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Abstract: Considering that the nonlinearity and uncertainty of the microgrid model complicate
the derivation and design of the optimal controller, an adaptive dynamic programming (ADP)
algorithm is designed to solve the model-free non-zero-sum game. By combining the advantages of
policy iteration and value iteration, an optimal learning control scheme based on hybrid iteration
is constructed to provide stringent real power sharing for the nonlinear and coupled microgrid
systems with N-distributed generations. First, using non-zero-sum differential game strategy, a novel
distributed secondary voltage recovery consensus optimal control protocol is built using a hybrid
iteration method to realize the voltage recovery of microgrids. Then, the data of the system state and
input are gathered along a dynamic system trajectory and a data-driven optimal controller learns
the game solution without microgrid physics information, enhancing convenience and efficiency in
practical applications. Furthermore, the convergence analysis is given in detail, and it is proved that
the control protocol can converge to the optimal solution so as to ensure the stability of the voltage
recovery of the microgrid system. Convergence analysis proves the convergence of the the protocol
to the optimal solution, ensuring voltage recovery stability. Simulation results validate the feasibility
and effectiveness of the proposed scheme.

Keywords: adaptive dynamic programming; nonzero-sum games; microgrid; hybrid iteration

1. Introduction

In recent years the ecological and environmental foundation of the world has been
deteriorating and the demand for energy has become increasingly urgent. The utilization
of renewable clean energy and the improvement of energy efficiency have become crucial
for environmental protection, yet the structure and operational mode of traditional power
distribution systems have proven inadequate in meeting the demands of large-scale renew-
able power integration [1–3]. In order to meet this challenge, it is imperative to transform
and upgrade the traditional power distribution system. Furthermore, the advancement of
smart technology has led to the gradual personalization of energy demand and electricity
consumption patterns, accelerating the transition of the power system towards a smart grid.
This transition has rendered the traditional large grid increasingly incapable of satisfying
diversified power supply needs [4–6]. To address these challenges, the microgrid has
emerged as a viable solution, playing a pivotal role in maintaining the smooth operation of
power grids. A smart grid, as a new power system model, aims to achieve energy conver-
sion and efficient use through advanced communication technology and control means.
The goal is to improve the safety, reliability, economy and efficiency of the operation of the
power system to meet the growing demand for energy while reducing the environmental
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impact of energy consumption. As an integral component of the smart grid, the microgrid
represents a small-scale power system that effectively integrates distributed generators [7,8].
Traditional microgrid voltage restoration methods often rely on fixed control strategies
and parameter settings, which is difficult to adapt to the changes of different microgrid
structures and operating conditions. These methods often show poor adaptability and
robustness in the face of complex and changeable power system environments. Therefore,
the development of an appropriate frequency and voltage control strategy is crucial for
ensuring the stable operation of the microgrid. Research on this topic holds considerable
practical significance. This paper aims to address these challenges by exploring innovative
control strategies tailored for the unique characteristics of the microgrid. By doing so, the
advancement of smart grid technology and enhancements for the overall performance and
reliability of power systems worldwide are given in this paper.

Over the past few years, numerous scholars have begun to explore innovative control
strategies for microgrids, aiming to achieve stable operation and efficient utilization of
microgrids by precisely controlling energy conversion, charge and discharge of energy
storage devices and load management [9–11]. Shuai et al. conducted a comprehensive re-
view of research on microgrid stability [12]. Specifically, ref. [13] highlighted the increasing
replacement of distributed generators with diesel generators in standalone microgrids. To
address this, a decoupled controller for frequency and voltage was introduced, enabling the
maintenance of grid frequency and voltage magnitude stability. The high-order full drive
model of a distributed generator microgrid is explored by using the large signal model of a
microgrid, and the complex relationship and interaction between voltage and current are
effectively captured in [14]. In Ref. [15] a moving target defense mechanism was proposed,
which can effectively limit network attacks on smart microgrid systems. Furthermore,
ref. [16] employed a robust passive control strategy to stabilize and regulate the DC bus
voltage. These results represent significant contributions to the field, providing valuable
insights into voltage/frequency recovery techniques for generation systems. However,
despite these advancements, there remains a need for further research and development in
this area, particularly in addressing the unique challenges posed by microgrids and their
integration into smart grid systems. This paper wants to contribute to this ongoing effort by
exploring innovative control strategies tailored to the specific requirements of microgrids,
with a focus on enhancing their stability and performance.

The implementation of a nonlinear disturbance observer is proposed to enhance the
stability of the system and mitigate steady-state errors resulting from CPL variations. In
Ref. [17], mixed iterative adaptive dynamic programming is explored, providing a solution
to the optimal control problem associated with battery energy management in smart
residential microgrid systems. This method comprises two iterative processes: P-iteration
and V-iteration, both grounded in reinforcement learning techniques. The P-iteration
process follows a policy iteration approach, with iterative updates to the value function
based on the sequence of iterative control laws. Conversely, the V-iteration process adheres
to value iteration, enabling the derivation of iterative control laws in each iterative cycle.
It is noteworthy that traditional centralized control strategies rely heavily on extensive
communication systems to gather and process substantial amounts of information from
distributed generators. These strategies primarily concentrate on data generation [18],
energy management [19], state estimation [20], optimal scheduling [21] and reliability
evaluation [22]. The nonlinear disturbance observer offers an innovative approach to
enhancing system stability and eliminating steady-state errors, presenting a promising
alternative to traditional centralized control strategies. This advancement holds significant
potential for improving the performance and reliability of smart residential microgrid
systems.

Inspired by the distributed and consistent control methods for nonlinear multi-agent
systems, ref. [23] introduced the concept of distributed cooperative control and employed
a hybrid iteration technique to design a nonlinear model controller for microgrids. This
approach effectively bridges the performance gap between the well-known policy iteration
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and value iteration methods. In policy iteration, derived from the Newton–Raphson
method, convergence to the optimal value occurs at a rate of quadratic convergence [24].
Conversely, value iteration differs as it does not require an initial admissible control
policy, as is the case in policy iteration [25]. However, hybrid iteration combines the
strengths of both methods, eliminating the need for the initial stability control strategy
required in policy iteration while achieving a faster convergence rate than traditional
value iteration. In recent years, the application of hybrid iterative technology in modern
microgrids has gradually highlighted its importance and potential. In Ref. [26], an optimal
output regulation method for islanded modern microgrids was presented. This method
demonstrates that the hybrid iterative approach significantly reduces the convergence time
of the deployed CPU, minimizes the number of learning iteration cycles and eliminates
the need for an initial stability control strategy. However, although the application of
hybrid iteration in modern microgrids has made remarkable progress, there remains a
lack of research on the acquisition and analysis of optimal feedback control protocols
for nonlinear N-distributed generations in microgrids. This research gap not only limits
the further application of hybrid iteration in the field of microgrids, but also affects the
further improvement of the overall performance of microgrids. By analyzing the nonlinear
N-distributed generation in microgrids and combining it with the characteristics of hybrid
iteration, this study introduces a novel feedback control protocol, which can not only
effectively deal with the nonlinear problems, but also realizes the precise adjustment of
the output voltage of a microgrid, thereby contributing to the enhancement of operational
efficiency and stability.

With the emergence of novel optimization algorithms, the intelligent control optimiza-
tion of microgrid systems has seen significant progress. The inherent randomness, dynam-
ics and nonlinearity of microgrid operations pose challenges to traditional model-driven
control strategies, limiting their accuracy and efficiency. Adaptive dynamic programming
(ADP), an intelligent control approach, exhibits strong self-learning and adaptive capabili-
ties, independent of prior system knowledge or models. ADP leverages iteration to derive
control strategies, encompassing policy iteration and value iteration. Utilizing neural
network approximations, ADP employs critic and action networks to approximate optimal
performance indices and control strategies, respectively. Through continuous information
feedback and transmission, the critic network evaluates and updates strategies, enabling
the system to converge to an optimal control strategy and its corresponding value func-
tion [27]. Game theory, analyzing behavior prediction among competitive individuals and
optimizing strategies for multi-agent decision-making, provides a theoretical foundation for
the microgrid system’s behavior trajectory. Key elements in game theory include players,
strategies and cost functions. Ref. [28] transformed the microgrid system with external
interference into a zero-sum differential game model to design a robust control scheme.
Ref. [29] simplified the distributed secondary voltage recovery consistency control to a
general distributed zero-sum differential game and then solved it. Players aim to minimize
their cost functions through strategic choices, aligning with the objectives of this study.

This study aims to explore the voltage recovery control problem of microgrid systems
with N-distributed generations and proposes an innovative method for this purpose. The
main contributions are as follows: (1) voltage recovery control in microgrid systems in-
volves the interaction between multiple distributed power sources and loads, so this paper
transforms it into a non-zero-sum game problem to effectively deal with the cooperative
relationship between multiple participants. (2) An ADP method is adopted to obtain the
optimal control scheme by iteratively solving the Hamilton–Jacobi (HJ) equation. The
proposed hybrid iteration combines the advantages of value iteration and policy iteration
and adaptively adjusts the step size to ensure the convergence and stability of the algorithm.
A strict convergence proof is given to prove the effectiveness of the proposed method. (3) In
practical applications, the mathematical models of microgrid systems are often uncertain
and complex, making it difficult to model accurately. In order to meet this challenge, the
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algorithm proposed in this paper does not rely on mathematical models and gradually
approaches the optimal solution through iteration and learning.

This paper addresses the optimal control problem for nonlinear N-distributed genera-
tions, introducing a novel hybrid iteration technique to derive an optimal policy without
relying on the system model. Initially, the optimal control strategy and cost function value
are defined, providing a foundation for subsequent analysis. Subsequently, the effectiveness
of the proposed hybrid iteration algorithm is demonstrated in learning optimal controller
laws for N-distributed generations. Notably, this strategy does not require a system model,
relying solely on online state and input data. This approach is particularly useful for non-
linear microgrid systems, where establishing a precise dynamics model can be challenging.
By leveraging the loci of these systems, our method offers a practical solution for real-time
optimal control.

The remainder of this paper is structured into six sections. Section 2 introduces the
optimal control problem statement and formulation for microgrids with N-distributed
generations. Section 3 presents both model-based and data-driven hybrid iteration methods.
Section 4 provides a rigorous convergence proof for the proposed methods. Section 5
presents simulation results for a microgrid system with two distributed generations, along
with a technical discussion. Finally, Section 6 concludes the paper, summarizing the key
findings and contributions.

2. Problem Formulation

The N-generation distributed microgrid system refers to a multi-level complex power
grid system formed by multiple microgrids. Each generation of microgrids has a certain
degree of autonomy and independence. Consider the microgrid system with N-distributed

generations, let the state space variables of ith generation be ṡi =

[
ṡi,1
ṡi,2

]
∈ Rn1+n2 , which

contains the key information of the generation of the whole microgrid. si,1∈ Rn1 shows the
magnitude of vo,i and represents ith generation output voltage value and si,2∈ Rn2 is the
derivative of the magnitude of vo,i.

To capture the continuous voltage changes and understand the dynamic behavior
of the microgrids in the voltage recovery process more deeply, the state-space model
pertaining to the voltage recovery layer of microgrids is formulated in the following
differential form:

ṡi =

[
gi,1(si)si,2
fi,2(si)

]
+

[
0
gi,2(si)

]
wi (1)

where gi,1∈ Rn1×n1 is the nonlinear smooth function, wi∈ Rq is the control input and
fi,2∈ Rn2 and gi,2∈ Rn2×q are nonlinear uncertain smooth functions. For ease of analysis,

let fi(si) =

[
gi,1(si)si,2
fi,2(si)

]
, gi(si) =

[
0
gi,2(si)

]
.

For each generation, the utility function is designed as

ri(si, wi, w−i) = Qi(si) + wT
i Riwi (2)

where w−i = {w1, · · ·wi−1, wi+1, · · ·wN} denotes the control input set which does not
contain wi. Qi(si) = sT

i Qisi is positive definite, in which Qi > 0. The weight association
symmetric matrix Ri > 0.

Then, the cost function of the ith generation is

Ji(si, wi, w−i) =
∫ ∞

0
ri(si, wi, w−i)dt (3)
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The optimal control problem addressed in this paper aims to determine the control
strategy that minimizes the performance index value for the microgrid system. Based
on (3), the optimal cost function P∗ is presented by

P∗
i (si) = min

wi
Ji(si, wi, w−i). (4)

The optimization problem of the microgrid system, which is difficult to obtain the
model for, is transformed into the solution of a non-zero-sum game problem in this paper.
Considering the interaction of various components in the system, the stable operation of
the system is achieved by optimizing the overall performance. The ADP algorithm is used
to adapt to the uncertainties in the system, adjust the control strategy flexibly and improve
the operating efficiency and reliability of the system.

Based on the stationary conditions and utilizing the optimal cost function (4), the
optimal feedback control protocol can be formulated as follows [24]

w∗
i = −1

2
RT

i gT
i (si)∇P∗

i (5)

The aforementioned control law aims to achieve the Nash equilibrium solution of
the game model, targeting the equilibrium of interests among multiple entities within
the microgrid system. This is not only an important guarantee for system stability and
reliability, but also the key to the efficient and sustainable operation of microgrid systems.
Additionally, it is evident from the expression that the control law output of each player
in the microgrid system is unaffected by other players, which aligns with the concept of a
non-zero-sum game. Each player attains concordant interests through mutual promotion
and coordination, thereby minimizing the designed value function.

In order to solve (4) and (5), the Hamiltonian function is defined as

H(si,∇Pi, wi) = ∇PT
i ( fi + giwi) + Q(si) + wT

i Ri,iwi (6)

According to optimal control theory, it has{
inf
wi

H(si,∇Pi, wi) = 0

Pi(0) = 0
(7)

From (4) and (5), the coupled equation of HJ can be expressed by

0 =
1
4 ∑N

i=1 ∇P∗T
i gi,2(si)R−1

i Ri,iR−1
i gT

i,2∇P∗
i +∇P∗T

i fi,2(si)

+ Qi(si)−
1
2
∇P∗T

i ∑N
i=1 gi,2(si)R−1

i gT
i,2∇P∗

i (8)

with the initial condition P∗
i (0) = 0.

In the next section, the aforementioned coupled HJ equation is approximated using
the ADP algorithm in a hybrid iterative manner. According to the above preparation, it
becomes evident that each generation of the coupled HJ equation, as presented in (8), has a
connection with the other control laws. Consequently, the multiple coupled generations are
not entirely autonomous. Therefore, this paper aims to establish an adaptive and distributed
consistent voltage recovery control strategy for the N-distributed game system (1). To tackle
this problem, there have been studies on designing near-optimal control methods, including
policy iteration and value iteration, which are all online learning techniques.

The implementation of policy iteration requires certain initial conditions. Specifically,
the system must commence iteration with an admissible control strategy. Subsequently,
the iteration performance index is approximated, the control law of the current iteration
step is evaluated and then the strategy is updated. These evaluation and update steps
are repeated until a termination condition, similar to the inequality in (12), is satisfied.
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Obviously, the advantage of this iterative method lies in its high computational efficiency,
as policy iteration based on an initial control law can enable the system to quickly obtain
the optimal control law. In contrast to policy iteration, the initial value of the iteration value
function in value iteration can be arbitrary. In order to overcome these limitations, a hybrid
iterative algorithm is used to solve the optimal control strategy. This algorithm combines
the advantages of policy iteration and value iteration and not only does it not require the
initially allowed control strategy, but it also has a high convergence speed.

3. Hybrid Iteration for the Microgrid Systems

In this part, by applying the hybrid iteration strategy and the reinforcement learning
method, a recovery control protocol for adaptive distributed voltage is constructed. First,
a hybrid iteration approach based on the system model is proposed and a convergence
analysis is provided. Then, the implementation process of the hybrid iteration approach
based on data is presented, along with proof of convergence.

The hybrid iteration is based on the execution of policy iteration and the hybrid
iteration algorithm is presented as follows. First, choose positive semidefinite P̃[0]

i ∈ C(Rn),
select Q̂i(x) satisfying Q̂i(x)− Qi(x) > 0. It has the iterative update rule of the control
policy, as follows

w̃[n+1]
i = −1

2
R−1

i,i gT
i ∇P̃[n]

i (9)

The value function is renewed by

P̃[n+1]
i = ε

[n]
i ∇P̃[n]T

i fi(si) + Q̂i(x)− w̃[n+1]T
i Ri,iw̃

[n+1]
i + P̃[n]

i (10)

where ε
[n]
i is a deterministic sequence, which satisfies

ε
[n]
i > 0

∑∞
n=0 ε

[n]
i = ∞

lim
n→∞

ε
[n]
i = 0

(11)

The cyclic search process (9) and (10) of the admissible control policy will stop until

P̃[n+1]
i − P̃[n]

i ≤ ε
[n]
i (Q̂i(x)− Qi(x)) (12)

Then, based on the admissible control law (9), it obtains the exploring process of the
optimal control policy based on the following two iterative equations. The iteration cost
function P[n]

i is solved from

H(si,∇P[n]
i , w[n]

i ) = 0 (13)

and the control policy can be updated according to the following equation

w[n+1]
i = −1

2
R−1

i,i gT
i ∇P[n]

i (14)

Through the above two steps of policy evaluation and policy improvement, the optimal
policy sequence and its corresponding value function are finally reached or converge.

Note that the hybrid iteration (9)–(14) still faces a strict requirement, since it still
requires precise knowledge of system dynamics models. For many complex practical
systems, it is not easy to acquire accurate knowledge of system dynamics models. Even
when some degree of knowledge of system dynamics models can be obtained in some cases,
it is a challenge to effectively apply this knowledge to hybrid iteration because, in practice,
the model needs to be simplified or approximated in order to be able to perform effective
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iterative calculations. However, such simplifications or approximations may introduce
errors that affect the accuracy of the iterative results. Hence, to avoid dependence on the
system model, the hybrid iteration (9)–(14) will be improved, and the hybrid iteration based
on state and input information will be developed and proposed.

Taking the derivative of the cost function Pi has

V̇i(si) = ∇Pi ṡi = H(si,∇Pi, wi)− Q(si) + Q̂(si)− Q̂(si)− wT
i Ri,iwi (15)

Here, define H̄(si,∇Pi, wi) = H(si,∇Pi, wi)− Q(si) + Q̂(si), then (15) is

V̇i(si) = H̄(si,∇Pi, wi)− Q̂(si)− wT
i Ri,iwi (16)

Since the system lacks a dynamical model, the system data are used to construct
the approximated functions. Without loss of generality, we take the ith generation as an
example, the approximated functions V̂i(si) and Ĥ(si,∇Pi, wi) are given by

V̂i(si) = ∑M
j=1 Ŵjϕj(si) (17)

and

Ĥ(si,∇P[n]
i , w[n]

i ) = ∑M0
j=1 η̂j φj(si) + ∑M1

j=1 γ̂jψj(si)Wi + wT
i Ri,iwi (18)

where ϕj(si), φj(si) and ψj(si) are linearly independent basis functions and Ŵj, η̂j and γ̂j
are weight matrices. The differential equations are used to update the weight matrices.

d
ds

Ŵ =
∫ t f

0
ΦΦTdt

∫ t f

0
ΦĤ(si,∇P[n]

i , ŵ[n]
i )dt (19)

where ŵ[n]
i = −1

2
R−1

i,i

(
∑M1

j=1 γ̂jψj(si)
)T

and Φ = [ϕ1 ϕ2 ϕM]T . Over the procedure, an
essentially bounded input such as exploration noise is used to update the weights during a
time interval. The iterative process from (17)–(19) are operated until an admissible control
is gained. Based on the admissible control, the system (1) is rewritten as

ṡi = fi(si) + gi(si)w
[n]
i + gi(si)(wi − w[n]

i ) (20)

Then, along the solutions (20) based on (13) and (14), it has

Ṗ[n]
i (si) =∇P[n]T

i ( fi + giw
[n]
i ) +∇P[n]T

i (gi(si)(wi − w[n]
i ))

=− Q(si)− w[n]T
i Ri,iw

[n]
i − 2w[n+1]T

i Ri,i(wi − w[n]
i ) (21)

Over any time interval [tk, tk+1], we integrate both sides of (21) and it has

P[n]
i (si(tk))− P[n]

i (si(tk−1))

=
∫ tk

tk−1

−Q(si)− w[n]T
i Ri,iw

[n]
i − 2w[n+1]T

i Ri,i(wi − w[n]
i )dt (22)

and

ŵ[n]
i = −1

2
R−1

i,i

(
∑M1

j=1 γ̂jψ̂j(si)
)T

(23)

From the expression of the above formula, it can be seen that the hybrid iteration
scheme in terms of ADP is based on data and does not require accurate parameters of
the microgrid model to ensure that the microgrid system reaches the Nash equilibrium
situation.
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Merge (22) with (23) and obtain

∑M
j=1 ŵ[n]

j (ϕj(si(tk)− ϕj(si(tk−1))

=
∫ tk

tk−1

(−Q(si)− w[n]T
i Ri,iw

[n]
i )dt

−
∫ tk

tk−1

2
(
∑M1

j=1 γ̂jψ̂j(si)
)T

Ri,i(wi − w[n]
i )dt + e[n]i,k (24)

where e[n]i,k is the error generated in the approximation process.

It can be seen that ŵ[n]
j and γ̂j are obtained from (24) in a least squares sense, which is

making the ∑l
j=1 e2

i,k minimal.
For the microgrids with N-distributed generations, voltage recovery control is very

important. In order to maintain the stability of the power system, it is necessary to adopt
appropriate control algorithms to ensure that the voltage reaches the best situation. The
hybrid iteration algorithm based on ADP proposed in this paper is an efficient learning
control strategy for voltage recovery. It gradually adjusts the power output of the microgrid
in an iterative manner to achieve optimal voltage recovery. Next, the learning process of
the algorithm is demonstrated intuitively through Algorithm 1.

Algorithm 1 The hybrid iteration algorithm for microgrids with N-distributed generations
Initialization:
Select an initial system state si(0);
Select a positive semidefinite P̃[0]

i ∈ C(Rn);
Select an iteration precision εe > 0;
Main loop:

1: while ||wn∗
i − w∗

i || > εe or ||Pn∗
i − P∗

i || > εe do
2: Update the control policy in Equation (23)
3: Update the cost function in Equation (17)
4: end while
5: return w∗

i and P∗
i

At the beginning, the hybrid iteration algorithm is initialized and the relevant pa-
rameters are set. The iterative process is then entered and in each iteration, the algorithm
calculates the power output scheme of each microgrid according to the current parameters
and the real-time operating state of the microgrid. These schemes are improved by the
proposed optimization algorithm to ensure the effect of voltage recovery. As the number of
iterations increases, algorithm 1 will continuously adjust the power output scheme of the
microgrid to achieve voltage recovery. At the same time, algorithm 1 dynamically adjusts
parameters and strategies according to the real-time operating state of the microgrid and
changes in the external environment. When the algorithm meets the convergence condition,
the final voltage recovery scheme is output and applied to the microgrid system to achieve
the optimal voltage recovery situation.

4. Convergence of the Hybrid Iteration

In this section, the convergence of (9)–(14) is analyzed first. Then, we rigorously prove
that the property of hybrid iteration with no need for the information with respect to the
system physics.

Theorem 1. For the state-space model (1), the value function P[n]
i and the control policy w[n+1]

i are

given as in (13) and (14), then P[n]
i is convergent to P∗

i at a quadratic convergence rate and w[n]
i is

convergent to w∗
i .
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Proof. In [23] and [30], the proof of supsi ||P
[n]
i − P∗

i || ≤ E and supsi ||w
[n]
i − w∗

i || ≤ E has
been given as i → ∞. Note that the conditions of (12) are sufficient to make the following
two inequations hold.

P̃[n]
i > 0 (25)

and

∇P[n−1]T
i ( fi + giw

[n]
i ) ≤ −u[n]T

i Ri,iu
[n]
i − Qi < 0 (26)

Therefore, ∃ne, such that an admissible control input law w[ne ]
i is obtained from (9)–(12)

with respect to the microgrids with an N-distributed generation system (1). Let the sys-
tem (1) be driven by the control input w[ne ]

i , then, according to (3), integrate (26) with
respect to time and you can obtain

P[n−1]
i (si) ≥ J(si, w[ne ]

i ) (27)

That means w[ne ]
i is an admissible control. Then, based on [31], it has {w[n]

i }∞
n=ne converge

point-wise to w∗
i , as n → ∞, and {P[n]

i }∞
n=ne converges on P∗

i , as n → ∞.
Furthermore, according to (13) and (14), the above formula has

(∇P[n+1]
i −∇P[n]

i )T( fi + giϑ
[n]
i ) + (∇P[n]

i )T( fi + giϑ
[n]
i ) + ri(si, ϑi) = 0 (28)

where ϑi = arg inf
wi
{∇P[n]T

i ( fi + giwi)+ ri(si, wi)}. It can be seen that (28) is a Newton–Raphson

method and the target is to obtain ∇Pi from the nonlinear equation inf
wi
{∇P[n]T

i ( fi + giwi) +

ri(si, wi)}. This explains that the P[n]
i converges in a quadratic rate. This completes the proof.

Theorem 2. For the state-space model (1), ∃εe > 0, from (17)–(19), there exist N∗, M∗
0 and

M∗
1 , if N > N∗, M0 > M∗

0 and M1 > M∗
1 , then the control policy obtained by (23) satisfies

||wn∗
i − w∗

i || ≤ εe and the cost function showed in (17) satisfies ||Pn∗
i − P∗

i || ≤ εe.

Proof. It has been proved in [23] that one can select a large t f which could make (19) have

the uniqueness of the solution. Since ŵ[ne ]
i is an admissible control law, and on the basis

of [31], the optimal control policy and the corresponding value function can be obtained
approximately as n, M0 and M1 going to infinity.

The non-zero-sum hybrid iteration mode devised in this paper, which is independent
of the system model, does not need the system dynamics parameters at all and uses the
collected data for training and learning to describe the optimal behavior trajectory under
the interaction between individuals. Based on the rigorous analysis of the two theorems, it
can be concluded that the control strategy attained through the model-free hybrid iteration
scheme is convergent and can make the microgrid system stable.

5. Simulation Results

In this section, the microgrid system with two distributed generations is given to show
the effectiveness of the proposed control method. The dynamics of the system are given
as [32]

fi(si) =

[
cos(si,1)si,2
0.8 sin(si,1)

]
(29)

and
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gi(si) =

[
0
cos(si,2)

]
(30)

In the simulation experiment, the initial states of the above system are given as
s1(0) = [0.6,−1.1]T and s2(0) = [−1, 1]T . In the networks, the activation functions are
selected as ϕj = φj = ψj = [s2

i,1, si,1si,2, s2
i,2]

T . To indicate the effectiveness and feasibility of
the presented hybrid iteration method, the optimal control protocols obtained by the value
iteration and policy iteration are also considered. Then, the number costed by the learning
iterations and the average CPU time are analyzed and summarized for the hybrid iteration
as well as for the value iteration and policy iteration as in Table 1.

Table 1. Comparison results of hybrid iteration, value iteration and policy iteration.

Average CPU-Time Elapsed
for Convergence

Number of Learning
Iterations

Hybrid-iteration 0.00142 13%

Value-iteration 0.00815 390%

Policy-iteration 0.00221 14%

According to the results of Table 1, it can be seen that hybrid iteration spends less CPU
time and iterations to obtain the same simulation result. Therefore, hybrid iteration is a
more powerful tool, it uses less numbers for learning iterations required for convergence
and costs less average CPU time until convergence. Furthermore, the previous information
of the admissible control law is dispensable to initiate hybrid iteration.

The state trajectories of each generation are given in Figures 1 and 2. The system state
described in Figure 1 mainly represents the output voltage value of the microgrid system,
and the stability of the output voltage is directly related to the normal operation of each
device in the microgrid system and the user’s power consumption experience. The system
state described in Figure 2 is the derivative of the amplitude, reflecting the rate of change of
the system state, which is of great significance for the analysis of the dynamic performance
and stability of the system. It can be seen that under the action of the algorithm designed
in this paper, the system state converges to zero at a faster speed and finally reaches a
steady situation. The results also show that the mathematical model established in this
paper is very effective for the microgrid system. Based on the control strategy achieved
through hybrid iteration, the model can guarantee the stability and realize the reliability of
the microgrid system with relatively low computational costs.

0 10 20 30 40 50 60 70 80 90 100

Times (s)

-1.5

-1

-0.5

0

0.5

1

1.5

s 1

s
1
(1)

s
1
(2)

Figure 1. The state s1.
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Times (s)
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1

s 2

s
2
(1)

s
2
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Figure 2. The state s2.

The voltage recovery control protocol input trajectories by hybrid iteration are dis-
played in Figure 3. The designed controller can generate a continuous control input to the
microgrid system, avoid chattering in the system state and make the system run stably. It is
worth noting that the value function obtained by the convergent optimal control strategy
applied to the microgrid system is also optimal. Combining Figures 1–3, it can be found
that the proposed method saves a lot of learning iterations required for convergence.

0 10 20 30 40 50 60 70 80 90 100

Times (s)

-15

-10

-5

0

5

ω

ω
1

ω
2

Figure 3. The control input w.

Figures 4 and 5 depict the value function surfaces according to the hybrid iteration-
based control law designed by this paper. These surfaces not only reflect the dynamic
characteristics of the control law, but also show the evolution of the performance index
function during the control process.The performance index function is affected by the
punishment or reward generated by the controlled object in different stages and updates
the parameters based on the principle of optimality. The critic network guides the action
network to approximate the optimal control strategy; in other words, the approximation
of the control law is carried out on the basis of the estimation of the performance index
function, so the dynamic change of the value function is very important. It can be intuitively
seen from these two 3D graphs that both sets of value functions are monotone and non-
increasing, which means that after the finite times of hybrid iteration and strategy update
designed in this paper, the value function gradually converges to the optimal.
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Figure 4. The optimal value function V∗
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Figure 5. The optimal value function V∗
2 .

The data statistics and simulation results in this section show that the ADP algorithm
based on hybrid iteration designed in this paper can make the microgrid system reach
the control target with fewer iterations and has the advantages of fast computing speed
and low implementation cost. In general, the proposed optimal voltage recovery learning
scheme can be applied to microgrid systems and the control effect is satisfactory.

6. Conclusions

In view of the complexity of the actual microgrid system structure and the sensitivity
to external environmental interference, the uncertainty contained in it is often difficult to
predict. This paper solves the optimal control problem of the microgrids with N-distributed
generations system with unknown dynamics by means of a non-zero-sum differential
game and a novel optimal control law has been put forward for dynamic optimization
and adaptive regulation of microgrid systems by introducing an adaptive hybrid iteration
algorithm. It is worth noting that the control strategy in this paper is not based on the
unknown physical characteristics of the system, but is obtained in real time according
to the system state and input information data. This makes the control strategy more
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targeted and practical, and it can be dynamically adjusted according to the actual operation.
In the simulation result, it can be seen that the hybrid iteration algorithm has a much
faster convergence process to the optimal solution than value iteration. Furthermore, it
requires tremendously less consumption of time of CPU and less iterations number in
the course of learning. In the future, we will further optimize the control strategy and
improve the convergence speed and computational efficiency of the algorithm in order to
solve more uncertainty problems that may be encountered in the actual operation of the
microgrid system.
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