enhanced fairness and reduced communication costs
compared to the baseline algorithm while ensuring accuracy. In our future endeavors, we
intend to concentrate on bolstering privacy and security within federated learning, aiming
to achieve a harmonious equilibrium between accuracy, fairness, and privacy.
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Abbreviations
The following abbreviations are used in this manuscript:

Notation Meaning
ω0 Initialized global model
k Total number of clients
T Communication rounds
∆ωi Local model update of client i in the pre-training phase
ωi

1 Local model trained by client i in the pre-training phase
C Number of classes obtained in the pre-training phase
NUMj Total data quantity of all clients in class j
m Number of clients sampled per training round
pk Probability of client k being selected
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ωt Global model in the t-th round
ωt

i , lt
i Local model and loss value of client i in the t-th round

WDt
i Local model update of client i in the t-th round

W List of local model updates of clients before sorting
WO List of local model updates of clients after sorting

WD(t′)
i Projected size of local model update of client i

WDt Sum of projected local model updates

References
1. Taghia, J.; Moradi, F.; Larsson, H.; Lan, X.; Orucu, A.; Ebrahimi, M.; Johnsson, A. Congruent learning for self-regulated federated

learning in 6g. IEEE Trans. Mach. Learn. Commun. Netw. 2024, 2, 129–149. [CrossRef]
2. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer International

Publishing: Cham, Switzerland, 2017; Volume 10, pp. 10–5555.
3. de la Torre, L. A Guide to the California Consumer Privacy Act of 2018. SSRN Electron. J. 2018, 1–8. SSRN 3275571.
4. Han, S.W.; Munir, A.B. Information security technology-personal information security specification: China’s version of the gdpr.

Eur. Data Prot. Law Rev. 2018, 4, 535.
5. Liu, X.; Deng, Y.; Nallanathan, A.; Bennis, M. Federated learning and meta learning: Approaches, applications, and directions.

IEEE Commun. Surv. Tutor. 2024, 26, 571–618. [CrossRef]
6. Kalapaaking, A.P.; Khalil, I.; Rahman, M.S.; Atiquzzaman, M.; Yi, X.; Almashor, M. Blockchain-based federated learning with

secure aggregation in trusted execution environment for internet-of-things. IEEE Trans. Ind. Inform. 2023, 19, 1703–1714.
[CrossRef]

7. He, S.; Shi, K.; Liu, C.; Guo, B.; Chen, J.; Shi, Z. Collaborative sensing in internet of things: A comprehensive survey. IEEE
Commun. Surv. Tutor. 2022, 24, 1435–1474. [CrossRef]

8. Dressel, J.; Farid, H. The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 2018, 4, eaao5580. [CrossRef] [PubMed]
9. Du, W.; Xu, D.; Wu, X.; Tong, H. Fairness-aware agnostic federated learning. In Proceedings of the 2021 SIAM International

Conference on Data Mining (SDM), Virtual Event, 29 April–1 May 2021; SIAM: Philadelphia, PA, USA, 2021; pp. 181–189.
10. Briggs, C.; Fan, Z.; Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-iid data.

In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–9.
11. Ghosh, A.; Hong, J.; Yin, D.; Ramchandran, K. Robust federated learning in a heterogeneous environment. arXiv 2019,

arXiv:1906.06629.
12. Smith, V.; Chiang, C.-K.; Sanjabi, M.; Talwalkar, A.S. Federated multi-task learning. Adv. Neural Inf. Process. Syst. 2017, 30,

4427–4437.
13. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,

R.; et al. Advances and open problems in federated learning. Found. Trends® Mach. Learn. 2021, 14, 1–210. [CrossRef]
14. Mohri, M.; Sivek, G.; Suresh, A.T. Agnostic federated learning. In International Conference on Machine Learning; PMLR: New York,

NY, USA, 2019; pp. 4615–4625.
15. Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the objective inconsistency problem in heterogeneous federated

optimization. arXiv 2020, arXiv:2007.07481.
16. Hu, Z.; Shaloudegi, K.; Zhang, G.; Yu, Y. Federated learning meets multi-objective optimization. IEEE Trans. Netw. Sci. Eng. 2022,

9, 2039–2051. [CrossRef]
17. Cui, S.; Pan, W.; Liang, J.; Zhang, C.; Wang, F. Addressing algorithmic disparity and performance inconsistency in federated

learning. Adv. Neural Inf. Process. Syst. 2021, 34, 26091–26102.
18. Hamer, J.; Mohri, M.; Suresh, A. Fedboost: A communication-efficient algorithm for federated learning. PMLR 2020, 119,

3973–3983.
19. Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in federated learning. arXiv 2019, arXiv:1905.10497.
20. Zhao, Z.; Joshi, G. A dynamic reweighting strategy for fair federated learning. In Proceedings of the ICASSP 2022—2022 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 7–13 May 2022; pp. 8772–8776.
21. Sun, Y.; Si, S.; Wang, J.; Dong, Y.; Zhu, Z.; Xiao, J. A fair federated learning framework with reinforcement learning. In Proceedings

of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8.
22. Li, T.; Beirami, A.; Sanjabi, M.; Smith, V. Tilted empirical risk minimization. arXiv 2020, arXiv:2007.01162.
23. Yang, M.; Wang, X.; Zhu, H.; Wang, H.; Qian, H. Federated learning with class imbalance reduction. In Proceedings of the 2021

29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 2174–2178.
24. Huang, T.; Lin, W.; Wu, W.; He, L.; Li, K.; Zomaya, A.Y. An efficiency-boosting client selection scheme for federated learning with

fairness guarantee. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1552–1564. [CrossRef]
25. Zhou, P.; Fang, P.; Hui, P. Loss tolerant federated learning. arXiv 2021, arXiv:2105.03591.
26. YiLin, W.; Zhao, N.; Yan, Z. Client selection method based on local model quality. Comput. Eng. 2023, 49, 131–143.
27. Hao, W.; El-Khamy, M.; Lee, J.; Zhang, J.; Liang, K.J.; Chen, C.; Duke, L.C. Towards fair federated learning with zero-shot data

augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 3310–3319.

http://doi.org/10.1109/TMLCN.2023.3347680
http://dx.doi.org/10.1109/COMST.2023.3330910
http://dx.doi.org/10.1109/TII.2022.3170348
http://dx.doi.org/10.1109/COMST.2022.3187138
http://dx.doi.org/10.1126/sciadv.aao5580
http://www.ncbi.nlm.nih.gov/pubmed/29376122
http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1109/TNSE.2022.3169117
http://dx.doi.org/10.1109/TPDS.2020.3040887


Electronics 2024, 13, 2023 13 of 13

28. Fraboni, Y.; Vidal, R.; Kameni, L.; Lorenzi, M. Clustered sampling: Low-variance and improved representativity for clients
selection in federated learning. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021;
pp. 3407–3416.

29. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neural Inf. Process.
Syst. 2020, 33, 19 586–19 597. [CrossRef]

30. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach.
Learn. Syst. 2020, 2, 429–450.

31. Jiahui, T.; Lv, T.; Zhou, R. A fair resource allocation scheme in federated learning. J. Comput. Res. Dev. 2022, 59, 1240–1254.
32. Li, T.; Hu, S.; Beirami, A.; Smith, V. Ditto: Fair and robust federated learning through personalization. In Proceedings of the

International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 6357–6368.
33. Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; Finn, C. Gradient surgery for multi-task learning. Adv. Neural Inf. Process.

Syst. 2020, 33, 5824–5836.
34. Wang, Z.; Fan, X.; Qi, J.; Wen, C.; Wang, C.; Yu, R. Federated learning with fair averaging. arXiv 2021, arXiv:2104.14937.
35. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

36. LeCun, Y.; Cortes, C.; Burges, C. Mnist Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/
(accessed on 19 May 2024).

37. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/cifar.html (accessed on 19 May 2024).

38. Hsu, T.-M.H.; Qi, H.; Brown, M. Measuring the effects of non-identical data distribution for federated visual classification. arXiv
2019, arXiv:1909.06335.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.2022.3192506
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Related Work
	Based on Client Weight Allocation Strategies
	Based on Client-Sampling Strategies
	Based on Personalized Local Models

	Proposed Approach
	Related Definitions
	Overview: FedCSGP Algorithm
	Detailed: FedCSGP Algorithm

	Experiments
	Datasets
	Experimental Setup
	Experimental Results
	MNIST
	CIFAR-10


	Conclusions and Future Work
	References

