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Abstract: Long Range (LoRa) as a low-power wide-area technology is distinguished by its robust
long-distance communications tailored for Internet of Things (IoT) networks. Because LoRa was
primarily designed for stationary devices, when applied to mobile devices, they become susceptible to
frequent channel attenuation. Such a condition can result in packet loss, higher energy consumption,
and extended transmission times. To address these inherent challenges posed by mobility, we propose
an adaptive mobility-based IoT LoRa clustering communication (AMILCC) scheme, which employs
the 2D random waypoint mobility model, strategically partitions the network into optimal spreading
factor (SF) regions, and incorporates an adaptive clustering approach. The AMILCC scheme is
bolstered by a hybrid adaptive data rate (HADR) mechanism categorized into two approaches, namely
intra-SF and inter-SF region HADRs, derived from the standard network-based ADR mechanism for
stationary devices, to ensure efficient resource allocation for mobile IoT LoRa devices. Evaluation
results show that, based on simulations at low mobility speeds of up to 5 m/s, AMILCC successfully
maximizes the packet success ratio to the gateway (GW) by over 70%, reduces energy consumption
by an average of 55.5%, and minimizes the end-to-end delay by 47.62%, outperforming stationary
schemes. Consequently, AMILCC stands as a prime solution for mobile IoT LoRa networks by
balancing the high packet success ratio (PSR) with reliability with energy efficiency.

Keywords: long range (LoRa); low-power wide-area network (LPWAN); Internet of Things (IoT);
spreading factor (SF); adaptive data rate; mobile devices; resource allocation

1. Introduction

Recently, the Internet of Things (IoT) has garnered the attention of both industry and
research communities, especially in the context of expanding IoT-centric networks [1]. The
IoT offers a network of intelligent objects/sensors and devices [2], including consumer
electronics. By leveraging embedded technologies to deliver and share information both
among devices and with humans, enabling intelligent decision making, the IoT helps
provide rapid access to information pertaining to every device while also maximizing
productivity and efficiency [3]. From a conceptual viewpoint, the foundation of the IoT
is built on three interrelated pillars concerning smart objects. Firstly, the capacity for self-
identification (each object uniquely identifies itself). Secondly, these objects possess the
ability to communicate, signifying their capacity to relay information. Lastly, the objects
have the capability to interact, highlighting their ability to engage, respond, and collaborate.
This interaction occurs both within their interconnected networks and with end users [4].

The IoT paradigm assigns additional capabilities to sensors and subjects them to
new challenges in terms of quality of service (QoS), security [5], load balancing [6], and
power control [7]. Today, a variety of data-collecting devices are already integrated into IoT
platforms and applications [8] that need mobility, such as smart cities [9], smart cars [10],
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and healthcare [11]. Unlike the IoT fundamentally based on static devices, the Internet of
Mobile Things (IoMT) consists of mobile devices with sensors able to connect with one
another as well as with surrounding cyber-physical infrastructures [12]. Cisco predicts that
by 2030, 500 billion devices will be connected to the Internet [10]. It is also anticipated that
by 2025, internet nodes will exist in every object, thus increasing the number of internet-
connected devices and mobility control services [13]. According to the Ericsson mobility
report [14], as of 2023, the number of mobile IoT devices had increased significantly,
reaching 30.9 billion, with a compound annual growth rate (CAGR) of 19% observed in the
preceding years.

Low-power wide-area networks (LPWANs) are a group of wireless communication
technologies developed to facilitate Internet of Things deployment [2]. LPWANs represent
a new paradigm in communication that bridges the gap between cellular and short-range
wireless technologies to address the diversity of Internet of Things applications. These
technologies are intended to provide low-power, low-cost, and low-data-rate devices with
an array of functionalities, including wide-area and enormous-scale communication. This
is why LPWAN technologies have aroused so much attention with the introduction of
several proprietary technologies such as Long Range (LoRa) [15] and SigFox [16].

A substantial number of Internet of Things end devices are mobile, which increases
the complexity of the protocols used in LPWANs. LoRa is one of the pillars of LPWAN
techniques capable of long-distance message delivery and low energy consumption, mak-
ing it appropriate for inexpensive devices. LoRa was originally intended for stationary
devices [15]. However, it can also be used for low-speed mobile devices. In IoT LoRa
networks, the Internet is pivotal in enabling connectivity between gateways and network
servers, facilitating the onward flow of data to where it can be utilized effectively.

The conventional LoRa network is a low-power wireless area network that utilizes
an unlicensed spectral spectrum [10]. As a result, LoRa is a cost-effective option for a
variety of applications that can be adopted by anyone. Despite the fact that LoRa was
not initially designed for mobile devices, numerous mobile-centric applications employ
it [8]. These include tracking mobile mechanical equipment in industrial environments,
collecting data via mobile sensors in smart city scenarios [9], and monitoring persons in
emergency situations. Specifically, LoRa networks support single-hop communications and
are primarily designed for stationary LoRa end devices (EDs) connected to a centralized
gateway (GW) through a direct link. However, when this technology is adapted for mobile
nodes, several challenges arise, including increased susceptibility to frequent channel
attenuation. Such a condition can result in longer transmission times, massive packet
loss, higher energy consumption, and interference from distant EDs with a high spreading
factor [17,18]. Recent multi-hop LoRa network schemes proposed in [17,19,20] utilize
explicit relay nodes and cluster-based techniques to partially mitigate the limitations of
the high channel attenuation and long transmission time in the conventional single-hop
LoRa by emphasizing coverage extension. However, they do not harness the mobility-
based clustering technique and optimally allocate resources (e.g., spreading factor and
transmit power) to static and mobile EDs simultaneously to improve connectivity with
mobile LoRa nodes as well as the packet success ratio (PSR). To address the mobility of
LoRa nodes, several studies have been conducted on IoT LoRa networks [21–23]. The
authors of [21] investigated the usage of LoRaWAN in the field of mobile Internet of Things
applications to evaluate the influence of the mobility of LoRa nodes. In [22,23], the authors
proposed an enhanced adaptive data rate (ADR) mechanism based on the position of mobile
LoRa nodes and a hybrid ADR mechanism based on their status (i.e., static or mobile)
for allocating resources to IoT LoRa networks with mobility. However, these schemes are
still susceptible to frequent channel attenuation, increased collision due to interference,
frequent network reconfiguration as a result of dynamic network topology, and increased
energy consumption.

To address the inherent challenges of both stationary and mobile IoT LoRa networks,
we propose a structured approach based on clustering and a hybrid adaptive data rate to
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manage the challenges while ensuring improved efficiency, scalability, and reliability of
the network. Then, we propose an adaptive mobility-based IoT LoRa multi-hop clustering
communication scheme that relies on the clustered structure within an uneven SF region
environment. In our cluster structure, every cluster has a particular mobile node acting
as a cluster head (CH), which gathers data from normal LoRa nodes in the cluster and
delivers their fusion data to the GW on their behalf. Moreover, the proposed scheme
exploits mobility patterns with a hybrid adaptive data rate (HADR) strategy that actively
monitors environmental factors and automatically modifies the network resources of
mobile LoRa devices (LDs) in the cluster to enhance the functionality of the network.
Consequently, to achieve massive scalability and connectivity, we aim to maximize the
minimum success probability of all distant LDs, the network latency, and the energy
efficiency of the LoRa network.

This paper’s contributions are summarized as follows:

1. We partition the network area into several distinct regions to optimize SF region
allocation. Within these regions, grids maintain uniform widths, but their heights
increase with the distance from the GW.

2. We devise a cohesive system model, seamlessly integrating network, success prob-
ability, energy, and mobility models, enriched further by the inclusion of the Grey
relational analysis model.

3. We introduce the adaptive mobility-based IoT LoRa clustering communication (AMILCC)
scheme, which comprises three main mechanisms: cluster architecture development,
an efficient data forwarding mechanism, and the hybrid adaptive data rate mechanism.

4. We formulate a resource allocation strategy for mobile LoRa devices in the AMILCC
scheme using a hybrid adaptive data rate (HADR) mechanism. This mechanism is cate-
gorized into two approaches: (1) intra-SF region HADR, and (2) inter-SF region HADR.

5. We conduct simulations in various environments to evaluate the performance of
the proposed AMILCC scheme at varying speeds. By comparing it with existing
stationary schemes, the excellence of the AMILCC scheme is verified through perfor-
mance evaluation metrics such as the packet success ratio, energy consumption, and
end-to-end delay.

The rest of this paper is organized as follows. In Section 2, we elaborate on the related
works on IoT LoRa techniques. Section 3 provides the system model for the proposed
AMILCC scheme, which includes a network model, a success probability model, an energy
model, a mobility model, and a Grey relational analysis model. In Section 4, we describe the
proposed AMILCC scheme in detail. The performance evaluation of the proposed AMILCC
scheme is presented through simulation results in Section 5, which are then discussed in
Section 6. Finally, this paper concludes in Section 6.

2. Related Works

LoRa is a leading LPWAN technology developed by Semtech, known for its long-
distance and low-power communication capabilities using a proprietary Chirp Spread
Spectrum modulation. This technology operates on license-free ISM bands below 1 GHz
and enhances phase continuity between chirps in a packet’s preamble, simplifying timing
and frequency synchronization without costly components for stable clock generation.
LoRa’s performance, as discussed in [24,25], hinges on the link budget—adjustable through
the code rate (CR), bandwidth (BW), transmission power (Tx), and spreading factor (SF).
With BW options from 7.8 kHz to 500 kHz, wider BWs facilitate higher data rates and
reduced airtime. LoRa employs Forward Error Correction (FEC) to mitigate interference,
with the CR influencing transmission reliability versus airtime. The spreading factor,
SF ∈ {7, . . . , 12}, defines the chirp symbol length [26]. LoRaWAN, the MAC layer defined
by the LoRa Alliance, operates primarily on an ALOHA protocol, as per [15], with the
adaptive data rate (ADR) optimizing the balance between energy use and network resilience
by adjusting the SF. LoRaWAN delineates three device classes: Class A (all), Class B
(beacon), and Class C (continuous listening), each tailored to specific operational modes.
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2.1. Multi-Hop Communication between LoRa Devices

Multi-hop communications are utilized to increase the connection’s range beyond
that of single-hop communications. Numerous studies have been published on IoT LoRa
networks to enable the coverage extension of single-hop communications-based IoT LoRa
networks. LoRablink [27] is one of the earliest LoRa-based multi-hop networks. It uti-
lizes an IoT TDMA protocol designed to allow energy-efficient and dependable multi-hop
communication. In [17], the authors suggested a selective relay-based multi-hop com-
munication method known as fair and scalable relay control (FSRC). The relay control
technique employed by FSRC maximizes both the coverage probability and minimum
success probability across all SF regions by regulating communication parameters. As with
other comparable schemes [20,28], the authors introduced a programmed e-node and an
implicit relay node to function as a transparent range extender with an overhearing opera-
tion, respectively. With the primary objective of replicating the identical packet delivered
by the remote end devices, they overhear the transmission and relay it to the GW. However,
both methods generate a substantial amount of network traffic due to broadcasts, which
degrades performance.

2.2. Clustering of Mobile IoT LoRa Devices

In clustering for IoT LoRa networks, LoRa devices are grouped into specific SF clus-
ters, and the CH in each cluster mediates data flows between LoRa devices and the GW.
Clustering enhances network connectivity and extends the lifespan of wireless networks by
efficiently managing nodes [19]. It minimizes packet duplication, optimizes data routing,
and improves efficiency and scalability while eliminating redundant message delivery. Con-
sequently, various cluster-based approaches have been proposed for IoT LoRa networks,
underscoring the importance of clustering as a key mechanism for facilitating efficient
communication among LoRa nodes. In [29], a strategy combining a forwarding relay node
with clustering enhanced LoRa network coverage and energy efficiency through multi-hop
communication, although it increased traffic and redundancy. Ref. [19] introduced an
SF-based clustering scheme to boost multi-hop capacity, assigning unique SFs to clusters
around sink nodes, but it faced challenges in network maintenance due to the impractical
removal of devices from higher SF clusters. Meanwhile, Ref. [30] proposed an SF partition-
based clustering and relaying (SFPCR) scheme aimed at improving packet delivery success
across SF regions, yet it failed to account for the mobility of IoT LoRa devices, limiting its
effectiveness in dynamic settings.

2.3. Mobility for IoT LoRa Networks

Mobility in sensor networks enables nodes to move after their initial placement, as
highlighted in the existing literature, which categorizes mobility into mobile nodes and
mobile sinks [31]. This capability is crucial for improving network performance through
hotspot resolution, topology optimization, congestion reduction, and energy savings. LoRa,
typically used in static settings, also finds relevance in mobile scenarios such as fleet
monitoring, bike rentals [32], and wildlife tracking, indicating the need for exploring
mobility models in LoRa networks [21]. The authors of [33] explored a QoS-aware adaptive
mobility method in LoRa-based IoT, focusing on the impact of mobile node configurations
on network reliability and efficiency.

The use of mobile IoT technologies, such as e-scooter services in Korea [34], exemplifies
the potential for environmental data collection within LoRa networks, including monitoring
variables like temperature and humidity. Studies like those in [22,35] emphasize the
importance of mobility in the IoT, with the latter enhancing LoRaWAN’s ADR mechanism
for better prediction of mobile device positions. Surveillance systems integrating LoRa
and BLE for varied applications were discussed in [36,37]. Meanwhile, research into
LoRa’s mobility, particularly with UAVs, has identified diverse mobility models without
settling on an optimal pattern for specific IoT services, highlighting a need for standardized
performance assessment methods [38,39].
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3. System Model

In this section, we provide a detailed description of the system model in the proposed
AMILCC scheme. We first present the network model, success probability model, energy
model, and mobility model. Next, we derive the Grey relational analysis model.

3.1. Network Model

The geographical area covered by one GW is partitioned into uneven SF regions
depending on the distance from the GW, as shown in Figure 1. These partitions also
represent clusters of LDs/CMs with a single CH communicating with the GW. This ensures
that only a few LDs communicate with the GW, thereby avoiding network congestion,
packet collisions and losses, delayed packet transmission and acknowledgment, etc. Each
LD in a particular partition or cluster only communicates with its CH. The partition closest
to the GW has a lower SF value, and its CH can communicate with a higher DR with the
GW. The farthest partition hn has the highest SF of 12, and the CH here must use the lowest
DR to ensure reliable communication with the GW. The width (W) of each partition is fixed.
However, the height (h) of each partition increases at a fixed ratio of 1.5. Both the W and h
are measured in meters. The LDs are randomly distributed across the network, as shown in
Figure 1, with each partition containing a random number of LDs. The basic assumptions
are as follows:

• The LDs are mobile and can change their partitions.
• The CHs are mobile, whereas the GW remains stationary.
• The LDs follow a set predetermined path and network topology can be altered.
• All LDs possess omni-directional antennas.
• Any two LDs cannot be at the same (X, Y) position in the given 2D coverage area.

Figure 1. Model of the SF region partition process in the proposed AMILCC scheme.

The GW will broadcast a network initialization message in the form of beacons when
the network deployment is complete. The GW will determine the LDs’ positions and SFs
based on the strength of the received broadcast signal [40]. An uplink is the data frame
transmitted from an LD to the GW, and a downlink is defined as the data frame transmitted
from the GW to an LD. The notations used in this article are summarized in Table 1.

We form clusters of mobile IoT LoRa devices in different SF regions with a finite
number of cluster heads (CH > 1). The collection of all CHs is CH ={CH1, CH2, . . . CHn},
where n is the partition or cluster number, and each CH has a coordinate (Xi, Yi). We
assume that sensor environment A contains mobile nodes with LD > 0, denoted by LD =
{Ld1, Ld2, . . . , Ldm}, and that mobile nodes move along a predetermined path via vision.
The topology of the network can be altered, and the LoRa nodes can move with a minimum
speed of 0.5 m/s and a maximum speed of 5 m/s. Let P = {p1, p2, . . . , pm} and velocity
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V = {v1, v2, . . . , vm} represent the sets of paths and velocities, respectively. According to [1],
mobility in LoRaWAN can only be achieved in the uplink. When an end node moves, its
location changes, and at the same time, it can send data. This can be achieved using any of
the three classes without latency as long as it is within the coverage of LoRaWAN network
GWs. Figure 2 illustrates the trajectory of an IoT LoRa mobile device LD(i), following the
random waypoint (RWP) model over time t, emphasizing the mobility pattern of the node.
Here, we obtain the mobile node’s moving distance di = vi × t during a given period, and
the coordinates of LD(i) change from (X0, Y0) to (X1, Y1). The communication trajectory
sequence (Ti) of LoRa mobile device LD(i) along a path (pi) contains a series of moving
positions over a given period t, Ti = {(x0, y0), (x1, y1), . . . (xn, yn)}.

Table 1. List of main notations.

Symbol Description

Ti Trajectory sequence
Pi

success(location(x)) Probability of successful transmission
TSF(i) Time on air
ISF(i) Number of potential interferences

Rb Data rate
SF(i) Spreading factor of a LoRa device
Etx,i Transmission time

En−Hops(SF, Ptx(i)) Energy consumption of n hops
Etot_i(t) Total energy consumption
Ecs(i) Energy consumption of a LoRa device

Ere_i(t) Residual energy of a node at time (t)
RS(i, j, t) Relative speed
d(mi, mj) Euclidean distance
Xij(norm) Normalized values

Sij Grey relational coefficient
∆ij Absolute difference between values
Gi Grey relational grade

NRnew Network resource

Figure 2. IoT LoRa mobile node movement path.

The performance of LoRaWAN is influenced by the duty cycle limitation in the
868 MHz band, restricting the time on air (ToA) for packet transmission to a duty cy-
cle (δi) of 1%, with a code rate (CR) of 4/5 and a bandwidth (BW) that varies between
125 kHz and 500 kHz. We focus on deploying Class B LoRa devices that initiate trans-
mission, transmitting packets during their slot time without interference using spreading
factors (SF) ranging from 7 to 12. An initial SF allocation (I-SFA) scheme [41] was utilized
to adaptively assign SFs to LoRa devices (LDs) at deployment, based on the signal strength
received at the gateway (GW) and accommodating variable channel conditions such as
shadowing and fading. The network employs a star topology for direct communication
between end nodes and GWs, where scheduling beacon messages transmitted by moving
LoRa nodes, containing information like node ID, status, and time interval, becomes crucial
due to the volume of messages.
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3.2. Success Probability Model

To ensure reliable communication between LDs and CHs/GW, an important factor
is the link quality (LQ) in a particular SF partition. The LQ model given in [30] is used
to enable frame transmission without collision and with all frame bits correctly decoded
despite the presence of interference. However, due to harsh environmental and unavoidable
data capture effects, not all bits transmitted to the GW by LDs can be received. Therefore,
a reliable transmission LQ is an essential parameter for an acceptable packet delivery
ratio in multi-hop communication to the GW. Let us assume that a particular LD starts
transmitting, no other LD transmits for a critical time duration given by 2TSF(i), and the
probability of successful transmission by an LD at location x in a particular partition is
given by Pi

success(location(x)) in Equation (1),

Pi
success(location(x)) := e−2TSF(i)φISF(i) (1)

where TSF(i) is the time on air, ISF(i) is the number of potential interferences within the
same spreading factor region, and φ is the packet transmission intensity.

3.3. Energy Model

In the AMILCC scheme, we utilize the energy model from [28] for continuity and
direct comparison of performance metrics under various conditions of LoRa devices, which
differ from Class C devices that rely on mains power. The energy consumption, Etx,i, for
a LoRa device (LD(i)) sending a β-bit packet includes the stages of activation, low-power
listening, radio setup, transmission, deactivation, and processing. Moreover, the energy for
transmission is influenced by both the power and SF-dependent transmission duration, as
defined in (2) [42],

Etx,i = Ptx(i) × TSF(i) (2)

where Ptx is the transmission power with the ToA for LD(i) with SF(i), and TSF(i) denotes
the time on air for LD(i).

The energy consumption for sending a packet using multi-hop communication with n
hops between LD(i) and GW is given by En−Hops(SF, Ptx(i)), as shown in Equation (3).

En−Hops(SF, Ptx(i)) =
n

∑
i=1

(Etx,i + Erx,i) (3)

Here, Ptx(i) is the transmission power, and Etx,i and Erx,i are the energy consumption
of the transmitter and receiver, respectively, for the i-th hop according to the current setting
for Ptx(i), SF, and BW.

Most LDs are usually of Class A or B, so they mostly remain in sleep mode to ensure
lower energy consumption and preserve battery life. Thus, for the total energy consumption
of an LD(i) at time t, Etot_i(t), given by Equation (5), we consider two states, inactive or
sleep mode (Esle_i(t)) and active mode (Eact_i(t)), given by Equation (4), which is made up
of the energy consumption during transmission, reception, processing, and wake up. This
dynamic switching from sleep mode to active mode in LoRa devices impacts the power
consumption of LoRa devices, and the frequency and duration of these transitions can
significantly affect the device’s battery life.

Eact_i(t) = EW p + Eproc + EWut +
n

∑
j=1

Ecs(i) (4)

Etot_i(t) = Esle_i(t) + Eact_i(t) (5)

Esle_i(t) represents the dissipated energies in the state when devices are in sleep mode
(Esle_i(t)). In active mode (Eact_i(t)), EW p represents the energy consumption when a device
wakes up, Eproc represents the energy consumption of data processing, and EWut represents
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the amount of energy to move the transceiver from sleep mode to active mode. In addition,
Ecs(i), as calculated in Equation (6), represents the energy consumption of LD(i) for a
particular DR to transmit Xpacket with n hops.

Ecs(i) =
Xpacket

Rb
× (Ptx(i) + Prx(i)) (6)

Rb =
CR× SF

2SF

BW

(7)

Here, Xpacket is the size of the transmitted packet in bits; Ptx(i) and Prx(i) are the
consumed power according to the supply current and supply voltage for the transmitter
and receiver, respectively; and Rb is the bit rate defined in Equation (7). CR is the code rate
defined as 4

(ι+4) with ι ∈ {1, 2, 3, 4}. Ultimately, to understand an LD’s energy consumption,
it is essential to efficiently utilize the LD’s residual energy Ere_i(t) at a given time (t) for the
effective selection of CHs and also to prevent the untimely demise of devices to ensure that
the energy of each LD in the network is consumed in a relatively balanced manner. Thus,
Ere_i(t) can be computed as (8),

Ere_i(t) = E0 − Etot_i(t) (8)

where E0 is the initial energy of LoRa devices.

3.4. Mobility Model

A reliable LoRa mobility model is required for efficient positioning and range de-
termination of LDs in the coverage zone of each GW. Despite the fact that LoRaWAN
was designed for static low-power long-range networks, several IoT solution applications
involve the use of mobility [21]. Therefore, we consider a dynamic mobility pattern where
the movement is based on the medium that the node moves through. A dynamic 1D, 2D,
or 3D mobility path is assumed for each LD, whose movement depends on the medium
through which it moves. In the proposed AMILCC scheme, which is optimized for low
mobility, we employ the random waypoint (RWP) model from [43]. In the RWP model, each
LD follows a continuous sequence of pauses and motions. During the pause duration of 0
to 20 s, the LD maintains its latest position, and during the motion period, it starts moving
at a random speed varying from 0 to 5 m/s in a random direction until it pauses again in a
network consisting of one GW. If the coverage boundary is reached, the direction of the
LD is reversed, and the pause-motion sequence continues. There must be some mobility
measuring metrics for LDs like those given in [44]. Also, the relative speed (RS) metric can
be used to differentiate the movement patterns of LDs using their relative motion or speed.
We assume that LD(i) and LD(j) move with speeds V⃗i(t) and V⃗j(t), respectively. Their RS
is computed using Equation (9). It should be noted that the RS can impact network and
node clustering performance. The RS can effectively serve as one of the key parameters in
adaptive clustering algorithms for clustering LDs. For example, LDs with similar speeds
can lie in the same cluster, while nodes moving at different speeds can be placed in different
clusters.

RS(i, j, t) = |V⃗i(t)− V⃗j(t)| (9)

3.5. Grey Relational Analysis (GRA) Model

In previous sections, different models were described for determining the metrics that
affect LoRa network performance, like link quality (LQ), mobility, and residual energy.
The GRA model [45] is a multi-criteria technique that consolidates the three metrics into a
unified metric. It has four main processing stages: (1) normalization of input data, (2) Grey
relational (reference) sequence generation, (3) Grey relational coefficient computation, and
(4) Grey relational grading (ranking of coefficients for decision making).
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4. Adaptive Mobility-Based IoT LoRa Clustering Communication Scheme (AMILCC)

In this section, we explain the proposed adaptive mobility-based IoT LoRa clustering
communication scheme in detail, which has three main mechanisms. First, we provide a de-
tailed explanation of the cluster architecture development, followed by the data forwarding
mechanism, and conclude with the hybrid adaptive data rate mechanism.

4.1. Cluster Architecture Development Mechanism

This subsection expounds on the procedure for the local cluster formation, followed
by the CH selection process. Concisely, the clustering scheme generates balanced and
stable clusters within the coverage region of a GW and readily updates the clusters when
low-speed LDs move from higher to lower SF regions (nearer to the GW). It allows for
clusters whose structure adapts to changing network conditions, positions, and paths of
moving LDs.

4.1.1. Cluster Formation

The cluster formation scheme is based on adaptive DBSCAN used in [46], a density-
based clustering technique that is ideal for grouping nodes based on their geographical
distribution with varying densities and shapes. This can be beneficial for locating regions
with a high concentration of mobile nodes and following their movement patterns over
time. Figure 3 illustrates the AMILCC scheme for mobile IoT LoRa devices, combining
cluster formation and communication into a cohesive framework. Figure 3a depicts how
mobile LoRa devices (LDs) form density-based clusters within a defined radius r0, achiev-
ing a minimum neighborhood device count (LDmin) through k-nearest neighbors analysis.
Figure 3b illustrates the internal cluster connectivity, showing how cluster members connect
with CHs, which, in turn, facilitate communication with the gateway (GW). This stream-
lined depiction not only simplifies the understanding of the clustering mechanism but also
highlights the pivotal role of CHs in ensuring effective data transmission and network
efficiency. Given that k is equivalent to LDmin, a value of 4 was selected for k. Consequently,
the distance to the four nearest neighbors from any given LoRa device is calculated as the
Euclidean distance between LD(i) and its four nearest neighbors. To determine the radius
r0, the Euclidean distance d(mi, mj) between any k mobile neighbors is computed using
Equation (10), where mi is a core LD and mj is any other LD in the neighborhood. The
parameter k is determined using Equation (11), and radius r0 is given by Equation (12),
where mj ∈ Ji, and Ji contains mi’s k nearest neighbors.

d(mi, mj) =
√
(Xmi − Xmj)

2 + (Ymi −Ymj)
2 (10)

k = min(LDmax, LDmin) (11)

where LDmax is the maximum number of neighbors within a random cluster distance dmax
and LDmin is the minimum number of mobile LDs required to make a local sub-cluster.

r0 = argmax
i

(d(mi, mj)) (12)

If the number of LDs in the neighborhood of a reference LD is ≥ LDmin, a new
cluster will be created and the clusters expanded using the two important concepts of
density-reachable and density-connected.
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Figure 3. Adaptive mobility clustering for mobile IoT LoRa devices.

4.1.2. Cluster Head Election

After any LD cluster is formed, the cluster head (CH) is selected using the GRA
consolidated metric comprised of the link quality (Pi

succuss(location(x))), residual energy
(Ere_i(t)), and mobility (RS(i, j, t)) of all mobile LDs within the local cluster, through the
following steps:

• Define the objective function (X) for selecting the CH. It is comprised of multiple crite-
ria defined by X1, X2, and X3 represented by Equations (1), (8), and (9), respectively.

• Normalize the data fed to each criterion to make it comparable by dividing it by the
range of data values, where the normalized value of the criterion Xij(norm) for LD(i) and
the j-th criterion are given by Equation (14). Xij is the original value of criterion j for
LD(i), and min(Xij) and max(Xij) are the minimum and maximum values, respectively.
The reference target for all criteria is X0j, in which all the performance values are 1.

Xij(norm) =
(Xij −min(Xij))

(max(Xij)−min(Xij))
(13)

• Determine the Grey relational coefficient given by Sij in Equation (14) that represents
the closeness of the normalized value Xij(norm) to the reference X0j. ∆min, ∆max, and
∆ij are defined in Equations (15)–(17), respectively. Value ∆ij is the absolute difference
between X0j and Xij(norm) and represents the deviation from the target value or quality
loss. The value ∆min is the lowest, and ∆max is the highest value among the quality
loss parameters. The parameter ρ is a coefficient within the range 0 ≤ ρ ≤ 1 that can
be altered if required by the system.

Sij =
∆min + ρ∆max

∆ij + ρ∆max
(14)

∆ij =
∣∣∣X0j − Xij(norm)

∣∣∣ (15)

∆min = min{∆ij, i = 1, 2, . . . , m, j = 1, 2, 3} (16)

∆max = max{∆ij, i = 1, 2, . . . , m, j = 1, 2, 3} (17)

• Determine the Grey relational grade Gi for LD(i) using Equation (18). The value n is
the number of nodes in a cluster, and Sij is the Grey relational coefficient for LD(i).
The CH of the cluster is the node with the highest Gi. The clusters are reconfigured
every 10 min to adapt to node positions and changes in network topology. This



Electronics 2024, 13, 2052 11 of 21

is accomplished by sending broadcast messages to all nodes in the network with
information about where and when the GW will be available.

Gi =
(∑n

j=1 Sij)

n
, i = 1, 2...., n (18)

Our proposed AMILCC scheme is designed to dynamically adapt by selecting alterna-
tive cluster heads (CHs) as needed based on a set of criteria, including the residual energy
levels of current CHs. When a CH’s residual energy falls below a predefined threshold,
the GW automatically initiates a process to nominate a replacement CH from the candi-
date set of available nodes. This approach ensures that no single node is overburdened
with the CH role, thereby preserving the overall energy efficiency and longevity of the
network. By carefully scheduling active and sleep modes and possibly rotating the CH
role among multiple mobile LoRa devices, this dynamic switching from sleep mode to
active mode in LoRa devices impacts power consumption. When a LoRa device transitions
from sleep mode to active mode, it requires additional energy to power up its components
and perform the required tasks, such as receiving and transmitting data. This increase in
power consumption during the transit period contributes to the overall energy usage of
the devices.

4.2. Data Forwarding Mechanism

During this phase, data are sent from the LoRa devices (LDs) to the cluster heads
(CHs) and then to the gateway (GW). To achieve this, the LDs collect data and then send it
to their respective CHs following scheduled time slots. The CH aggregates and compresses
the data from all LDs in its cluster, and the CH also forwards the data to the GW. Each
CH maintains a list of the connected LDs. Before entering their time slot, each LD rouses
itself and returns to its sleep state according to the Time-Division Multiple Access (TDMA)
schedule. Next, each mobile LoRa device modifies its SF and Tx adaptively to send data
according to the distance between itself and the CH, which can be determined from the
node information in the received data packet. Finally, the CH must remain in the “ON”
state in order to receive data and sustain a connection between the CH and the GW.

After not hearing from a node for two consecutive frames, the node is deemed to
have moved outside the cluster range and is consequently deleted from the list. The CH
updates and distributes the TDMA schedule to related LDs. If the LD does not receive an
acknowledgment (ACK) from the CH, it perceives itself to be an orphan due to its mobility.
The orphaned LD can solicit a new CH and associate with it by issuing a join request (Join-
Req). When a new LD joins a CH, the CH updates its node list. The CH adjusts its TDMA
schedule and communicates it to all nodes within the cluster. In the proposed AMILCC
scheme, each cluster member spontaneously transmits data to the CH in accordance with
the TDMA schedule, and the CH aggregates the data and transmits it to the GW in multi-
hop mode. As a result, once the packets are received, the CH returns the acknowledgments
to the cluster members. When cluster members receive the acknowledgment signal from
the CH, it means that the packets were successfully transmitted.

4.3. Hybrid Adaptive Data Rate (HADR) Mechanism

In this section, the resource allocation approaches aimed at ensuring the regular
maintenance and optimization of IoT LoRa network resources for the efficient and reliable
operation of mobile clusters are examined. Maintaining the stability of clusters and the
network integrity of wireless networks with mobile nodes is an essential feature since
mobile nodes can enter and exit clusters, generating instability and impacting network
performance. A node undergoes a topological change when it disconnects and reconnects
with all or some of its neighbors, thereby altering the cluster’s structure.

We develop a mechanism based on the HADR [23] to maintain clusters of mobile
LD-based networks by combining the static and dynamic DRs of the LDs based on the
signal-to-noise ratio (SNR) of the received packets. Our scheme not only operates as a
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low-pass filter to resist rapid changes in the SNR of received packets at the network server
but also aims to allocate the optimal spreading factor (SF = 7∼12) and transmit power
(Tx = 2∼14 [dBm]) to both static and mobile LDs by seeking to reduce the convergence
periods. In our proposed AMILCC scheme, we have further refined the categorization of
the hybrid ADR mechanism, classifying it into two distinct approaches: (1) intra-SF region
HADR, and (2) inter-SF region HADR.

4.3.1. Intra-SF Region HADR

This approach enables the efficient use of network resources by dynamically varying
the DR to match the quality of the communication link within a particular SF region. When
employing it on mobile LDs in clusters, each LD changes its DR, Tx, and SF based on the
received signal quality of its transmissions computed by the network server (NS). The
scenario where an LD moves in the same SF region from its initial location (x1, y1) to (x2, y2)
is considered. This scenario has a negligible effect on the SF because the received signal
strength at the GW may exhibit minimal variation. If the SNR is high, indicating good link
quality (LQ), the mobile LD can raise its SF to extend its range and improve its interference
resistance. In contrast, if the SNR is low, the LD can reduce its SF to increase the data
throughput and shorten the transmission time, as concisely shown in Algorithm 1. In this
case, we envisage the settings of LD(s) with the received signal strength not exceeding a
given threshold [47].

Algorithm 1: Adaptive SF selection
Input: SNR(LDi): SNR for a LoRa device
Input: SNRLDi : Current Signal-to-Noise Ratio
Input: SFi: Current Spreading Factor
Output: SFNew: Adjusted SF

1: for i← 0 to N do
2: Set predefined thresholds for SNR
3: if SNRi > SNRMAXthreshold then
4: SFNew = SFi + SFIncrement
5: else if SNRi < SNRMINthreshold then
6: SFNew = SFi − SFDecrement
7: else
8: SFNew = SFi
9: end if

10: end for
11: return SFNew

4.3.2. Inter-SF Region HADR

This approach allows a mobile LD to adapt its transmission settings to the current
medium’s condition as it traverses several SF regions. In particular, a mobile device LD(i)
moves from location (x1, y1) to locations (x2, y2) and (xn, yn) around the GW at times t0
and tn, respectively. The network server regularly monitors the SNR and the packet loss
ratio (PLR) of the received packets and utilizes this information to decide the ideal SF, BW,
DR, and Tx for the LD’s subsequent transmission, thereby ensuring reliable communication
while conserving battery power. The LD adapts its DR, SF, Tx, and BW based on the PLR
and SNR thresholds. If both the PLR and SNR are below the threshold, the DR is increased.
If the maximum DR has been reached, the LD decreases the BW, and if the BW is already at
its minimum point, the device increases its Tx. If the maximum Tx has been reached, the
LD decreases its SF. If the PLR is above the threshold or the SNR is below the threshold, the
LD decreases its DR, BW, Tx, or SF, depending on which parameter is already at its lowest.
As the LDs move across different SF regions, the network resources are constantly adjusted
to ensure reliable communication with the GW or the nearest CH, as shown in Algorithm 2.
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Algorithm 2: Inter-SF network resource adaptation
Input: Inc: Increase
Input: Dec: Decrease
Input: PLRi: Current Packet Loss Ratio
Input: SNRi: Current Signal-to-Noise Ratio
Input: Tx: Current Transmit power
Input: DR, BW: Current Data Rate, Bandwidth
Input: NRnew: New Network Resources

1: NRnew = Null
2: for i← 0 to N do
3: Set predefined threshold (Th) for PLR and SNR
4: if (PLRi < PLRTh)AND(SNRi > SNRTh) then
5: i← Inc(DR, Tx): unless at max
6: i← Dec(BW, SF): unless at min
7: else
8: i← Dec(DR, Tx): unless at min
9: i← Inc(BW, SF): unless at max

10: end if
11: NRnew ← i
12: end for
13: return NRnew

5. Performance Evaluation

In this section, we first describe our simulation environment, model, and perfor-
mance evaluation metrics. Then, we compare the performance of the proposed scheme
with various low mobility speeds. Finally, we evaluate the performance of the proposed
AMILCC scheme in comparison with previous static communication schemes through
simulation results.

5.1. Simulation Environment

We consider Class A LoRa devices (N) in a geographical region covered by a single
GW and subdivide them into distinct SF regions based on distance from the GW within a
6000 m × 1000 m area. The LDs are distributed at random throughout the network, with
each partition containing an arbitrary number of LDs. These LDs adhere to the European
region’s frequency regulation, which limits the uplink (UL) duty cycle of LDs and GWs
to 1% and 10%, respectively, for the default channels. The mobility of LDs follows a
two-dimensional (2D) random waypoint mobility model. LDs choose a speed varying
between 0 and 2 m/s at random and shift direction every 1000 m [48,49]. During the
simulation, each LD transmits an uplink packet every 600 s with varying payload sizes
for 24 h of simulation time. While the lower-frequency operation of LoRa aids in better
penetration through obstacles, we recognize that physical barriers can still influence signal
propagation. In practice, the purpose of this paper is not to focus on efficiently dealing with
obstacles. Nevertheless, to comprehensively address this issue, our methodology integrates
adjustments in simulation models to incorporate obstacle dynamics and the utilization of
the hybrid adaptive data rate (ADR) mechanism for optimal communication settings amidst
varying environmental factors. Significantly, we incorporate the random waypoint (RWP)
model into our simulations to realistically represent the mobility patterns of devices. This
is supplemented by strategies like multi-hop communication for enhanced connectivity in
obstructed areas and strategic network planning for effective device placement. Together,
these approaches form a robust framework for assessing and mitigating the impact of
obstacles on mobile LoRa networks in our research. Subsequently, we use the Free-Space
Path Loss (FSPL) model, which typically uses a value of around 2 as the Path Loss Exponent
(PLE) because it accurately reflects the propagation characteristics of electromagnetic waves
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in free space. The FSPL model with a PLE of 2 is often appropriate for line-of-sight
(LOS) communication environments where there are minimal obstructions or reflections
that could attenuate the signal. In contrast to the performance of the stationary model,
we modeled multi-hop communication in LoRa networks with an adaptive clustering
method of LDs to extend packets to the GW using MATLAB R2023b and Simulink. This
simulator was selected due to its extensive support for a variety of IoT protocols and
wireless networking capabilities. As part of the initial deployment, each node’s SF is set to
(SFset) = (SFmin, . . . , 12), where SFmin is the minimum permissible SF for its respective SF
area. During the initial setup phase, this is referred to as an(I-SFA. This method helps to
limit the possible SF options at each LD, thereby reducing the learning time. Table 2 shows
all the simulation parameters adopted in the simulation environment.

The metrics used for the performance evaluation of the proposed AMILCC scheme
and the existing stationary model include the probability of successful transmission and
the number of packets. More specifically, the metrics are as follows:

• Packet Success Ratio (PSR): This is calculated as the ratio of the total number of data
packets successfully received by the network server to the total number of data packets
generated by all LDs throughout the simulation period. The PSR solely defines the
data packets and does not reflect the success ratio of the join request.

• Energy Consumption: This is the average amount of energy consumed by each indi-
vidual LD throughout the simulation period. It is calculated as the ratio of the total
amount of energy consumed by the whole network to the number of participating LDs
in the network.

• End-to-End Delay: This is defined as the total time taken by a single packet to be
delivered to the final destination over a LoRa-based network. The end-to-end delay
can vary depending on several factors, including signal quality, SF, distance between
the LD and the GW or any other receiver, interference, and environmental conditions.

Table 2. Simulation parameters.

Parameter Values

GW 1
Network size 6000 m × 1000 m

Number of nodes (N) 1000
Mobility model RWP
Minimum speed 0.5 m/s [48]
Maximum speed 5 m/s

Channel frequency 868 (MHz)
Spreading factor (SF) 7–12

Bandwidth 125,250,500 (kHz)
Payload length 30 (Bytes)

Transmission power 2–14 dBm (25 mW)
Data rate 0.25–5.47 (kbps)

Coding rate 4/5
Simulation time 24 hrs

Payload CRC ON
Interval time 600 s

Path loss exponent 2

5.2. Simulation Results

In this section, we first evaluate various speeds to ascertain the most suitable speed
for the mobile LDs in the proposed AMILCC scheme. Then, we examine the effects
of various low mobility speeds (1, 2, and 5 m/s) on network performance, specifically
assessing the PSR and end-to-end delay. Subsequently, we present the obtained results
of the performance evaluation metrics using both mobile and static LD communication
transmission parameters.
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Figure 4a shows the PSR as a function of the number of devices and mobility speed.
The results show that node mobility has an ameliorated impact on the PSR of the proposed
AMILCC scheme using the random waypoint mobility model, which contrasts with the
results in [21]. At movement speeds of 2 m/s or below, the AMILCC scheme can con-
veniently cluster mobile LDs to yield good performance, where more than 70% of data
packets are successfully delivered to the GW. This good performance is also maintained
with an increased number of nodes in the network. However, as the movement speed of the
LDs increases up to 5 m/s, we observe that the PSR of the transmitted packets gradually
deteriorates. This occurs because of path-breaking due to the faster movement of the LDs.
Without loss of generality, it should be noted that this good performance in terms of the
PSR of slower mobile nodes is attributed to a stable connection, fewer threshold-based
handovers from one CH to another, and less frequent location updates of mobile LDs.

(a) (b)

Figure 4. Plots of the impact of speed and the number of devices. Analyzing the packet success ratio
and end-to-end delay in the proposed AMILCC scheme: (a) Packet success ratio as a function of the
number of devices and speed (m/s); (b) End-to-end delay as a function of the number of devices with
varying speeds.

Figure 4b demonstrates the average end-to-end delay for packets reaching the GW
in the AMILCC scheme, considering the number of devices and their respective mobility
speeds within the network. The average delay remains consistent for LDs ranging from 200
to 600 at movement speeds of 1, 2, and 5 m/s. However, divergence emerges at varying
speeds when the number of mobile LDs surpasses 600. This significant increase in delay is
because of a combination of higher mobility speeds and a greater number of mobile devices,
which induce frequent location changes, CH updates, and alterations in network resources.
Consequently, this causes a considerable delay in the transmission of data to the GW.

Next, we compare the proposed AMILCC scheme to stationary schemes [17,19,20,30] namely
the static cluster scheme, the FSRC scheme (also called the relay scheme), the mesh scheme,
the cluster-based scheme, and the SFPCR scheme. These stationary schemes are utilized
as baselines, where LDs remain static for the duration of the simulation, and the standard
network-based ADR mechanism is used. In this analysis, the packet success ratio, energy
consumption, and packet loss ratio are considered. This study validates the suggested
technique for adaptive mobility-based IoT LoRa networks by using mobile clustering and
adaptive resource allocation approaches in the corresponding SF regions.

Figure 5a demonstrates a relationship between the distance of LDs from the GW and
their packet success ratio. The packet success ratio of all schemes diminishes exponentially
with rising average distances. In particular, the proposed AMILCC scheme outperforms
the stationary schemes as a result of the use of the HADR mechanism, which dynamically
optimizes transmission parameters based on LQ and adaptively assigns SFs as optimal
resources to LDs. This reduces retransmissions and significantly enhances the PSR. Addi-
tionally, the mobility of these LDs results in diverse signal paths and frequency variations,
enabling multiple potential transmission routes and improved frequency diversity, which
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helps overcome interference. Subsequently, at a distance between 3 km and 4 km, the
SFPCR scheme and the FSRC scheme exhibit a modest enhancement in their packet success
ratios, attributed to their utilization of relays to extend packets from distant LDs to the GW
compared to the traditional static cluster and mesh schemes.

(a) (b)

Figure 5. Plots of the performance evaluation metrics. The packet success ratio and energy consump-
tion plotted against the distance from the GW with a 30-byte payload for various schemes: (a) Packet
success ratio as a function of the distance from the GW (km); (b) Energy consumption as a function of
the distance from the GW (km).

In Figure 5b, all schemes illustrate a relatively lower quantity of energy dissipation for
LDs in close proximity to the GW. Nevertheless, beyond 3 km, the FSRC scheme consumes
significantly more energy than the other stationary schemes because of broadcasts made by
relays and source nodes. The percentage differences between the AMILCC scheme and the
existing SFPCR, mesh, static cluster, and FSRC schemes are approximately 36.73%, 46.15%,
47.12%, and 90.21%, respectively. The results demonstrate that the proposed AMILCC
scheme consumes the least amount of energy as the distance increases and the number
of transmissions is regulated because all distant nodes in the high SF region propagate
their transmission through the mobile CHs rather than direct transmission of packets to
the GW, which minimizes the ToA. Overall, the energy consumption of the AMILCC is
lower than that of the static schemes due to short-range communication for nodes to relay
data to their CH and a higher packet success ratio since the scheme not only adaptively
assigns an optimal SF before an uplink packet transmission but also has the capability to
adapt to the variable channel and mobility conditions, thus leading to a small number of
retransmissions that consume less power.

Figure 6 shows how the packet success ratio and energy consumption of LDs vary
with the number of devices. In Figure 6a, all the schemes exhibit an inverse proportionality
between the packet success ratio and the number of devices. An increase in the number
of LDs culminates in a decreasing chance of packets successfully reaching the GW for
the mesh, cluster-based, and FSRC schemes. This is due to the capture effect as nodes
compete for the channel, leading to collisions arising from blind transmissions. These nodes
transmit data packets as soon as they are ready to transmit, which hinders the successful
delivery of packets to the GW. In contrast, the proposed AMILCC and SFPCR schemes
employ collision-free transmission [50]. Due to this regulated access to the medium, each
LD transmits its packets directly to either a CH, relay, or GW. Specifically, the AMILCC
scheme adaptively allocates resources (SF and Tx) to mobile LDs based on signal quality
and receiver sensitivity, resulting in an enhanced PSR with limited transmission errors.
Consequently, the AMILCC scheme not only outperforms other schemes with few mobile
LDs by achieving a PSR improvement of more than 90% but also maintains its superiority
as the number of LDs increases to 1000, owing to its good adaptation of the SF. However, it
has also been observed that as the number of LDs increases in the sensor area, it causes a
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detrimental effect on the network’s performance as a result of massive packet loss caused
by significant congestion and vulnerability to interference.

(a) (b)

Figure 6. Plots of the performance evaluation metrics. The packet success ratio and energy consump-
tion plotted against the number of devices of various schemes: (a) Packet success ratio as a function
of the number of devices; (b) Energy consumption as a function of the number of devices.

Figure 6b depicts the variation in the number of devices as a function of the energy
consumption for the proposed AMILCC scheme and the stationary schemes under consid-
eration. In contrast to the AMILCC scheme, the results for all four comparative stationary
schemes illustrate a direct increasing trend between energy consumption and the number
of devices. In the FSRC scheme, the energy consumption rises quickly with the growing
number of LDs exceeding 200 mJ as a result of using more LDs with a higher SF, making
eight or more retransmission attempts with failure, and broadcasting packets sent through-
out the network, which introduces considerable routing overhead and consumes more
energy. Similar to the static cluster-based scheme, which has huge cluster sizes, the cluster
member nodes must connect with other nodes located in the higher SF regions, resulting in
increased energy consumption owing to intracluster distance communication and more
attempts on the channels. Therefore, high energy consumption is observed, as the transmit
energy consumption is primarily based on the values of the SF, Tx, and ToA. Overall, the
energy consumption of the proposed AMILCC is lower than that of the stationary schemes
as a result of the higher PSR and smaller number of retransmissions.

Figure 7a vividly shows an inverse proportionality between the packet success ratio
and payload size (B) for the proposed AMILCC scheme and other comparative schemes.
An increase in the payload size has a negative impact on network efficacy. Consequently,
the smaller the size of a data payload, the higher the PSR. With a default payload size of
30 bytes, the PSRs of the AMILCC, SFPCR, FSRC, mesh, and static cluster schemes are
approximately 80%, 64%, 45%, 40%, and 36%, respectively. The enhanced performance
of the proposed AMILCC is primarily due to the deployed mobility model, clustering,
and efficient adaptive data rate algorithms for optimizing the data rate and payload size.
Therefore, the deteriorating PSR for all the schemes with an increase in the payload sizes
may cause network congestion. As more nodes attempt to simultaneously transmit larger
packets, collisions and contention for the communication medium may increase. This may
result in increased packet loss and a lower PSR. Thus, to optimize the PSR in a mobile IoT
LoRa environment, it is recommended that the payload size be as small as feasible.

Figure 7b depicts a direct proportionality between the energy consumption and pay-
load sizes for all schemes. As the payload size increases, so does the energy consumption,
limiting the lifespan of an IoT network that is energy-constrained. The energy consumption
of the FSCR scheme rises quickly with the growing payload size due to the broadcast
storm problem caused by source nodes and relay nodes deployed in the network and
massive retransmission, which results in a bottleneck at the GW. Moreover, when a packet
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is retransmitted multiple times with high SF and Tx, higher SFs are highly susceptible
to interference due to the longer ToA over the wireless medium, which can negatively
affect energy consumption. In comparison, the cluster-based, mesh, SFPCR, and proposed
AMILCC schemes consume relatively little energy. Therefore, our results elucidate that the
proposed scheme adaptively responds to mobility by allocating resources to the LDs to
adjust the SF and Tx as soon as the location and environment change. Thus, optimizing
LoRa parameters such as the SF, CR, and payload size is a key element in reducing the
energy consumption of LDs. According to [51], increasing the payload size decreases
the energy consumption per useful bit for high SF values. In contrast, for low SF values,
payload size variations have a negligible impact on the energy per useful bit, although they
do lead to increased ToA, a phenomenon also noted in our proposed AMILCC scheme.

(a) (b)

Figure 7. Plots of the performance evaluation metrics. The packet success ratio and energy consump-
tion plotted against payloads of various schemes: (a) Packet success ratio as a function of the payload
(B); (b) Energy consumption as a function of the payload (B).

6. Discussion

Our study highlights the impact of node mobility on the packet success ratio (PSR)
and network performance within the AMILCC scheme, offering new insights compared
to prior research [17,19–21,30]. Notably, node speeds up to 2 m/s allow the scheme
to maintain a PSR above 70%, showcasing effective clustering of mobile LoRa devices
compared to the results in [23,30], which exhibit their highest success probabilities of 50%
and 65.7%, respectively. However, at speeds of 5 m/s, the PSR declines due to disruptions in
stable connections, emphasizing the importance of managing mobility for optimal network
performance. The AMILCC scheme’s success in enhancing the PSR while reducing energy
consumption through the hybrid adaptive data rate (HADR) mechanism marks a significant
improvement over stationary schemes.

The AMILCC scheme has broad applicability in areas like asset tracking, industrial
IoT, smart cities, smart metering, and agriculture, thanks to its optimization for mobile
IoT LoRa networks. It promises improved mobile sensor reliability in urban monitoring,
precise utility data collection in smart metering, and real-time agricultural management,
facilitating better irrigation and pest control decisions. Its adaptability and energy efficiency
position it as an ideal solution for elevating operational effectiveness and ensuring data
accuracy across these sectors.

Trends in LoRa technology are gravitating toward more complex network architectures,
such as multi-hop communication, to meet the demands for extended coverage and reliable
data transmission in challenging environments. This shift is coupled with an increased focus
on developing advanced network management protocols, aimed at enhancing energy and
data efficiency in these sophisticated setups. This trend underscores the ongoing evolution
and growing capabilities of LoRa technology in supporting diverse IoT applications.
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7. Conclusions

In this paper, a novel adaptive mobility-based IoT LoRa clustering communication
scheme was proposed to improve the connectivity, resource allocation, reliability, and
packet success ratio in IoT LoRa networks. In the proposed AMILCC scheme, the network
area was partitioned into several uneven regions to ensure optimal SF region allocation. We
also provided an adaptive clustering method that generates clusters of mobile LDs within
a given geographical distribution. We established a hybrid adaptive data rate mechanism
to ideally allocate network resources to all mobile LDs to ensure efficient communication
to the GW. We categorized this mechanism into intra-SF region HADR and inter-SF region
HADR. Subsequently, we evaluated various speeds to ascertain the most suitable speed for
the mobile LDs in the proposed AMILCC scheme. Specifically assessing the PSR, energy
consumption, and end-to-end delay, we found that various mobility speeds (1, 2, and
5 m/s) influenced network performance. At movement speeds of 2 m/s or below, the
proposed AMILCC scheme could easily cluster mobile LDs, achieving good performance
in successfully delivering data packets to the GW.

Through comprehensive simulations, we demonstrated that our AMILCC scheme, har-
nessing low mobility speeds and utilizing the HADR mechanism, significantly optimized
transmission parameters based on link quality and adaptively assigned SFs. This approach
enhanced the packet success ratio to the GW by over 70% and reduced the end-to-end delay
by 47.62%, indicating that our scheme outperformed the stationary schemes. Moreover,
in terms of energy conservation, AMILCC surpassed other schemes, saving energy by an
average of 55.05%. The mobility of these LDs resulted in diverse signal paths and frequency
variations, enabling multiple potential transmission routes. In contrast, the stationary
schemes utilized static LDs for the duration of the simulation and a standard network-
based ADR mechanism. Moreover, the energy consumption of the proposed AMILCC was
lower than that of the stationary schemes because of the higher PSR and the smaller number
of retransmissions, which can prolong the lifetime of IoT LoRa networks in comparison
to previous LoRa multi-hop schemes. Thus, the proposed scheme excels for mobile IoT
applications, offering a high PSR and reliability with minimal energy consumption.

However, it is important to recognize certain limitations of the proposed AMILCC
scheme. While it can significantly improve network performance and energy efficiency for
mobile IoT LoRa applications, the dynamic nature of mobile LoRa devices and their energy
consumption patterns may present challenges in balancing cluster head workloads and
ensuring equitable energy usage across the network. Additionally, the scheme’s reliance
on specific mobility speeds and conditions might limit its applicability in environments
with higher or more unpredictable mobility patterns. Addressing these limitations will be
crucial for further enhancing the robustness and adaptability of the scheme for diverse IoT
applications in future work.
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