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Abstract: Entity alignment (EA) is a critical task in integrating diverse knowledge graph (KG) data
and plays a central role in data-driven AI applications. Traditional EA approaches rely on entity
embeddings, but their effectiveness is limited by scarce KG input data and representation learning
techniques. Large language models have shown promise, but face challenges such as high hardware
requirements, large model sizes and computational inefficiency, which limit their applicability. To
overcome these limitations, we propose an entity-alignment model that compares the similarity
between entities by capturing both semantic and topological information to enable the alignment
of entities with high similarity. First, we analyze descriptive information to quantify semantic
similarity, including individual features such as types and attributes. Then, for topological analysis,
we introduce four conditions based on graph connectivity and structural patterns to determine
subgraph similarity within three hops of the entity’s neighborhood, thereby improving accuracy.
Finally, we integrate semantic and topological similarity using a weighted approach that considers
dataset features. Our model requires no pre-training and is designed to be compact and generalizable
to different datasets. Experimental results on four standard EA datasets validate the effectiveness of
our proposed model.

Keywords: entity alignment; knowledge graph; description information; topological structure

1. Introduction

The entity-alignment (EA) [1,2] task involves matching and aligning entities from
various data [3] sources or Knowledge graphs (KGs) [4–6]. Its objective is to establish
associations between entities that share the same semantic meaning. This enables accurate
correspondence when performing operations such as data integration [7], querying [8]
and analysis [9] across different data sources. EA plays a crucial role in natural language
processing, information extraction [10], intelligent question-answering systems [11] and
social network analysis [12].

In the field of EA, knowledge-representation methods are primarily employed to
obtain the vector information of entities for alignment purposes. Existing EA methods
can be broadly categorized into three groups: translation-based methods, graph neural
network (GNN)-based methods and other approaches. Translation-based methods, such
as MTransE [13] and BootEA [14], use the TransE [15] framework to transform individual
elements in the KG into semantically rich vector representations. This facilitates tasks
such as semantic relevance reasoning, entity relationship reasoning and knowledge graph
applications. GNN-based methods [16], represented by models such as GCN-Align [17],
RDGCN [18] and Dual-AMN [19], generate entity embeddings by aggregating neigh-
borhood information using graph neural networks. These models effectively capture
structural information and learn entity embeddings. Other GNN-based methods, such as
TEA-GNN [20], TREA [21] and STEA [22], further improve performance by incorporating
temporal features. Other approaches, including Fualign [23], Simple-HHEA [24] and BERT-
INT [25], address the challenge of heterogeneity in KGs by exploiting side information.
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However, these three types of EA methods have significant limitations. They rely heavily on
the performance of the Knowledge Representation Learning (KRL) model and the quality
of the datasets used. Additionally, when different data sources have distinct mapping
spaces within the KRL model, performing similarity comparisons becomes challenging.

Recently, large-scale language models (LLMs) [26] have demonstrated exceptional
performance in various natural language processing tasks, including XLNet [27], GPT [28],
Transformer-XL [29] and RoBERTa [30]. These transformer-based models take advantage
of rich contextual information from large corpora and have proven to be highly effective
in improving entity-related tasks in KGs. As a result, EA models based on LLMs have
emerged, such as LLMEA [7], ChatEA [31] and BERT-INT [25], which effectively leverage
the semantic and ancillary information provided by LLMs to perform entity-alignment (EA)
tasks. However, it is important to recognize that while LLMs trained on large-scale textual
data have rich linguistic patterns and statistical information, they may have limitations
when dealing with ambiguity and polysemy. In such cases, LLMs tend to favor the most
frequent or common meanings, potentially overlooking other possible interpretations in the
given context. This limitation [32] becomes particularly significant in entity-alignment tasks,
where a precise understanding of contextual information is crucial for accurately defining
an entity. Alignment accuracy depends directly on this understanding, and therefore the
limitations of LLMs can affect overall alignment performance.

In this paper, we present our entity-alignment model, which integrates semantic and
structural information without the need for pre-training. The descriptive information of
an entity, e.g. Beijing, the capital and largest city of China, with geographic coordinates
(39◦54′ N, 116◦23′ E). Beijing holds significant political, cultural, and educational impor-
tance as the center of China.... Utilizing this descriptive information, we compare entities
for semantic similarity. However, entities in the graph not only have semantic attributes
but also exhibit structural characteristics, including attributes and features of neighboring
nodes. To capture these characteristics, we propose a structure-based similarity-comparison
module. This module takes into account the features of neighboring nodes and attributes
of edges to determine whether entities in different graphs share similar structural features,
employing conditional comparisons. Finally, the contributions of the two modules are
effectively fused by employing a weighted sum approach, which takes into consideration
the characteristics of the dataset. We evaluate the effectiveness of our approach on several
EA datasets, including the traditional DBP15K (EN-FR) and DBP-WIKI datasets, as well
as the more challenging and practical ICEWS-WIKI and ICEWS-YAGO datasets. These
datasets exhibit a high degree of KG heterogeneity and complexity in capturing correla-
tions between KGs. Through extensive experiments, we demonstrate that our method
outperforms existing state-of-the-art EA models. Our contributions can be summarized
as follows:

• We propose a novel EA model that employs both semantic and structural similarity
comparisons. The entities are enhanced through the integration of semantic and struc-
tural information, thereby achieving highly accurate alignment. Furthermore, weight-
ing factors are introduced to effectively balance the contributions of the two models,
ensuring optimal alignment across different dataset features.

• We conduct EA task-based experiments on four datasets, and the results of these
experiments demonstrate the effectiveness of our model.

The remainder of the paper is structured as follows: Section 2 provides a comprehen-
sive explanation of our model. Section 3 presents the experimental setup. Section 4 shows
the results and thoroughly analyzes these results. Section 5 concludes the paper.

2. Methods

This section describes the details of our approach. The overall framework is shown
in Figure 1. Our model consists of three primary modules: semantic-based similarity
comparison, topology-based similarity comparison and fusion of semantic and structural
similarity comparison.
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Figure 1. An overview of our model. The framework of our model consists of three components:
Semantic-based Similarity Comparison, Structural-based Similarity Comparison and Fusion of Se-
mantic and Structural Similarity Comparison. The Semantic-based Similarity Comparison module
employs Bert to quantify the descriptive information of entities from different KGs and calculates
their similarity using the cosine function. The Topological-based Similarity Comparison module
determines the similarity of two subgraphs based on four specific conditions. Finally, the results of
the two comparisons are integrated.

2.1. Preliminaries

Knowledge graph (KG). We define a KG as G = {E ,R}, where E represents the set of
entities and R represents the set of relations. In a KG, a fact or edge is represented as a
triple (h, r, t), where h ∈ E denotes the head entity, t ∈ E denotes the tail entity and r ∈ R
denotes the relation between them. The embedding vectors for h, r and t are denoted by h,
r, and t, respectively, using bold characters.

Entity alignment (EA). EA is a crucial task in KG research. Given two KGs, G1 = (E1,R1)
and G2 = (E2,R2), the goal is to determine the identical entity set S = {(ei, ej)|ei ∈ E1, ej ∈ E2}.
In this set, each pair (ei, ej) represents the same real-world entity but exists in different KGs.

2.2. Semantic-Based Similarity Comparison

To semantically measure whether two entities are similar, we quantify the descriptive
information of the entities using Bert, and then test the quantified similarity. Specifically,
consider the entities ei ∈ Gi, ej ∈ Gj, ei descriptive information labeled as Desei and ej
descriptive information labeled as Desej . The Bert employs the Transformer architecture,
which is capable of processing longer text sequences and enabling better understanding of
contextual information.

The vectors Desei and Desej are obtained after quantization by Bert. To test the
similarity between the two vectors, we employ cosine similarity, which offers several
advantages: simplicity, efficiency and independence of length and dimension in measuring
vector similarity. These advantages align well with the experimental needs of our study.
The cosine-based vector similarity calculation is:

Semantic(ei ,ej)
=

Desei · Desej

∥Desei∥∥Desej∥
(1)

where Semantic(ei,ej)
represents the similarity between ei and ej, · denotes the dot product of

vectors and ∥Desei∥ and ∥Desej∥ denote the norms of the vectors Desei and Desej respectively.
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2.3. Topology-Based Similarity Comparison

An entity in a KG contains not only its semantic information, but also additional
information such as topology. Entities in different KGs often share similarities in their
links and relations. For example, an entity classified as person may have relations such as
co-worker, colleague and more. These relations also connect to entity types that share simi-
larities. Consequently, even when dealing with different KGs, the relations and associated
entity types tend to have similarities. Leveraging this insight allows us to achieve entity
alignment across different KGs.

We employ K-means to group entities based on their quantized descriptive informa-
tion, allowing us to label entities in the same cluster as belonging to the same type. For
example, consider the triple (Beijing, belongs_to, China), where both Beijing and China
belong to the geography category. After clustering, these entities are assigned to cluster
CE0. Similarly, the relationship ‘belongs_to’ is assigned to cluster CR1. Therefore, the type
of the triple can be represented as (CE0, CR1, CE0).

We consider the entities and relations within three hops of the neighbor of the target
entity to form a subgraph. The similarity between these subgraphs is then determined by
evaluating their isomorphism.

Given two entities ei ∈ Gi and ej ∈ Gj with corresponding subgraphs Subi = (Vi, Ri)
and Subj = (Vj, Rj) respectively, where V is the set of entities and R is the set of rela-
tions. The isomorphism between these two subgraphs can be determined based on the
following conditions.

Condition 1:
∀ei ∈ Subi ∃ej ∈ Subj : (ei, ej) ∈ CEk (2)

where CEk is the kth cluster. It is required that both ei and ej are of the same type.

Condition 2:
∀(ei, e′i) ∈ Ei ∃(ej, e′j) ∈ Ej (3)

where e′ denotes the neighborhood of node e. (e, e′) denotes the edge connected between e and
e′. The formula indicates that the edge present in the subgraph Subi are also present in Subj.

Condition 3:
∀ei ∈ Vi ∀ej ∈ Vj λVi (ei) = λVj(ej) (4)

where Vi denotes the set of nodes in Subi and Vj denotes the set of nodes in Subj. λVi (ei)
denotes the type of neighboring nodes of ei, where the nodes all belong to Vi. This condition
indicates that the types of all connected nodes of ei ∈ Subi and the types of the nodes
connected to ej ∈ Subj should be similar.

Condition 4:

∀
(
ei, e′i

)
∈ Ei ∀(ej, e′j) ∈ Ej λEi

(
ei, e′i

)
= λEj

(
ej, e′j

)
(5)

where Ei denotes the set of edges in Subi, while Ej denotes the set of edges in Subj. λEi (ei, e′i)
denotes the type of neighboring edge of ei, where the edges all belong to Ei. This condition
indicates that the types of all connected edges of ei ∈ Subi and the types of all edges
connected to ej ∈ Subj should be similar.

The two graphs can be considered isomorphic if and only if all of the above conditions
are satisfied simultaneously.

2.4. Fusion of Semantic and Structural Similarity Comparison

In real-world scenarios, certain datasets are incomplete, resulting in a sparse structure.
Therefore we introduce a parameter α ∈ [0, 1] to balance the semantic and structural
information. The formula is defined as follows:

S(ei ,ej)
= α × (Semantic(ei ,ej)

) + (1 − α)× (Structure(ei ,ej)
), α ∈ [0, 1] (6)
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where Structure(ei ,ej)
denotes the structural similarity, which is calculated on the basis of

the degree of coverage of the four conditions. For example, the third condition, ei ∈ Subi
has approximately 80% of the number of nodes of the same type as ej ∈ Subj. Therefore,
the structural similarity can be defined by the following formula:

Structure(ei ,ej)
= α1 × (#Edge) + α2 × (#Typenode) + α3 × (#Typeedge)

α1 + α2 + α3 = 1
(7)

where #Edge denotes the number of identical edges (i.e., Condition 2), #Typenode denotes the
number of neighbors of the same type (i.e., Condition 3) and #Typeedge denotes the number
of neighboring edges of the same type (i.e., Condition 4). The symbols α1, α2 and α3 denote
the weights of the three conditions. These parameters are defined in a predetermined
manner, and when the similarity between entities ei and ej, denoted as S(ei ,ej)

, exceeds a
certain threshold (e.g., S(ei ,ej)

> 0.9), it indicates a high degree of similarity. Based on this
similarity measure, entities ei and ej can be determined to be the same entity.

3. Experiment Setting

We conduct comparison experiments on the EA task using four standard datasets. Further-
more, we perform ablation studies to evaluate the specific contributions of two modules in our
model. The effect of hyper-parameters on model performance is evaluated. The experiments
are conducted on an Ubuntu 18.04.4 environment with 62 GB of RAM and a 60 GB GPU.

3.1. Datasets

We conduct experiments on four entity-alignment datasets. The statistics of these
selected datasets are summarized in Table 1.

Table 1. The detailed statistics of the datasets. Temporal denotes whether the dataset contains
temporal information.

Dataset #Entities #Relations #Facts Density #Anchors Temporal

DBP15K(EN-FR) EN 15,000 193 96,318 6.421 15,000 No
FR 15,000 166 80,112 5.341 No

DBP-WIKI DBP 100,000 413 293,990 2.940 10,000 No
WIKI 100,000 261 251,708 2.517 No

ICEWS-WIKI ICEWS 11,047 272 3,527,881 319.352 5058 Yes
WIKI 15,896 226 198,257 12.472 Yes

ICEWS-YAGO ICEWS 26,863 272 4,192,555 156.072 18,824 Yes
YAGO 22,734 41 107,118 4.712 Yes

DBP15K(EN-FR) and DBP-WIK [33] are two simple EA datasets, which share a similar
structure for their KG pairs, with an equivalent number of entities. Furthermore, the
structural features, such as the number of facts and density, of these two datasets closely
align. ICEWS-WIKI and ICEWS-YAGO [24] are two complex EA datasets. Here, the KG
pairs exhibit significant heterogeneity, differing not only in the number of entities but
also in structural features. Notably, the quantity of anchors does not equal the number of
entities. Consequently, aligning these complex datasets poses greater challenges.

To ensure consistency, we standardized the average length of descriptive information for
entities across all datasets to 800 words. In cases where entities had insufficient descriptive
information, we utilize ChatGPT [28] to supplement and enhance the available information.

3.2. Baselines

We select a set of state-of-the-art EA methods. These methods encompass a wide range
of input features. Among the selected methods, we included translation-based approaches
such as MTransE [13] and BootEA [14]. Additionally, we incorporated GNN-based tech-
niques such as GCN-Align [17], RDGCN [18] and Dual-AMN [19]. Each baseline model



Electronics 2024, 13, 2036 6 of 10

has unique characteristics and high performance that make them suitable for evaluating
the effectiveness of our proposed method.

3.3. Hyper-Parameters

To determine the optimal hyperparameters for each dataset, we perform a grid search.
The optimal experimental setup includes the following hyperparameters:

For DBP15K(EN-FR): α − 0.6, α1 − 0.4, α2 − 0.3, α3 − 0.3. For DBP-WIKI: α − 0.6,
α1 − 0.3, α2 − 0.4, α3 − 0.3. For ICEWS-WIKI: α − 0.4, α1 − 0.2, α2 − 0.4, α3 − 0.4. For
ICEWS-YAGO: α − 0.4, α1 − 0.2, α2 − 0.4, α3 − 0.4.

3.4. Evaluation Metrics

In line with widely adopted evaluation methods in EA research, we use two metrics
for evaluation:

(1) Hits@k, measuring the percentage of correct alignments within the top k(k = 1, 10)

matches. It is computed by 1/|S|∑
|S|
i=1 I(ranki < n), where I(·) is the indicator function.

(2) Mean Reciprocal Rank (MRR), reflecting the average inverse ranking of correct re-

sults. It is computed by average of the reciprocal ranks 1/|S|∑
|S|
i=1

1
ranki

, where ranki,
i ∈ {1, . . . , |S|} is a set of ranking results.

Higher values in Hits@k and MRR indicate superior performance in EA.

4. Results and Discussion
4.1. Performance Comparison

Tables 2 and 3 show our results on the four datasets. It can be concluded from the results:

Table 2. Main experiment results on the four datasets. Bold: the best result; underline: the runner-up
result.

Models DBP15K(EN-FR) DBP-WIKI
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.247 0.577 0.360 0.281 0.520 0.363
BootEA 0.653 0.874 0.731 0.748 0.898 0.801
GCN-Align 0.411 0.772 0.530 0.494 0.756 0.590
RDGCN 0.873 0.950 0.901 0.974 0.994 0.980
Dual-AMN 0.954 0.994 0.970 0.983 0.996 0.991
Ours 0.901 0.980 0.962 0.980 0.993 0.981

Table 3. Main experiment results on the four datasets. Bold: the best result; underline: the runner-up
result.

Models ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.021 0.158 0.068 0.012 0.084 0.040
BootEA 0.072 0.275 0.139 0.020 0.120 0.056
GCN-Align 0.046 0.184 0.093 0.017 0.085 0.038
RDGCN 0.064 0.202 0.096 0.029 0.097 0.042
Dual-AMN 0.083 0.281 0.145 0.031 0.144 0.068
Ours 0.081 0.285 0.148 0.033 0.146 0.071

• In Table 2, which shows the test results of our model on two non-temporal upper
datasets, the results show that our model performs consistently at a high level for
most of the evaluation parameters, closely following the Dual-AMN model.

• Table 3 presents the evaluation results of our method on the time series dataset. The
results clearly show that our method outperforms the other baseline models. Compared to
the Dual-AMN model, our method achieves an average improvement of 0.03 in Hit@1,
Hits@10 and MRR, which highlights the effectiveness and superiority of our model.

• The results clearly show that our method has a significant advantage on the temporal
dataset. This advantage is due to the use of temporal features, which act as identifiers
during entity alignment, enabling us to accurately determine the same entities. Analyz-
ing the parameters α1, α2, α3 and α, we observe that the structure-based information is
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more useful in datasets with higher graph density (e.g., ICEWS-WIKI, ICEWS-YAGO).
On the other hand, descriptive information of entities tends to be more advantageous
in cases where the graph structure is sparser (e.g., DBP15K(EN-FR), DBP-WIKI), while
alignment using semantic information proves to be more effective.

4.2. Parameter Sensitivity

We perform parameter sensitivity tests on the model, specifically analyzing the effect
of the α parameter on the performance of the model. The performance of the model is
evaluated using MRR. The results are shown in Figure 2. We can conclude that:

• As shown in the figure, the analysis reveals a clear trend. It is evident that each dataset has
an optimal α value, beyond which the performance of the model either converges or even
tends to decrease. This finding suggests that there is a critical threshold for the α parameter,
beyond which further tuning may not significantly improve model performance.

• When evaluating the DBP15K(EN-FR) and DBP-WIKI datasets, we observed that
the model’s MRR initially increases with increasing α values, but eventually starts
to decrease. Here, α represents the weight of semantic information, indicating that
increased emphasis on semantic information leads to improved performance in the
early stages. However, in the later stages, the pronounced decrease in performance
suggests that overemphasis on semantic information may lead to diminishing returns.

• When evaluating the ICEWS-WIKI and ICEWS-YAGO datasets, we observe a consis-
tent trend in the performance of the model. The MRR peaks at a α value of 0.4 for these
datasets, while the best overall performance for the DBP15K(EN-FR) and DBP-WIKI
datasets is achieved at a α value of 0.6. This observation suggests that the ICEWS-WIKI
and ICEWS-YAGO datasets have a higher dependence on the structural information
of the model. This higher dependence on structural information can be attributed
to the higher density and number of triples present in these datasets. Consequently,
comparing structures in these datasets provides more valuable information.

• In summary, structural information is advantageous in densely structured datasets
because it provides richer information about neighboring nodes and links. On the
contrary, in sparsely structured datasets, semantic information is particularly helpful to
compensate for the lack of structural information and to provide semantic information
about characterized entities.

Figure 2. Results of the effect of α on model performance on four datasets.
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4.3. Ablation Studies

We perform an ablation study using four datasets to evaluate the contribution of the
two modules in the model. The symbol (+SSC) indicates the Semantic-based Similarity
Comparison module, and the symbol (+TSC) indicates the Topology-based Similarity
Comparison module. From the results, we can conclude that:

• Table 4 presents the performance of both the DBP15K(EN-FR) and DBP-WIKI datasets,
demonstrating that the SSC module contributes significantly more than the TSC
module to these two datasets. The SSC module exhibited a greater impact on the
datasets, with an average increase of 0.318 in Hits@1, 0.244 in Hits@10 and 0.258 in
MRR compared to the TSC module. This suggests that the semantic similarity module
is a more effective approach for these two datasets.

• Table 5 presents the performance of the ICEWS-WIKI and ICEWS-YAGO datasets,
indicating that the TSC module exhibits a significant contribution to both datasets
compared to the SSC module. On average, Hits@1 improves by 0.0235, Hits@10 im-
proves by 0.0865 and MRR improves by 0.0455. These results suggest that employing
the structural similarity module is more effective for these two datasets.

• The results presented above shows that both modules contribute to the overall per-
formance of our model. However, it is important to note that each module shows
different contributions based on the KG characteristics.

Table 4. Results of ablation studies on DBP15K(EN-FR) and DBP-WIKI. Bold: the best result; under-
line: the runner-up result.

Models DBP15K(EN-FR) DBP-WIKI
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

SSC 0.793 0.810 0.892 0.849 0.930 0.890
TSC 0.560 0.678 0.692 0.445 0.574 0.573
SSC+TSC 0.901 0.980 0.962 0.980 0.993 0.981

Table 5. Results of ablation studies on ICEWS-WIKI and ICEWS-YAGO. Bold: the best result; under-
line: the runner-up result.

Models ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

SSC 0.034 0.121 0.086 0.022 0.091 0.032
TSC 0.073 0.245 0.141 0.030 0.140 0.068
SSC+TSC 0.081 0.285 0.148 0.033 0.146 0.071

5. Conclusions

This paper presents a novel entity-alignment module that combines semantic and
structural comparisons. The descriptive information of an entity provides various fea-
tures, semantics and characteristics, which we quantify to measure semantic similarity.
Additionally, for graphs with higher structural density, we introduce a structure-based
similarity-comparison module. This module assesses similarity by comparing the types
of neighboring nodes and link attributes of entities across different graphs. Finally, we
fuse the comparison results from both modules. Experimental results on four datasets
demonstrate the effectiveness of our method. In future work, our future research aims to
capture more distinguishable features for entity alignment.
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