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Abstract: With the development of artificial intelligence technology, deep reinforcement learning
(DRL) has become a major approach to the design of intelligent vehicle-to-everything (V2X) routing
protocols for vehicular ad hoc networks (VANETs). However, if the V2X routing protocol does not
consider both real-time traffic conditions and historical vehicle trajectory information, the source
vehicle may not transfer its packet to the correct relay vehicles and, finally, to the destination. Thus,
this kind of routing protocol fails to guarantee successful packet delivery. Using the greater network
flexibility and scalability of the software-defined network (SDN) architecture, this study designs
a two-phase integrated DQN and RF Packet Routing Framework (IDRF) that combines the deep
Q-learning network (DQN) and random forest (RF) approaches. First, the IDRF offline phase corrects
the vehicle’s historical trajectory information using the vehicle trajectory continuity algorithm and
trains the DQN model. Then, the IDRF real-time phase judges whether vehicles can meet each other
and makes a real-time routing decision to select the most appropriate relay vehicle after adding
real-time vehicles to the VANET. In this way, the IDRF can obtain the packet transfer path with the
shortest end-to-end delay. Compared to two DQN-based approaches, i.e., TDRL-RP and VRDRT, and
traditional VANET routing algorithms, the IDRF exhibits significant performance improvements for
both sparse and congested periods during intensive simulations of the historical GPS trajectories of
10,357 taxis within Beijing city. Performance improvements in the average packet delivery ratio, end-
to-end delay, and overhead ratio of the IDRF over TDRL-RP and VRDRT under different numbers
of pairs and transmission ranges are at least 3.56%, 12.73%, and 5.14% and 6.06%, 11.84%, and
7.08%, respectively.

Keywords: vehicular ad hoc networks; vehicle-to-everything; software-defined network; random forest;
deep reinforcement learning; deep Q-learning; integrated DQN and RF packet routing framework

1. Introduction

Due to the Ultra-Reliable Low Latency Communication (URLLC), Massive Machine
Type Communication (mMTC), and Enhanced Mobile Broadband (eMBB) capabilities en-
abled by 5G networks [1], automotive industry manufacturers are currently aiming to
integrate 5G technology into the development of autonomous driving systems. However, a
rapid increase in the number of these vehicles has led to the swift evolution and large-scale
deployment of vehicular ad hoc networks (VANETS) [2], presenting even more significant
challenges in this area. There are four primary types of V2X (vehicle-to-everything) technol-
ogy [3]: vehicle-to-vehicle communication (V2V), vehicle-to-infrastructure communication
(V2I), vehicle-to-network communication (V2N), and vehicle-to-pedestrian communication
(V2P). This paper focuses on V2V and V2I communication. V2I technology allows vehicles
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to relay packets to other vehicles through Roadside Units (RSUs) in the network. Typically,
there are physical wired connections between RSUs and the network infrastructure, and
IEEE 802.11p [4] is adopted for communication between vehicles. Despite this, a loss of
signal strength is caused by buildings or obstacles in the environment, leading to unstable
communication. Therefore, a framework is required to gather information about the current
state of the V2X network to determine the optimal source-to-destination packet relay path.

Software-defined networking (SDN) is a new technology [5] that allows dynamic
changes in the network. SDN is divided into two main components within the network
environment: the Control Node (CN) and the Data Node (DN). The CN controls the vehicles
when SDN is applied to V2X, and the DN is responsible for communication between
vehicles, RSUs, and SDN/OpenFlow switches. RSUs are installed at each intersection
to collect information about the vehicles. By utilizing the SDN architecture, the CN can
obtain the statuses of all vehicles through RSUs and make optimal decisions on packet
forwarding paths in the V2X environment (Figure 1). However, vehicle communication is
often unstable due to the high vehicle mobility, insufficient reliability of the inter-vehicle
links, and inadequate infrastructure. Therefore, a well-designed packet routing protocol
for V2Xis crucial.

.F Control Node(CN)
DI 3

vav : voe . st Dongcheng

V2l p Data Node(DN)
_— ™~

|
RSU2

h

,,,,,,,,,,, oy oy |-oly
0" 0’ M"

Figure 1. The SDN networking architecture used in this study.

Recently, the integration of artificial intelligence has optimized routing decision-
making [6,7]. The three main components of reinforcement learning (RL) [8,9] are en-
vironment, decision, and reward. Based on the current state of the environment, the agent
selects an action and receives a corresponding reward. Consequently, the environment
transitions into a new state. Using Q-learning [10] as an example, the values generated
from performing actions in different states are recorded and stored in the Q-table during
the reinforcement learning process. Having an excessive number of executed actions and
their associated values can lead to excessive occupation of the storage space in the Q-table.

To reduce the size of the Q-table in Q-learning, we proposed the Software-Defined
Directional QGRID (SD-QGRID) routing architecture [11], which uses the grid-based con-
cept to partition the entire environment into uniformly sized grids. By deploying the SDN
CN and enabling all vehicles to exchange HELLO messages, a V2X centralized control is
established. Hence, the SD-QGRID routing algorithm improves the computation method
employed by the Q-table and determines the macroscopic packet transmission direction
between grids by considering the real-time locations of vehicles and their historical trajec-
tory records involving movement to adjacent grids. Using fuzzy Q-learning, ITAR-FQ [12],
reduces potential signal propagation obstruction by buildings, which may lead to rapid
signal decay. ITAR-FQ consists of two components: RTAP-RE and RDP-FQ. RTAP-RE is
designed to handle traffic information and estimate the road quality (RQ) through a road
assessment. On the other hand, RDP-FQ is responsible for exchanging traffic information
at intersections between adjacent roads. However, accurate vehicle trajectory data and the
issue of end-to-end delay have not been considered in experiments involving ITAR-FQ. As
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a result, vehicles carry packets for extended periods, impeding their ability to efficiently
transmit them to the destination node through V2X networks. Additionally, the algorithm
does not promptly update the optimal routing paths when new vehicles join the network.
QAGR [13] optimizes the routing scheme for global message forwarding by categorizing
the environment into two parts, aerial UAVs and ground vehicles, with UAVs being re-
sponsible for the collection of global road traffic information. Vehicles maintain a fixed-size
Q-table and converge towards the reward function proposed by the author. A search of the
Q-table filtered by global routing paths allows route requests to be relayed to the optimal
nodes. PFQ-AODV [14] incorporates Fuzzy Logic and learns the optimal routing path
through the Q-learning method, thereby addressing the challenge of route selection in
VANET environments. In summary, these Q-learning-based routing protocols suffer from
two apparent problems. First, they do not utilize trajectory data from new vehicles in
real-time or consider the reliability of inter-vehicle links, end-to-end delay, vehicle travel
directions, or the latest packet forwarding paths. The absence of past historical data for new
vehicles presents a challenge when training the Q-learning model, as the optimal routing
paths for these vehicles cannot be updated promptly. Second, the excessive number of
executed actions and generated values in the Q-table can lead to significant storage space
consumption during Q-learning.

Deep reinforcement learning (DRL) [15,16] addresses the issues encountered in com-
plex environments by substituting the Q-table used in Q-learning with neural network
layers. TDRL-RP [17] introduces a software-defined trust-based DRL framework. Since
the vulnerability of vehicle infrastructure communication to attacks from malicious nodes
results in degradation of the overall network performance, the algorithm uses DRL on top
of SDN to learn the optimal routing paths in the VANET environment. Its objective is to
enhance the network’s scalability, flexibility, and self-learning capabilities. Compared to the
initial neural network approach, faster DRL convergence can be achieved by integrating a
CNN model with SDN. Regarding the packet forwarding strategy, a neighbor behavioral
trust module is employed with TDRL-RP. However, this still does not account for the latest
forwarding paths, end-to-end delay, or vehicle travel direction. VRDRT [18] integrates
DRL into the VANET environment. Due to the high vehicle mobility and consequent rapid
changes in the communication links and network topology, algorithm design must address
packet transmission delay and stability issues in the networks. The algorithm emphasizes
the establishment of routing paths for traffic and vehicle density predictions to increase
the packet forwarding probability, reduce the transmission delay, and minimize the packet-
carrying instances. Both VRDRT steps are implemented using DRL. The first step explores
the optimal paths from the current path, and the second searches for potential routing paths.
A RSU collects and stores traffic information from all vehicles in each road segment. It
uses DRL to predict road traffic conditions and calculate delays and destinations. However,
the algorithm does not account for the latest packet forwarding paths or the reliability of
inter-vehicle links.

This study adopted the SDN architecture to improve the performance of the Al
training phase and to allow real-time optimal decision-making. The proposed algorithm is
divided into offline and real-time phases. The offline phase includes several algorithms
that correct the GPS trajectory, determine the actual vehicle movement trajectories, add
information on vehicle arrival, and estimate the average vehicle speed on the road to rectify
historical trajectory data. Next, we proposed the first routing strategy of the proposed
Integrated DQN and Random Forest (RF) [19,20] Packet Routing Framework (IDRF), known
as IDRF_DQN. The strategy exclusively utilizes the DQN for optimal relay node selection
and addresses the excessive storage consumption and searching delays in Q-learning
caused by numerous action choices. IDRF_DQN solely relies on the DQN to select the
vehicle with the highest delay weight as the packet relay node and does not consider the
movement directions of the target vehicle or the newly joined vehicles with lower end-to-
end path delays during packet transmission. Thus, it may lack the ability to determine the
shortest end-to-end delay path, or the packet may fail to meet the target vehicle based on
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the real-time VANET environment. Conversely, if the routing scheme solely relies on RF
to select an intersection for packet forwarding without considering which relay node is
optimal, some vehicles may experience long delays when carrying packets. Furthermore,
if the communication time between vehicles is too short, incomplete packet transmission
may occur.

To address the abovementioned issues, we designed a second routing strategy within
the IDRF framework, IDRF_DQN_RF. The algorithm utilizes a combination of the DQN
and RF approaches. The delay weights of relay nodes computed by the DQN and the
intersection transfer probabilities calculated by RF are recalculated as their transfer delay
weights to determine a new relay path, addressing the problem of exclusively relaying
to the vehicle with the highest delay weight determined by the DON. Furthermore, we
proposed an algorithm to estimate vehicle link stability, determine the feasibility of packet
transmission with neighboring vehicles, and calculate the minimum road segment delay.
This approach prevents relays from carrying a packet for a long time or incomplete packet
transmission due to inadequate vehicle communication time.

However, the IDRF_DQN_RF approach still does not account for the vehicles not in-
cluded in the training process. In this study, we defined vehicles that are not incorporated in
DON training as “real-time new vehicles”. The packet transmission path generated by new
vehicles may be better. Therefore, in this study, during the real-time phase, we calculated
the end-to-end delay and vehicle link reliability based on vehicle information. In combi-
nation with offline RF and DQN models, we established a comprehensive IDFR routing
strategy to attain the shortest end-to-end delay based on the optimal packet transmission
path for real-time vehicles based on the current VANET environment. The following main
contributions to the two IDRF phases are made:

e In the offline phase, real-world moving trajectory data from Beijing taxis are employed
to assess the use of the vehicle trajectory continuity algorithm to correct vehicle GPS
trajectories, add data on vehicle arrival at intersections, and estimate the average vehi-
cle speed for a road segment. The algorithm can rectify and analyze vehicle trajectories,
resulting in the attainment of accurate information and better routing decisions.

e  The SDN architecture, which utilizes historical vehicle information to train a packet re-
lay node model using the DQN, is adopted when designing the IDRF_DQN framework.
The IDRF_DQN_RF framework, which combines IDRF_DQN with RF, is proposed
to train a vehicle intersection traversal model using historical trajectory information.
These two frameworks adopt the DQN to reduce excessive storage consumption and
searching delays during Q-learning.

e In the real-time phase, we propose algorithms to estimate the vehicle link stability,
determine whether complete packet transmission can be carried out between the
packet-carrying vehicle and the relay ones, and calculate the minimum segment delay,
which is the delay when transmitting packets from one road segment to the next. The
optimal packet transmission path can be found when considering both real-time and
non-real-time vehicles.

e  We propose and adopt an integrated IDRF framework that combines IDRF_DQN_RF
with real-time DQN-determined packet routing and exception-handling mechanisms.
When new vehicles enter the network in real time, their information is added to
the segment delay calculation. Then, the framework determines whether these new
real-time vehicles can establish new packet relay paths by combining the relay node
delay choices from the trained DQN model and the intersection relay probabilities
computed through RF. Consequently, this integration enables the shortest end-to-end
delay packet relay path for real-time vehicles between the source and the destination
to be determined.
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2. Related Work
2.1. The Deep Q-Learning Network for Deep Reinforcement Learning

The DQN model for DRL was utilized in this study to address the issues encountered
in complex environments by substituting the Q-table used in Q-learning with neural
network layers (Figure 2). Two crucial components of DRL are experience replay and fixed
Q-targets. Experience replay is a replay mechanism that employs a replay memory to store
the different strategies (S¢, at, St.41, 1+) experienced in the same state during learning. In
DRL, experience replay acts as a memory storage repository that controls the maximum
number of entries in the replay memory, thereby avoiding the unbounded growth that
can occur in the Q-table. During each DQN update, experiences from the replay memory
can be randomly sampled for learning rather than sequential selection, which can lead
to a high level of similarity among the chosen samples, potentially causing the DQN
to converge to local optima during the learning process. Utilizing replay memory with
random sampling breaks the correlations between data in the dataset. There is no need
for frequent interactions with the environment; new parameters can be obtained through
training using previous experiences (Figure 3). During training, neural networks are
typically trained in batches, a process known as batch learning in machine learning. This
approach offers advantages such as increased speed and accuracy in learning (Figure 4).

Conv Conv Conv
L T 2 [ 3 [ Dense > Dense —> Q(s.a)
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Figure 2. The DON network architecture diagram.
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Figure 3. The DQN learning process diagram.

Fixed Q-targets are primarily employed to address the target value instability within
the Q-network. Unlike the Q-network, the target values in fixed Q-targets do not change
with each update during training. Instead, they are updated at regular intervals or after
a certain number of training steps. In the fixed Q-target update process, the Q-network’s
neural network parameters are copied to the fixed Q-targets to ensure that the parameters
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of the fixed Q-targets remain relatively stable. During Q-learning, the action with the
maximum initial value at each state is selected. However, the primary focus for neural
networks is to optimize the loss function through the selection of appropriate parameters
during training, which requires a training dataset with inputs (x) and labels (y). In Q-
learning, the state corresponds to the input (x), and value (Q-value) learning serves as the
label (y). The objective is to make the estimated Q-values approach the target Q-values,
leading to the definition of a loss function (Equation (1)). This formulation allows the use
of neural networks for training. A loss function is introduced to incorporate this process
into the Q-learning update formula and convert it into the DON update formula (Figure 5).

Loss function = (y x maxQ(sy+1,ar41,w) — Q(st, a, w))? 1)
A1

Batch { Sts Aps Sp+15 I

Random experience  Sjze :

Mini-batch ':'1> Neural

network r
t
Si . ;
Batch Iy *max,Q(Se+ 1, a, W)
Size . :

Figure 4. Batch learning for replay memory (the blue blocks are randomly sampled experiences

among all stored in the replay memory).

Discount Factor
Estimate the best value in the future to

Reward optimize the Loss function
Q" (s, ap,w) < (1 — a) X QM (sy, ap, w) + a X (7:; +y X max Q(St+1, Ae41,W))
[ t+1
Weights Learning rate ¢ T !

Learning Value

Figure 5. The core DON formula.

2.2. Machine Learning Techniques Applied to Networking Issues

The literature contains many examples of the application of machine learning tech-
niques to networking issues. For example, in [20], a two-layer machine-learning detection
model for detecting malware on the Android operating system is proposed. The structure
of the model is based on ensemble learning using an RF with extra trees and a bagging
technique. All features are considered when splitting a node, thereby reducing uncertainty
and potential bias. With the aid of RF, this method outperforms techniques employed in
previous work and is more accurate when classifying attack types on the same dataset. The
Temporal Deep Q-Learning Network (tDQN) [21] represents a self-learning reinforcement-
based model that prevents a surge in network traffic on IoT devices using SDN. It designs
a model that utilizes DQN to account for dynamic network traffic and fluctuations and is
pre-trained with an LSTM model to prevent over-fitting. This algorithm was tested in three
scenarios, including mild, medium, and heavy traffic. It outperformed traditional networks
regarding throughput, delay, jitter, packet delivery ratio, and packet loss. Additionally;, it
was shown to auto-balance traffic fluctuations. This approach has been tested on email,
HTTP, FTIP, and several other applications. Further, in [22], a method is proposed to mea-
sure the trustworthiness of driverless cars using deep neural network (DNN) models. Being
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feedforward networks, DNNs represent complex functions, such as traffic management,
more efficiently. The study utilized traffic data, both real-time and historical, to calculate the
trust scores of vehicles. The traffic data used in the study were generated through SUMO,
with a map of Melbourne used to simulate real-world scenarios. The proposed method
also detects compromised components such as cameras, radar, and LiDAR. However, it
assumes that the historical data are correct and does not include correcting GPS positions.

2.3. Learning-Based VANET Routing Research for Packet Forwarding

This study focused on learning-based VANET routing research for packet forwarding.
Here, we present the six works most relevant to our proposed IDRF approach. Since
signal propagation can be hindered by tall urban buildings, causing rapid signal decay,
the intersection-based traffic-aware routing protocol with fuzzy Q-learning (ITAR-FQ)
was proposed [12]. The framework comprises two main components: the real-time traffic
aware process and road evaluation (RTAP-RE) and the routing decision process with
fuzzy Q-learning (RDP-FQ). The RDP-FQ indicates the traffic information from adjacent
roads at intersections under the operation of the RTAP-RE without utilizing actual vehicle
trajectory data, neglecting end-to-end delay issues and real-time updates regarding optimal
routing paths upon the entry of new vehicles. In QAGR [13], a global message-forwarding
routing scheme that categorizes the environment into aerial UAVs and ground vehicles
is introduced. UAVs collect global road traffic information, and global routing paths are
calculated using the Fuzzy Logic and DFS algorithms. Subsequently, these paths are relayed
to ground request vehicles. Vehicles maintain a fixed-size Q-table and converge toward the
reward function proposed by the author. A search of the Q-table filtered by global routing
paths allows route requests to be relayed to the optimal nodes. However, the proposed
approach does not incorporate the actual vehicle trajectory data, thereby neglecting the
end-to-end delay issue, the inter-vehicle link reliability, and the real-time update of optimal
routing paths upon the entry of new vehicles. In [14] the PFQ-AODV was proposed. This
is based on ad hoc on-demand distance vector routing (AODV) and integrates Fuzzy Logic
to constrain Q-learning and determine the optimal routing path. The aim of this method
is to address the routing selection challenges caused by the VANET environment. The
available bandwidth (BWF), node mobility (MF), and link quality (LQF) are considered in
Fuzzy Logic. However, this process does not incorporate the actual vehicle trajectory data,
inter-vehicle link reliability, vehicle traveling direction, or real-time updates of optimal
routing paths upon the entry of new vehicles.

In [15], a software-defined trust-based DRL framework, TDRL-RP, is proposed. Due to
the high mobility of vehicles and the scarcity of infrastructure in VANETs, communication
can be affected by malicious node attacks, causing a decline in the overall network perfor-
mance. TDRL-RP integrates DRL into an SDN infrastructure, aiming to learn the optimal
trusted routing path in the VANET and enhance the overall network scalability, adaptability,
and self-learning capabilities. DRL is deployed using SDN, and the addition of the CNN in
DRL results in faster convergence than in the original neural network. Regarding forward-
ing strategies, a neighbor behavior trust evaluation module is introduced. However, issues
related to new vehicles, end-to-end delays, or vehicle traveling directions have not been
addressed. In VRDRT [18], the incorporation of DRL into VANET is introduced. The high
mobility of vehicles leads to rapid changes in communication links and network topology,
making it crucial to address issues related to longer transmission delays and stability. Traffic
prediction and road vehicle density are emphasized during the routing path establishment
process. The objective is to enhance the packet forwarding probability, reduce transmission
delays, and optimize packet-carrying scenarios. The VRDRT is divided into two steps, both
implemented using DRL. However, the issues of new-added vehicles, connection reliability,
and the adequacy of packet forwarding in regions with higher vehicle density are not
considered. To reduce the state space size and accelerate the Q-learning convergence speed,
IV2XQ [23] was developed. This contains an intersection-based V2X routing protocol using
Q-learning and sets the intersection as the state. The Q-learning algorithm is trained with
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historical traffic flow on road segments in an urban scenario. The greedy algorithm was
chosen as the model’s packet-forwarding strategy. When a vehicle node carrying a packet
passes an RSU, it transfers the packet information to the RSU. Based on this information,
the RSU determines the next hop intersection for relay using Q-learning, and the source
node then uses a greedy method to transfer the packet to the target intersection. The IV2XQ
approach learns from historical traffic information in VANET environments. It can select
another non-congested road segment by monitoring the real-time link status. Experimental
results indicate that the proposed approach outperforms QGrid, GPSR, and RAVP since it
can forward packets to road segments with the optimal vehicle density.

Table 1 presents a comparative overview of learning-based research on VANET routing
protocols. For most studies [12-14], vehicular data were artificially generated. Even
for studies that utilize historical data, the real-time addition of new vehicles was not
addressed. Studies employing historical data [17,18] did not address whether the historical
data aligns accurately with the actual vehicle travel paths due to GPS localization offset
issues. Please note that although TDRL-RP uses the SDN trust-based DRL framework,
VRDRT emphasizes traffic predictions and the road vehicle density with DRL, and IV2XQ
considers both historical and real-time vehicular information, these three approaches do
not correct historical vehicular trajectory information or integrate DRL and RF for real-
time vehicle routing decision-making. However, the proposed IDRF approach applies the
SDN architecture to integrate DRL and REF to first correct historical vehicular trajectory
information and then execute real-time vehicle routing decision-making to determine the
shortest end-to-end delay packet relay path between the source and destination. This
is done by considering both historical and real-time vehicular information, the end-to-
end delay, the inter-vehicle link stability, the vehicle movement direction, and the newly
generated packet forwarding path due to adding new vehicles. Approaches adopted in the
proposed IDRF approach are discussed in the next section.

Table 1. Comparative analysis of learning-based VANET routing research.

Work ITAR-FQ QAGT PFQ- TDRL-RP VRDRT IV2XQ  Proposed
Feature [12] [13] AODV [14] [17] [18] [23] IDRF
Applies the SDN architecture. No No No Yes No No Yes
Adopts the DRL model No No No Yes Yes No Yes
Considers end-to-end delay No No Yes No Yes Yes Yes
Considers the 1I}t?r—veh1c1e link Yes No No Yes No Yes Yes
stability.
Considers the newly generated
packet forwarding path due to the No No No Yes No No Yes
entry of new vehicles.
Considers the.veh%cle s movement Yes Yes No No Yes Yes Yes
direction.
Integrates DRL and RF for real-time No No No No No No Yes

vehicle routing decision-making.

3. Design of the IDRF System

V2X is a VANET in which vehicles are interconnected with other vehicles, people, and
infrastructure as nodes. Compared to other point-to-point networks, V2X exhibits higher
mobility characteristics, enhancing its scalability and flexibility. However, maintenance of
the V2X network topology remains a significant challenge due to its dynamic nature. The
primary nodes in V2X are vehicles, either traveling along road segments or at intersections.
Within road segments, vehicles can have a maximum of two travel directions (forward
and reverse). However, due to the high mobility of vehicles, the establishment of com-
munication links with vehicles in the reverse direction is often more challenging. In [24],
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the density of vehicles at intersections was shown to generally be higher than that within
road segments. Moreover, the density tends to increase as vehicles approach intersections.
This indirectly signifies that there are more transmitting nodes at intersections, offering
a better option for relay decisions. To select a relay node that can successfully transmit
packets at intersections, the neighbor vehicles present at the intersection must be known,
and pairs of neighbor vehicles during the communication time must be chosen to allow
complete packet transmission. In this study, the following assumptions about the VANET
environment were made:

1.  There are RSUs at each intersection, and physical network lines interconnect these
RSUs.

2. On each road segment connected at intersections, vehicles periodically transmit
vehicle information to an RSU.
Figure 6 depicts the IDRF platform proposed in this study, which can be divided into

two phases.

SDN DN (Real-Time Phase) | SDN CN (Offline Phase)
B [
—"3/ V to X (Vehicle) \} 1 ( Historical trace data )
- ¥ < | ¥
[ . .
< Vehicle information packet > : < Correction unit >
SDN CN : ¥
__________________________ Road side umit || | Corrected historical trajectory data
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connection stability delay time
arrival time

! !

C Integration unit )

,
(Historical model ||

Discard data

DON training unit

Real-time j

Random Forest
. g prediction unit
information
X
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Figure 6. The IDRF system architecture.

e  Phase 1 (Offline Phase):

The SDN CN performs offline execution of the correction unit to rectify actual vehicle
trajectory data, as presented in Section 3.1. It primarily corrects the coordinate offsets
through GPS positioning to align them with the actual road. Subsequently, the rectified
trajectories are categorized as sufficient data and insufficient data. Trajectory data classified
as insufficient data are discarded, and the corresponding vehicle is considered to be an
unknown vehicle with no historical trajectory information during the real-time phase. Trajec-
tory data categorized as sufficient data undergoes the RF prediction unit process. The rectified
trajectory data trains the Vehicle Intersection Model using the RF prediction unit. The corrected
historical trajectory data feeds into the analysis unit during the real-time phase. Simultaneously,
the DON training unit undergoes DQN training to generate the Packet Relay Vehicle Model.
During the real-time phase, the integration unit utilizes the historical model containing the
trained Vehicle Intersection and Packet Relay Vehicle Models.

e  Phase 2 (Real-Time Phase):

The SDN DN periodically transmits vehicle information to intersection RSUs through
wireless communication. The RSUs perform the analysis unit process to estimate the
vehicles’ times of arrival at the intersection, the inter-vehicle link reliability, and the road
segment delay based on real-time information transmitted by vehicles. This information is
organized into the segment table for the corresponding road segment and the intersection
table for the respective intersection. These two tables represent the real-time vehicle
information in the integration unit of the SDN DN during the real-time phase. Finally, by
combining the relay node delay decided by the DQN and the intersection relay probability
calculated by RF in the offline phase, the real-time vehicle decision unit computes the
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segment delay. It determines the packet forwarding path with the shortest end-to-end delay
from the source to the destination when a new vehicle enters the V2X network in real time.

3.1. Offline Phase

This study employed vehicle trajectory data from the Beijing city taxi dataset, sourced
from the Microsoft platform [25-27]. The dataset encompasses GPS trajectories of 10,357 taxis
within Beijing city on 2-8 February 2008. It comprises approximately 15 million recorded
points, spanning a cumulative distance of 9 million kilometers. First, we defined a specific
region within Beijing city and removed data points from outside the area. The map
used in this study encompasses latitudes 39.89851 to 39.94923 and longitudes 116.36701
to 116.41253. The dimensions of this map are a length (L) of 3880 m and a width (W)
of 5636 m. Since the original trajectory data do not include information about specific
road segments and intersections traveled by vehicles, we annotated the coordination of
72 intersections within the region as {I;, Ij, ...... , I}. Each road segment is formed by two
adjacent intersections labeled {S;, Sj,. ..,5¢}, making 110 road segments in total (Figure 7).
Moreover, we incorporated the intersection and road segment serial numbers into the
original trajectory data. The modified information is presented as follows (Figure 8):

Shichahai

Figure 7. The Beijing city map used (yellow dots are intersections).

{

1 // vehicle serial number
2008-02-02, 15:36:08 // date, time
116.51172 // longitude

39.92123 // latitude

I; // road segment serial number
S; // intersection serial number

J

Figure 8. The modified trajectory information.

3.1.1. Correction Unit for Correcting the Vehicle Trajectory Data

Visualization of the vehicle trajectory data from Figure 7 into a 2D format (Figure 9)
reveals that, due to GPS positioning issues, the reported latitudes and longitudes from
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the vehicles may not accurately align with the actual roads. Furthermore, the trajectory
data may not include vehicle passing intersections, causing inaccurate decision-making
regarding the original actual vehicle trajectories, leading to packet forwarding failures.
The literature has four approaches to the correction of vehicle trajectory data [28-31].
Most approaches require relevant real-time information from other reference stations or
sensors to correct GPS locations and cannot be applied to the offline phase of the proposed
IDRE. Therefore, in this study, vehicle trajectory data were corrected by calibrating known
GPS trajectory information using accurate map data [28]. By identifying the parts of the
trajectory that best match the roads or features on the map, the positions of the historical
GPS trajectory can be adjusted before training the Al model. In the following text, we
present a series of corrections to the vehicle trajectories through the vehicle trajectory
continuity algorithm. First, the distance between two intersections of a road segment
and the offset distance of the recorded vehicle coordinates away from the actual road
segment are calculated. Then, the Haversine formula [32] is employed to compute the
perpendicular distance between the recorded vehicle coordinates and the road segment.
It is necessary to find the vertical coordinate points perpendicular to the road segments
during the correction process.

FORBIDDEN |
cIty

i 4 '
k.3 ,
JIONGNANHAI
R !

Figure 9. Visualization of vehicle trajectory data from Beijing city (the red points represent the
trajectory data, and different shades of orange represent varying densities of vehicle trajectory data).

During the correction process, there may be a few instances where a vehicle’s coor-
dinates coincidentally have equal perpendicular distances to two road segments. In such
cases, we refer to the preceding trajectory information, denoted as T}, and the subsequent
trajectory information, denoted as Tl-1+2. Based on the vehicle’s serial number, trajectory
update timestamp (constrained within a 5-min window), and the road segments on which
the vehicle is situated at T} and T}Jrz, the correction unit can determine which road segment
is correct. If discontinuity between road segments is found in the actual vehicle trajectory,
the correction unit randomly selects one of the two road segments, and the selected segment
is then designated as the corresponding trajectory segment. As illustrated in Figure 10,
assume vehicle v; with the ith trajectory point T} is located on road segment 5. During the
correction process T}H, if Til+1 has an identical distance to road segments 6 and 9 and T}Jr2
is located on road segment 10, the correction unit can determine that the coordinates of
Til+1 should be on road segment 9. If the time difference between two adjacent trajectory
points, such as Til+2 and Tl-1+3, exceeds 5 min, there is no need to compute the continuity
between them.
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L T,
Road9 [li+1 &
: Road 10 1
Til Road 5 &3] Road 6 Tiys3

—

Figure 10. The road segment correction is based on the vehicle trajectory continuity algorithm (the

red dots are intersections and dotted lines are perpendicular distances to two road segments).

3.1.2. Adding the Vehicle Arrival Time at the Intersection into Vehicle Trajectory Data

When a vehicle passes through an intersection, the timestamp of its arrival is not
always recorded precisely. However, we can use the actual vehicle trajectory information
to infer when the vehicle arrived at the intersection. After calculating the vehicle’s arrival
time at the intersection, timestamps are added to the original vehicle trajectory information
(Figure 9). Assuming that vehicle v; passes the trajectory point T} of a road segment
at time T, its coordinates at that moment are (Tlx, T%y) and it belongs to road segment

i. As vehicle vy passes the trajectory point T T1, of the subsequent road segment at time

T’, its coordinates at that moment become (TT,, T%,) and it belongs to road segment j.
v

Assuming that intersection R is the shared junction for road segments i and j and that
none of its trajectory information is available, we calculate the time at which vehicle v;
passes intersection R. Assuming the coordinates of intersection R are (Iy, I) the total
distance traveled between two trajectory points, T+ and T4, is first calculated by fd using
Equation (2). The total travel time for vehicle v; is equal to ft = T" — T. The time tr needed
for vehicle v; to arrive at intersection R from the trajectory point at time T is proportional
to the distance between this trajectory point and intersection R divided by the distance
between the two trajectory points (Equation (3)). Therefore, the time taken for vehicle v; to
reach the intersection is calculated by T + ft x tr. After correcting, we insert the arrival
time into the original trajectory data (Figure 11).

fd= \/(T%x — L)%+ (T%y — Iy)Z + \/(T%; —L)2+ (T%, _ Iy)z o)

(1 =102+ (7, - 12

fd

tr=

®)

Current dataset

Vehicle Date longitude Road Intersection
number segment

9/22 10:00
1 9/22 10:08 5 4 9
1 9/22 10:15 8 4 10
Added dataset
mm
number segment
9/22 10:00 2 3
| 1 9/22 10:02 > 4 6
1 9/22 10:08 5 4 9
1 9/22 10:15 8 4 10

Figure 11. Insertion of the vehicle’s arrival time at the intersection (the red frame is the arrival time
inserted to the current dataset).
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3.1.3. Estimation of the Average Vehicle Speeds for Each Road Segment within
Different Periods

After rectifying and classifying the actual vehicle trajectories, we can obtain compre-
hensive vehicular information, including the time and coordinates at which the vehicle is
at the road segment and intersection. Therefore, we can calculate the speed for each vehicle
on every road segment. In terms of the calculation method, we partition one day into eight
time periods [33], focusing on those with relatively higher traffic densities: 07:00~09:00,
12:00~13:00, 17:00~19:00, and 22:00~23:00. Next, utilizing historical trajectory data, we
calculate the estimated average speeds for each road segment within different periods

(Figure 12).
I = o
segment 1 | segment 2 | segment 3 | segment 4 | segment 5 segment 110
Period 1 60kmvh  75kmvh  70km/h  65km/h  68km/h 62km/h
Period 2 50km/h  62km/h  48km/h  45km/h  30km/h 38km/h
Period 3 62km/h  73km/h  72km/h  68km/h  70km/h 60km/h
Period 4 48km/h  64km/h  50km/h  43km/h  35km/h 36km/h
Period 5 65km/h  70km/h  68km/h  72km/h  65km/h 65km/h
Period 6 48km/h  50kmvh  52km/h  48km/h  35km/h 32km/h
Period 7 68km/h  64km/h  68km/h  74km/h  66km/h 70km/h

Period 8 49km/h  52km/h  55km/h  45km/h 40km/h 45km/h

Figure 12. Estimation of the average vehicle speeds for road segments.

3.1.4. Utilizing Random Forests for the Prediction Unit

The following rules are given to classify the dataset into sufficient and insufficient data
and partition them into training, validation, and test sets. The corrected vehicle trajectory
data, categorized as sufficient data, are used to train the RF prediction and DQN models.

1. On the rectified vehicle trajectories from the last seven days, taxis with a total times-
tamp count of fewer than 50 entries are categorized as vehicles with insufficient data.
Other vehicles are classified as vehicles with sufficient data.

2. Sufficient data recorded on 2-5 February 2008 are assigned to the training set.

Sufficient data for 6-7 February 2008 are assigned to the validation set.

4. Sufficient data recorded on 8 February 2008 are assigned to the test set.

@

In this study, for the prediction unit, regression RF, a supervised learning method, was
employed. RF comprises decision trees and the bagging algorithm [34]. The decision tree
uses a greedy approach to obtain distinct classification outcomes for each group. A tree is
generated based on training data, and predictions are made for new samples according to
the learned rules. The distance between the predicted result V, and the original target Vy is
computed as the mean squared error (Equation (4)).

1& N
Avgermr = _Z(Vx - Vx)z 4)
i3

The bagging algorithm is applied to a training set S = [V4,V;,...... ,Vy]. For a

training set with V, data points, each datum is sampled with a probability of le, and

the likelihood of not being sampled is 1 — le The probability of a datum not being

selected during V, sampling times is (1 — le)Vx. As Vy — oo, (1 - VLX)VX — % =~ (.368,
meaning that approximately 36.8% of the data in the training set S remain unsampled after

undergoing random sampling. Since these data points were not involved in the training
process, they are used to assess the model’s generalization capability. This study obtained
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M independent training sets by repeatedly sampling N training data points in M rounds.
The prediction approach is based on decision trees. By placing the M independent training
sets into decision trees separately, the structure of the RF can be formed (Figure 13).

Bagging
algorithm

Bagging algorithm Bagging algorithm

CAR 3

‘ CAR 1 ‘ CAR 1 ‘ CAR 3 ’ CAR 5 CARO ‘ CAR 3 ’ CAR 6 H CAR 4 ‘ CAR 3 ’
Decision Tree 1 Decision Tree 2 Decision Tree M

Majority vote

)

Output result

Figure 13. The RF model utilized in this study.

The dataset was used in conjunction with the RF method. Trajectories typically lack
regularity after the passenger gets in the taxi, increasing the prediction difficulty. However,
given the characteristics of RF, which reduce inter-dataset correlations, a majority voting
approach to predicting taxi movement trajectories is better suited for the dataset used in this
study. From Figure 11, we can obtain the times at which vehicles enter intersections or road
segments. The road segments are set as predictive targets. The rectified vehicle trajectory
dataset, vehicle movement direction, and the set of target intersections are denoted as
X =[(W1, S1, speed,, angle;), (V2, Sy, speed,, angle,), ..., (Vu, Su, speed,, angle,)], Y = [0
(forward), 1 (left turn), 2 (right turn)], and Z = [11, I, . . ., I72], respectively. The RF works as
follows: Initially, the training set X is divided into M independent training sets using the
bagging algorithm. Then, these M independent training sets are processed within decision
trees. Based on each independent training set at every node, a splitting threshold is chosen
from the designated label Y. This threshold is employed to partition the data at each node.
We can obtain M decision trees and train with these M decision trees. After the completion
of training, the mean squared error (MSE) is computed separately for M decision trees. For
the training set X, predictions can be made through a majority vote by M decision trees.
Our objective was to use the estimated average vehicle speeds of various road sections
over different periods to predict the next intersection I, the intersection after the next I7,
and the corresponding arrival times of vehicles using the RF prediction unit, as depicted in
Figure 14. Please note that the corresponding arrival times to the next intersection and the
intersection after that are calculated by the SDN CN using the information on real trajectory
points belonging to the current and next road sections, respectively. Therefore, the error
for the arrival time at the intersection, caused by traffic congestion, the vehicle’s moving
direction, and speed, is confined to the corresponding road section.
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Time (T) Time (T+ 1)
EA ] |
number section number section
9/22 10:00 9/22 10:00
1 9/22 10:02 6

‘ Time (T+ 1)
‘ Time (T + 3)
Vehicle Road Intersection
e e
number segment

9/22  10:00
|1 922 10:02 6 | ! 9/22  10:00
1 922 10:02
1 922 1011
1 9/22 1025

Figure 14. Predicted visited intersections and corresponding arrival times determined using the RF
prediction unit (the red frame shows the next intersection, the intersection after the next, and the
corresponding arrival times).

3.1.5. Deep Reinforcement Learning Training Unit

In this study, the DQN approach was employed to make decisions about the packet
forwarding transmission path to achieve the shortest end-to-end delay from the source
vehicle S to the destination vehicle D. This decision-making process takes into account the
presence of intermediate relay nodes up to M hops (Figure 15). The V2X vehicular network
environment consists of vehicles. Within its communication radius, the source vehicle S
has Nj neighboring candidate vehicles at Hop 1 that are capable of relaying packets. This
implies that, in the current state s1, there are Nj possible actions to choose from. Vehicle v;
represents the i-th candidate node within the communication radius of the current node
Ucarry, which is currently carrying the packet. Importantly, v; is not chosen as the i-th relay
node. D; represents the total delay required for source vehicle S to relay the packet to
v; successfully.

m (S ) Wi, (1)

( D)
. 4

Figure 15. Network model of the decision-making process.
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First, we designed the DQN state as follows: State = {Vehicle ID V;, road segment
ID §;, intersection ID I;, vehicle’s driving speed speed;, vehicle’s driving angle angle;,
whether v¢qry is the packet-sending node v, whether vy is a relay node Urelay (Si, I),
(speed;, angle;), and (whether vcgry is Vs, whether vy is vreluy)}, resulting in a total
of 10 dimensions for the DQN neural network. The indication of whether vy is a
relay node v,,,, signifies that the current node vcary, which is carrying the packet, is
neither the sending node v nor the target node v, but rather, is sending other vehicle
nodes. The combination of data with similar attributes can increase the sample count,
providing more diverse information for the DQN while making decisions and enhancing
the decision quality. The Action refers to the selection of a neighboring candidate vehicle
within the communication radius of the vehicle carrying the packet, which is also the output
dimensionality of the DON network. The Reward is designed according to Equation (5),
and it encompasses three distinct scenarios: (1) If the DQN selects V; as a relay node
from the candidate vehicles and the packet transmission is complete, the Reward is given

_ 1-DR; _ D;
as Reward = ngi%, where DRI' = ZJZTE{WD;

transmission delay D; to E]?”:”ld"d”te D;. The objective of the DQN is to determine the packet
transmission path with the shortest end-to-end delay. Therefore, assigning higher rewards
to candidate vehicles with lower transmission delays D; (but with higher 1 — DR;) is
essential. In the end, all candidate vehicle values are normalized within the range [0-1],
1-DR;
E];irvldidafe 17DR]' .
all candidate vehicles, the reward is set to 0. (3) If V; is selected as a relay node among
all candidate vehicles, the transmission to V; fails, and the reward is assigned a value
of —1. Based on the rewards provided during the DON training process, we can obtain
weights [Wq 1 (1), Ws2(1),..., Ws N, (1)] for the selection of actions [1, 2, ..., Ni]. The packet
forwarding path must be chosen by using the candidate neighboring vehicle with the
highest trained weight at each hop to achieve the shortest end-to-end delay for packet
transmission from the source vehicle to the destination vehicle. This selection process
is represented by Equation (6). The expected packet transmission path is depicted in
Figure 16.

is equal to the proportion of the

yielding the final reward (2) If V; is not chosen as a relay node among

%, packet transmission is complete;
j= j

Reward = 0, v; is not chosen as a relay node; )

—1, packet transmission fail;

ar = argmax, Q(w(s¢), a; w) (6)

Relay node

Figure 16. The expected packet transmission path is based on the DQN decision during the of-

Hopl Hop2 Hop3 HopN

Relay node
Relay node 1

Relay node N;

fline phase.
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3.2. Real-Time Phase
3.2.1. Calculating the Vehicle’s Arrival Time at the Next Intersection Based on Vehicle
Information by the Analysis Unit of the RSU

A DRL training unit can determine the optimal end-to-end delay path using the
vehicle’s trajectory. Trajectories with insufficient data are excluded from the training
process during the offline phase. As depicted in Figure 16, some paths lack intermediary
nodes. Hence, untrained vehicle trajectories can be added to determine whether a new
route can be formed in the real-time phase. The following sections delve into the detailed
calculation of real-time vehicle information.

Vehicles periodically transmit information to RSUs, which are responsible for the
calculations. We define vehicle information as v;, = {send;, speed;, angle,, lat;, lon;}. As-
suming that vehicle V; is on the road, its trajectory V;, and angle; indicate that it is moving
towards intersection I. By using the longitudes and latitudes of vehicle trajectory V.
and intersection I, the distance between them can be calculated. Furthermore, the vehi-
cle’s speed enables the estimation of its arrival time I, at the intersection, as shown in
Figures 17 and 18. For all vehicles, the analysis unit calculates arrival times at the intersec-
tion. It is assumed that the road segment S; is composed of intersections 4 and 5. There are
five vehicles within road segment S;. After transmitting their information to the RSU, the
RSU analysis unit calculates their arrival times. The consolidation of vehicle information on
the same segment yields a road segment table for each road segment across all intersections.
The road segment table includes the Arrival Time to Next Intersection, Vehicle Direction,
and Next Intersection fields. This process obtains arrival time data for all segments, as
shown in Figure 19. Each RSU records information related to the road segments it covers.

® Input: .

Rectified vehicle trajectory information .
® Output:

Arrival time at the intersection

1. for i in the rectified vehicle trajectory information: .

2. Vi, = \/ W, —L)?*+ Vi, — Ixy)2 // distance between C;,; and the intersection

3. R

4. return I .

o = Vip + speed; X Vi, .

Figure 17. Pseudocode is used to calculate the vehicle’s arrival time at the intersection.

Distance to

Intersection 4 Intersection 5 next
Speed : intersection
Arrival Time to Next Intersection 28.8s
v @ 50km/h SN
Arrival Time to Next Intersection 27s Speed :
V. ® 60km/h
: s 450M
Arrival Time to Next Intersection 9.6s 7:13)k1 1/1.1
i @ ! 200M
Arrival Time to Next Intersection 8s Speed :
45km/h
“ ® oerp 100M
Arrival Time to Next Intersection 31.5s 88 E;/}'l
vs T 700M
Attime T

Figure 18. The RSU calculates the arrival time at the next intersection for vehicles in the road
section 5.
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. Road o 5
Road e Vehicle Next Segment Arnv;le'::me to Vehicle Next
Direction | Intersection Table Direction Intersection

Segment | Time to Next

Table S, Intersection s Intersection
110

Same Same

SN 28.8s St Intersection 5 S110-Vs SY7S direction Intersection 70
Opposite : Opposite g
SV, 27s Xy Intersection 4 S110-Vas2 3.7s et Intersection 68
[

2 9.6 Same - tersection 5 Sl 18.4s Same | tersection 68
e 2% direction esecton PSR : direction

S1.Vs 36 Same y tersection 5 S110.V; 28 Same g tersection 70
1 Va s direction  Intersection 110_V73 s AFa T ntersection
S, Ve 31.5s S Intersection 5 S110-_Ve 7.4s S Intersection 69
= ’ direction = i direction

Figure 19. Road segment tables record all vehicles” arrival times at the following intersections.

3.2.2. Estimation of the Minimum Packet Propagation Delay for a Road Segment Using the
Vehicle Connection Stability, Road Segment, and Intersection Tables

Due to the high mobility of vehicles, the maintenance of consistent connectivity is often
challenging. Therefore, it is necessary to determine whether the connection time between
two vehicles is sufficient to transmit a complete packet. According to [35,36], we must first
obtain the vehicle speed, moving direction, current location, and transmission range to cal-
culate the available link connection time between two vehicles. Assuming this information
is available, the theoretical packet transmission time can be defined as T = %
The link connection time between two vehicles must be greater than or equal to the theo-
retical time T required to transmit one packet (Figure 20). Differences in positions along
the X-axis and Y-axis after the packet transmission time T from the initial location are
Dyij = (Xj — X;) + (Vjcosb; — Vicost;) T and Dy;; = (Yj —Y;) + (Vjcosh; — Vjcos;) T, re-
spectively. To transmit a complete packet between two vehicles, the distance between two
nodes d after the packet transmission time T must be smaller than or equal to the trans-
mission range r, formulated by Equation (7). Lete = (Vjcos6; — Vicost;), f = (X; — X;),
g = (Vjcost; — Vicosb;), h = (Yj — Y;). By substituting these values into Equation (5), the
packet transmission time T is constrained by Equation (8).

d = \/Dyif + Dyif* <r @)

V(f+eT)? + (h+gT) <1,

(2 +8*) T2 +2(ef +gh)T+ (f2+h*—r?) <0, ®)
—(ef+gh)+1/ (2+g2)r—(eh—gf
Ts (e®+g%)

However, since vehicles do not always travel at a constant speed, the abovemen-
tioned equation was modified to incorporate the calculation of the average vehicle ac-
celeration. Assuming vehicle V; has speed speed; at time t and speed speed;  at time
t — 1, the acceleration a; is obtained by dividing the velocity change (speed;, — speed; )
by the time interval (f — ( —1)). Hence, differences in position along the X-axis and
Y-axis after the packet transmission time T from the initial location are modified to

Dxij = (X] — Xi) + Zthl((V]-r + ﬂt) COSQJ‘ — (Vit + th) cosb;)), and Dyij = (Y] — Yi)+
Y ((V]t +ap)sind; — (V,; + at) sinb;)), respectively.
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Figure 20. Diagram of the estimated vehicle connection stability.

Next, the analysis unit calculates the vehicle’s connection stability for the road segment
where the vehicle Ucarry is located. If both Ucarry and the vehicles in that segment cannot
transmit packets completely, the vehicles at the intersection where v¢,ryy arrives that can
be selected for relaying should be determined. We define the time at which vehicles enter
each other’s communication radii as the Encounter Time. The maximum time taken for
vehicles to establish a connection is defined as the Transfer Time. The communication
radius between two vehicles is set as R. Considering the moving directions of vehicles, we
explain this concept in two categories: in the same and opposite directions.

1. Same direction:

AS Ucqrry and the relay vehicle are driving in the same direction and approach-
ing each other, the speed difference between vehicles i and j is defined as

VS :‘speedit — speed;, ‘ The distance between the two vehicles is described

as VD = 4 /Dxi]-2 + Dyi]-Z. When VD is larger than R, indicating that the two ve-

hicles are not within each other’s communication radii, Encounter Time = V?,ER

and Transfer Time = 0. When VD is less than or equal to R, indicating that the
two vehicles are within each other’s communication radii, Encounter Time = 0
and Transfer Time = %. In this case, the Transfer Time is the time spent by the
two vehicles moving from their current positions to the position at which they
meet because they are approaching each other.

As vcqrry and the relay vehicle drive in the same direction but gradually move
apart, the speed difference between vehicles i and j is defined as

VS = ’speedit — speedjt ’ The distance between the two vehicles is described

as VD = 4/ Dxijz + Dy,»jz. When VD is greater than R, indicating that the two

vehicles are not within each other’s communication radii and will not meet again,
Encounter Time = oo and Transfer Time = 0. When VD is less than or equal to
R, indicating that the two vehicles are within each other’s communication radii,
Encounter Time = 0 and Transfer Time = R}ED. In this case, the Transfer Time
is the time spent by the two vehicles moving from their current positions until

their distance reaches R because they gradually move apart.

2. Opposite direction:

AS Ucqrry and the relay vehicle are driving in opposite directions but approaching
each other, the speed difference between vehicles i and j is defined as VS =
speed;, + speed; . The distance between the two vehicles is described as VD =

\/Dxij2 + Dyijz. When VD is greater than R, indicating that the two vehicles

are not within each other’s communication radii, Encounter Time = V%gR and

Transfer Time = 0. When VD is less than or equal to R, indicating that the two




Electronics 2024, 13, 2099

20 of 41

vehicles are within each other’s communication radii, Encounter Time = 0 and
Transfer Time = %.

®  As Uy and the relay vehicle drive in opposite directions and gradually move
apart, the speed difference between vehicles i and j is defined as VS = speed; +

speedjt. The distance between the two vehicles is described as VD = 4/ Dxij2 + Dyijz.

When VD is greater than R, indicating that the two vehicles are not within each
other’s communication radii and will not meet again, Encounter Time = oo and
Transfer Time = 0. When VD is less than or equal to R, indicating that the two
vehicles are within each other’s communication radii, Encounter Time = 0 and
Transfer Time = R}‘S/D . In this case, the Transfer Time is the time spent by the
two vehicles moving from their current positions until their distance reaches R

because they gradually move apart.

From Figure 19, it is possible to obtain the time at which each vehicle arrives at the
next intersection. As stated above, the Encounter Time and Trans fer Time can be inferred.
However, when the positions at which the two vehicles meet or their distance equal to R are
not located within the road segment at which vehicle vy is located, the Encounter Time
and Transfer Time must be updated as follows: We define the arrival times of vehicles i
and j at intersection I as Ry;,. and Ryj, - If the Encounter Time is larger than the minimum

value between Ry;;. and Ry, , ie., min{inT,ijT}, the Encounter Time is modified to
0. If the Transfer Time is larger than min{inT, Ryj, }, the Transfer Time is modified to

min{inT,ijT} — Encounter Time.

As illustrated in Figure 21, road segment S; is composed of intersections 4 and 5,
and the communication radius is R = 300 M meters. There are five vehicles within road
segment S1. Ucqrry is denoted as V1. The VS and VD between V; and Vs are 400 M and
30 km /h, respectively. Hence, the Encounter Time is 40%(1)\41(;“3%1\4 = 35({%\% = 12s. Upon
transmitting vehicle information to the RSU, the analysis unit of the RSU is responsible
for calculating the estimated vehicle link stability within road segment Sy, resulting in the
estimation of the vehicular connection stability between vy and all vehicles on road
segment S;. Figure 22 depicts the addition of vehicle connection stability to the road
segment table, as shown in Figure 19. The time spent by V; and V5 moving from their
current positions to the position at which they meet and that spent by V; and V5 moving

from their current positions until their distance reaches R are 3800 M — 300M_ =~ 365 and

km/h = 30 km/h —
303%1\121;9}11\4 = Sg(fml\fh 2 36 s, respectively. The total Trans fer Time from when V; and Vs

meet until their connection is broken is 36 s 4+ 36 s = 72 s. The minimum arrival time of V;
and V5 at intersection I5 is min{28.8 s,31.5 s} = 28.8 s. Finally, the modified Transfer Time
required to finish the packet transmission within road segment S; is 28.8s — 125 = 16.8 s.

Intersection 4 Intersection 5
?8 eed:h Distance to V;
Vi A . A . A
Encounter Time Os Speed :
v ke 4 Transfer Time 16.36s 60km/h 200M
2
Encounter Time 0s Speed :
Transfer Time Os 75km/h
Vs 300M
Encounter Time cos Speed :
Transfer Time Os 45km/h
A 1 450M
Encounter Time 12s Speed :
Transfer Time 16.8s km/]
vs @ 80km/h 400M
At time T

Figure 21. Diagram of the estimated vehicle connection stability for v;.
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Figure 22. The road segment table for v; after adding the vehicle connection stability (the dotted lines
represent the vehicles with zero Transfer Time).

After creating a road segment table based on the estimated vehicle link stability, the
prediction unit will forecast the next intersection that each vehicle moves towards. Based on
the associated RSU, intersection tables are compiled with fields recording the arrival time at
the next intersection, the next intersection, the predicted intersection after the next, and the
predicted arrival time to the intersection after the next. We can calculate the average speed
for each road segment by utilizing the average vehicle speeds from different periods. Based
on the distance between the next intersection I; and the predicted intersection after the next
Ij, we can estimate the time taken for a vehicle to travel between intersections I; to I; and
record it as the expected arrival time to the intersection after the next field (Figure 23).

The The
predicted Arrival The predicted
predicted | arrival time Intersection Time to Next predicted | arrival time
Intersection | intersection to the table I, Next Intersection | intersection to the

after next | intersection Intersection after next | intersection
after next after next
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Intersection Time to Next

table I, Next
Intersection
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8
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SuVia 18.4s Intersection  Intersection 24.7s SuVers 197 Intersection  Intersection 34.95

B

4

70

65

Figure 23. The addition of the predicted intersection after the next and the expected arrival time
fields to the intersection after the next into intersection tables.

Finally, we propose two cases to compute the minimum packet propagation delay
of a road segment. First, based on the vehicle connection stability on the road segment
table, if the link connection time between any two vehicles on a road segment is greater
than or equal to the theoretical packet transmission time and any vehicle is within the
communication range of its peers, the packet can be propagated from the originating
intersection through vehicles within the road segment to the next intersection. In this
case, the packet propagation delay on the road segment (Ds) equals the smallest number
of vehicles required to forward the packet on the road segment (N) multiplied by the
theoretical packet transmission time (Pr), which is formulated as Ds = N x Pr. Second,
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if the relay vehicle finds no neighbors within its communication range, the extra packet
propagation delay Mt must be added to the Encounter Time required for the relay vehicle
to meet the next hop vehicle. The total packet propagation delay on the road segment
equals the sum of N x Pr and Mr, which is formulated as Ds = N x Pr + Mr.

We can obtain vehicle transmission paths with sufficient historical data through train-
ing units using DRL (Figure 17). However, in scenarios involving real-time vehicles with
insufficient data, the information from these vehicles can be incorporated into the decision-
making process of the DQN model using the method proposed above for computing the
minimum packet propagation delay for a road segment. Consequently, the analysis unit of
the RSU can determine whether a new transmission path can be formed, as illustrated in
Figure 24.

Hopl Hop2 Hop3 HopN

Real-time vehicles with
insufficient historical data

Relay node

Relay node

Relay node

Relay node

Figure 24. The DQN forwarding path considers real-time vehicles with insufficient data and vehicles
with sufficient historical data.

3.2.3. Real-Time DQN Routing Decision for the Packet Transmission Path and the
Exception Handling Mechanism by the Integration Unit

After the DON decides to choose the relay node v,,;,,, the SDN CN transmits the v,
information to the RSU located at the intersection. Then, the RSU notifies v,y that its
packet needs to be forwarded to v;,,,. Because the real-time vehicle characteristics may
differ from those in their historical datasets, v¢sry may have no Urelay A8 its neighbor, or the
calculated link connection time between v,/ and v¢arry may be insufficient to transmit the
packet at that time, causing packet transmission failure. In this case, the decision made by
DOQON is meaningless for the real-time vehicle and hence requires the DQN routing decision
and exception handling mechanism to be used (Figure 25).

1. If the packet carried by v¢yy needs to be transmitted to the destination, go to step 2.
Otherwise, the DQN routing decision flow ends.

2. The DOQN executed in the SDN CN first determines which relay node v, is chosen
to forward the data.

3. This information is initially sent from the SDN CN to the RSU, which then forwards it
t0 Ucarry, thereby carrying the packet.

4. When the v¢yy carrying the packet searches its neighbor table and discovers the
presence of vy, it forwards the packet to vy, and the process moves to step 5. If
Ucarry cannot find Urelay in its neighbor table, the process moves to step 10.

5. If the packet transmission from Vcarry 1O Vyelay is successful, go to step 6. Otherwise, go
to step 7.

6. Uy sends back a success packet to the RSU, notifying them that the transmission
has been successful. Go to step 8.

7. If the packet transmission to Urelay fails, vearry sends back a failure packet to the RSU,
notifying them that the packet transmission has failed.

8.  Subsequently, the RSU informs the SDN CN that v, is unable to complete the packet
transmission.
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9.  The SDN CN reselects another relay node using DQN. Then, the process returns to step 1.

10. The SDN CN sends back a not found packet to the RSU, notifying it that the chosen
relay node cannot be found. The RSU then tells the SDN CN to reselect another relay
node by going to step 9.

2. SDN CN uses DQN to determine the
relay node vreiay

. Whether the packet carrie ¥
Vearry ne€ds 3. SDN CN notifies vearry 0f vreiqy through
0 be transmitted?

the RSU

4. If vearr finds vrelay after
searching its neighbor table?

vearry transfers the
packet t0 vrelay

10. veary issues a Not
Found packet to the RSU.

l

The RSU notifies SDN CN
that veary cannot find vrelay in

relay has successfully received the pa
transferred from vearn?

its neighbor table. 7 vearry issues a Failure packet to 6. vearry iSSUES A SUCCESS
the RSU about the failed packet packet to the RSU about the
transmission successful packet transmission
9. SDN CN will reselect a new | ¥

8. The RSU notifies SDN CN
that vea is unable to transfer the
packet {0 vrelay.

I

relay vehicle using DQN.

Figure 25. The flow of DQN routing decisions and exception handling processes.

3.2.4. Integration of DON and RF Using the Real-Time Decision Unit

The dataset employed in this study comprises taxi data. The driving characteristics
of taxis can vary due to unpredictable passenger destinations. As mentioned above, RF
is used to determine the intersection of vehicles, while DQN determines the shortest end-
to-end delay forwarding route. In real-time scenarios, vehicles with insufficient data and
new vehicles may appear, and it may be challenging to make instantaneous decisions
solely using RF or DON due to the presence of untrained data. In the IDRE, the real-time
vehicle decision unit integrates DQN and RF to address the abovementioned question. As
illustrated in Figure 16, for the source vehicle to relay packets to the destination vehicle,
relay nodes of M hops are required for packet forwarding. Packet forwarding may occur on
either road segments or intersections. During the forwarding of packets on road segments,
the vehicles with DQN-predicted results and the real-time new vehicles that DQN has
not trained must be considered to determine the best relay vehicle with the shortest delay.
When forwarding packets at intersections, the travel directions of vehicles, predicted results
from DQN, and real-time vehicles must be considered concurrently. Moreover, the scenario
in which the source and destination nodes are real-time vehicles without prior training by
DQON must also be considered. The real-time decision unit flow is illustrated in Figure 26.

1.  Determine if the destination vehicle is a real-time new vehicle. If the destination
vehicle is not new, DQN is used to determine the shortest path from the source vehicle
to the destination vehicle for forwarding. Then, go to step 2. Otherwise, go to step 4.

2. If the destination is a new vehicle, determine whether the destination and packet-
carrying vehicles are on the same road segment. If they are, go to step 5. Otherwise,
go to step 3.

3. If the destination vehicle and the packet-carrying vehicle are not on the same road
segment, temporarily set the upcoming intersection of the destination vehicle as the
destination intersection.
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10.
11.

12.
13.

14.

15.

Use DQN to determine the shortest path from the source vehicle to the destination
intersection. Then, go to step 6.

Forward the packet to the destination vehicle. Then, go to step 15.

Determine whether packet forwarding occurs on the road segment. If it does, go to
step 7; if not, go to step 11.

Determine whether the candidate vehicles forwarding the packet in this hop have
real-time new vehicles. If they do, go to step 8; if not, go to step 9.

If there are real-time new vehicles, recalculate the DQN delay weights for all candidate
vehicles in this hop.

Classify the vehicle with the largest DQN delay weight at this road segment as the
relay node. If there are no real-time new vehicles, there is no need to recalculate the
DON delay weights for all candidate vehicles in that hop. Instead, use the DON delay
weights to determine the optimal forwarding node.

Forward the packet to the selected relay node. Then, go to step 15.

If packet forwarding occurs at an intersection, determine whether real-time new
vehicles are in this forwarding hop. If there are real-time new vehicles, go to step 12.
Otherwise, go to step 13.

Calculate the DQN delay weights for all vehicles in that hop.

Multiply the DQN delay weight by the RF intersection transfer probability to compute
the transfer delay weight. If there are no real-time new vehicles in this forwarding hop,
calculate the transfer delay weight using the original DON delay weight multiplied
by the RF intersection transfer probability.

Classify the vehicle with the largest transfer delay weight at this road segment as the
relay node.

Determine whether the packet has been forwarded to the destination vehicle. If it has,
the flow of the real-time decision unit has finished. If not, return to step 1.

. . . 4. DQN determines the
3. Set the intersection to| Q
eand No . L shortest delay path to
which the destination
transfer packets from

will reach as the
PR . the source to the
destination intersection . .. .
destination intersection

Arc'the packet carrying vehi
the destination on the same road
segment?

As the destinationa new

vehicle? 5. Forward the |«

.NO’ at ﬂ.‘e packet to the
6. Does the packet transfer intersection |jactination —
occur on the road segment?

Yes

. Is there any new candidat€ 1. Is there any new vehicle

vehicle in this transfer hop?2 Yes in this transfer hop? No

12. Compute DQN delay
weights of vehicles in this hop
8. Calculate DQN delay weights ¥
of all candidate vehicles in this No 13. Multiply the DQN delay weight and the RF

hop intersection transfer probability to calculate the
transfer delay weights
9. Select the vehicle with the 1)
largest DQN delay weight as the 14. Select the vehicle with the largest transfer
relay node delay weight as the relay node
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T

1\/‘\ Yes
15. If the packet has been End

forwarded to the destination?

Figure 26. The flow of the real-time decision unit in the IDRF.
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As illustrated in Figure 27a, assuming that both the source and destination vehicles
have been trained, DON is used to determine the forwarding path with the shortest end-
to-end delay from the source to the destination. In this scenario, v4 and vy represent
real-time new vehicles, while the remaining vehicles are relay nodes trained by DQN.
Hence, it is necessary to determine whether a new packet forwarding path can be formed
by v4 and v1g9. The estimated connection stability of the inter-vehicle connections can
be used to determine whether a new link can be established between two vehicles. It is
assumed that v1g cannot form a new link, but v4 can connect to S and V7, as illustrated
in Figure 27b. After adding v, to the original DON path, three new packet forward-
ing paths can be established: S - V3 =+ Vg = Vo =+ D, S = Vs — V; = Vi1 = D, and
S —=Vy = V7 = Vip = D. Since v, is a newly introduced real-time vehicle, it lacks the
DOQON:-trained weight. The reward between v4 and its neighbor vehicles is calculated using
Equation (5) and is used as the weight of the corresponding hop, as presented in Table 2.
First, we calculate the total delay weights for the three paths without considering intersec-
tion transfer probabilities. Since path 1 has the highest total delay weight, it is selected as
the packet forwarding route, as illustrated in Table 3. Further, packets at Hop 1, Hop 2, and
Hop 4 in Figure 27b are transferred to the relay vehicles on road segments. Intersection
transfer probabilities calculated by RF are not used at these hops. However, because packets
at Hop 3 are transferred to the relay vehicles at intersections, new total delay weights must
be calculated for these three packet forwarding paths while considering the intersection
transfer probabilities. It is assumed that the intersection transfer probabilities for vehicles
at Hop 3 are those shown in Table 4. First, the new delay weight Hy, is calculated by multi-
plying the original DQN delay weight D, by the RF intersection transfer probability Ry,
(Equation (9)). The results are presented in Table 5. Next, the IDRF is used to calculate the
new total delay weights of these three packet forwarding paths (Table 6). Since Path 3 has
the highest total delay weight, the IDRF selects it as the new packet forwarding path. This
example demonstrates that without considering the real-time vehicle v4 and intersection
transfer probabilities calculated by RF, Path 1 is chosen as the packet forwarding path
instead of Path 3, as it has the highest total delay weight, which means that it has the
shortest end-to-end delay.

Hy = Dy X Ry )

Table 2. The hop delays and DQN delay weights D, for each hop.

. Hop 1 Delay/DQN . Hop 1 Delay/DQN
Link Delay Weight Link Delay Weight
S—=WV 1.405/0.0702 Vi—=Vs 0.705/0.5388
S—=V, 0.40s/0.2463 Vo = Vs 1.705/0.2218
S—=V 0.17 s/0.5789 Vs = Vg 2.60 5/0.1450
S—=Vy 0.945/0.1046 Vi—=Vy 4.00 5/0.0944
. Hop 3 DQN Delay . Hop 4 DQN Delay
Link Weight Link Weight
Vs = Vg 0.0491 Vo = D 0.1420
V6 d V9 0.4270 V11 — D 0.4806
Vo = Vnp 0.1723 Vip =D 0.4615

Vo — Vin 0.3516
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Figure 27. (a) The DQN-decided packet forwarding path from the source to the destination; (b) IDRF
real-time vehicle decision that integrates DON and RF (S and D denote the source and destination
vehicles, the arrow indicates the intersection transfer probability of Hop3, and the dotted line are
possible paths between the source and the destination).

Table 3. Total delay weights of three packet forwarding paths without considering the intersection
transfer probabilities.

End-to-End Forwarding Path Total Delay Weights
Path 1 S—>Vs—=Vg—=>Vog—D 0.5789 + 0.1450 + 0.4270 + 0.1420 = 1.2929
Path 2 S—=>Vy—=V; = V1 =D 0.1046 + 0.0944 + 0.1723 + 0.4806 = 0.8519
Path 3 S—=Vy—=V; = Vip =D 0.1046 + 0.0944 + 0.3516 + 0.4615 = 1.0121

Table 4. The intersection transfer probability Ry, for Hop 3.

Intersection Intersection Transfer Probability
Ipg 0.24
Iy 0.68
Izo 0.90

Table 5. The new delay weight Hy, for Hop 3.

Link for Hop 3 IDRF Delay Weight of Hop 3
Vo — Vo 0.4270 x 0.24 = 0.102480
Vo — Viy 0.1723 x 0.68 = 0.117164

Vo — Vin 0.3516 x 0.90 = 0.316440
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Table 6. The total delay weights for the three packet forwarding paths calculated by the IDRF.

End-to-End Forwarding Path IDRF Total Delay Weights
Path 1 S—=Vs—=>Veg—=Vo—=D 0.5789 + 0.1450 + 0.102480 + 0.1420 = 0.968380
Path 2 S—>V,—=-V, = Vi1 =D 0.1046 + 0.0944 + 0.117164 + 0.4806 = 0.796764
Path 3 S—=V, =V, = Vip =D 0.1046 + 0.0944 + 0.316440 + 0.4615 = 0.976940

4. System Simulations and Performance Evaluations
4.1. Simulation Environment

The IDRF_DQN, IDRF_DQN_RF, and IDRF algorithms introduced in this paper for
decision-making were compared in terms of their performances with TDRL-RP, focusing on
vehicle training for decision-making, VRDRT, focusing on road information-based decision-
making, and traditional VANET routing algorithms, Epidemic and GPSR, for packet routing.
Epidemic was chosen due to its broadcast-based packet forwarding method, which enables
the source vehicle to obtain multiple forwarding paths from a single set of pairs. VRDRT,
on the other hand, utilizes vehicle positions, distances to neighboring vehicles, and vehicle
density statistics information from the dataset. Simulations were conducted using Python
and NS-3. Python interacts with NS-3 and was used for DQN training, while NS-3 was used
for a network simulation with environmental parameters (Table 7). In this simulation, the
MAC protocol used in NS-3 was IEEE 802.11p, and the radio propagation model used was
the Log Distance Propagation Loss Model. As mentioned in Section 3.1, NS-3 employed real
vehicle trajectory data from Beijing city’s taxi dataset, encompassing the GPS trajectories of
10,357 taxis on 2-8 February 2008. The map used in this study includes latitudes 39.89851
to 39.94923 and longitudes 116.36701 to 116.41253, forming a map with dimensions of 3880
by 5636 m. Regarding the dataset, the proposed IDRF_DQN, IDRF_DQN_REF, IDRF, and
TDRL-RP algorithms were evaluated against the Epidemic algorithm using the following
default simulation parameters: randomly selected pairs of 32, a TTL of 90, a message time
of 1.0, and a transmission range of 425. This resulted in 1000 simulations, which were used
to generate forwarding paths for the actual vehicle trajectory data from the Beijing city taxi
dataset. The x-axis of the result showed the number of source-destination pairs and the
transmission range. The y-axis of the simulation results showed the average packet delivery
ratio, average end-to-end delay, and average overhead ratio, defined as Equations (10)—(12).
The results from 1000 simulation runs were averaged. The figures were drawn with 95%
confidence intervals.

e  Average end-to-end delay

This paper defines the average end-to-end delay as follows: It is the average delay
when all packets are transmitted from the source vehicle to the destination vehicle across
all forwarding paths. This average delay accounts for the total delay time of all delivered
packets, divided by the total number of delivered packets received by the destination
vehicle. The calculation of the average end-to-end delay is performed using Equation (10).

Total end — to — end delays of all delivered packets

Average end = to = end delay = Number of delivered packets

(10)

e  Average packet delivery ratio

In this study, the average packet delivery ratio is defined as the number of delivered
packets received by the destination divided by the number of packets transmitted by the
source, calculated using Equation (11).

Number of delivered packets
Number of transmitted packets by source

Average Packet delivery ratio =

(11)
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e  Average overhead ratio

In this study, the average overhead ratio is the sum of the total number of packets
that need to be transmitted through each relay node j in the forwarding path of packet I
from the source vehicle to the destination vehicle, including the data packets sent by the
source vehicle and the control packets sent by various routing protocols, denoted as npj..

The overhead for the forwarding path of packet i is defined as Z?:l np;-, where / is the total

number of relay nodes, i.e., hop counts, between the source and the destination vehicles.
Next, the overheads of all packets transmitted by the source vehicle are summed and
divided by the total number of transmitted packets by the source vehicle (Equation (12)).

Number of transmitted packets by source

Zizl Z;l:l ”P;

Average Overhead ratio = -
§ Number of transmitted packets by source

(12)

Table 7. NS-3 Simulation Parameters.

Parameter Parameter Value
Map size 3880 M x 5636 M

12:00-13:00 (3600 s for congestion periods),
13:00-17:00 (7200 s for sparse periods)

Simulation time

MAC protocol IEEE 802.11p
Radio propagation model Log Distance Propagation Loss Model
Packet size 1024 Bytes
Bulffer size 10 MBytes

8456 (congestion periods),

Number of trained vehicles 3481 (sparse periods)

Number of untrained vehicles 1212 (congestion periods),

584 (sparse periods)
Transmission range (M) 300, 425 (default value), 550, 675

Number of pairs 4, 8,16, 32 (default value)

Message Time 1

TTL 90

Learning rate « 0.001 (default value), 0.05, 0.01
Discount factor y 0.9, 0.95, 0.99 (default value)

RF threshold Gini

4.2. DQN Hyperparameter Configuration and Testing

In the following section, we discuss the hyperparameter configuration used for DQN
training in this paper. The vehicle trajectory data of the Beijing city taxi dataset used for
training is collected, as described in Section 3.1. The vertical axis primarily focuses on
the cumulative reward, defined by Equation (13), while the horizontal axis represents
training epochs. This paper defines the cumulative reward as the average of all packet
forwarding paths. To begin, the cumulative reward of packet i in the forwarding path of
packet i is calculated. Whenever the packet passes through relay node j in the forwarding
path of packet 7, a reward Reward; is obtained. Thus, 2;1:1 Reward} , where & is the number
of relay nodes traversed by packet i along its forwarding path from the source to the
destination. Subsequently, the sum of the rewards across all packet forwarding paths
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. Numb t itted packets b - .
is computed as Zi:”lm er of transmitted packets by source Z?:l Reward;-. Finally, the cumulative

reward is determined using Equation (13).

Number of transmitted packets by source i
Y ijl Reward]-

Cumulative reward = ,
Number of transmitted packets by source

(13)

Figures 28 and 29 illustrate the cumulative rewards obtained from training for the
sparse and congested periods with three different learning rates (0.001, 0.005, 0.01). For
sparse and congested periods, a learning rate of 0.01 achieves the highest cumulative reward
at epochs 3000 and 5000, respectively. However, declines in the cumulative rewards appear
as the epochs progress to 12,000 and 15,000, respectively, indicating that an excessively high
learning rate of 0.01 is detrimental to the environment. With a learning rate of 0.001, the
highest cumulative rewards are achieved stably after epochs 8000 and 11,000, respectively.
Comparing the outcomes with learning rates of 0.005 and 0.001, the latter yields higher
cumulative rewards, albeit demanding more extensive training durations.
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Figure 28. Cumulative rewards of different learning rates for the sparse period.
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Figure 29. Cumulative rewards of different learning rates for the congested period.

Figures 30 and 31 depict the cumulative rewards from training for the sparse and
congested periods with three different discount factors (0.9, 0.95, and 0.99). For the sparse
and congested periods, a discount factor of 0.9 achieves the highest cumulative reward
at epochs 4000 and 5000 and remains stable as the epochs advance to 12,000 and 15,000,
respectively. This indicates that a lower discount factor of 0.9 leads to quicker cumulative
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reward accumulation but limits the peak value. A discount factor of 0.95 yields the highest
cumulative rewards during epochs 6000-7000 and 7000-8000, maintaining stability as
the epochs advance to 12,000 and 15,000, respectively. Meanwhile, a discount factor of
0.99 attains the highest cumulative rewards at epochs 8000 and 9000, and the cumulative
rewards remain stable as the epochs progress to 12,000 and 15,000, respectively. Thus, a dis-
count factor of 0.99 is better suited for this environment and dataset. By using the strategy
that selects higher long-term rewards, although the cumulative rewards accumulate more
slowly, the overall cumulative value increases. This provides more consistent cumulative
rewards despite the longer training durations required, lower learning rates, and higher
discount factors. Consequently, a learning rate of 0.001 and a discount factor of 0.99 were
applied to subsequent simulations.
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Figure 30. Cumulative rewards with different discount factors for the sparse period.
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Figure 31. Cumulative rewards with different discount factors for the congested period.

4.3. Different Numbers of Source-Destination Pairs for the Sparse and Congested Periods

Figures 32-37 show the simulation results for the sparse and congested periods. The
simulations involve four source-destination pairs (4, §, 16, 32). They demonstrate the impact
on the average packet delivery ratio, average end-to-end delay, and average overhead ratio
across all routing methods. The source and destination vehicles were randomly selected
for this number of pairs from all of the vehicles. As the number of pairs increases, the
network experiences a higher concurrent packet transmission load, leading to a decline
in the average packet delivery ratio for all routing algorithms and an increase in both the
average end-to-end delay and the average overhead ratio.
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Figure 32. The average packet delivery ratio with different numbers of pairs for sparse periods.
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Figure 33. The average packet delivery ratio with different numbers of pairs for congested periods.

—&— Epidemic == GPSR
42 | —e=IDRF DQN —o= IDRF [DQN_RF
—e— IDRF —e—TDRL{RP
3.7 =——t—VRDRT
@
\;‘3.2
= /
O
S 27
o
=
Q
Q22
)
5
o 1.7
< _— = ? T
—
12 4 & 14 ?
0.7 P ——. BT
0.2
4 8 16 32

Number of pairs

Figure 34. The average end-to-end delay with different numbers of pairs for sparse periods.
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Figure 35. The average end-to-end delay with different numbers of pairs for congested periods.
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Figure 36. The average overhead ratio with different numbers of pairs for sparse periods.
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Figure 37. The average overhead ratio with different numbers of pairs for congested periods.

Figures 32 and 33 illustrate the average packet delivery ratio with different numbers
of pairs for the sparse and congested periods, respectively. Epidemic disseminates packets
through broadcasting, and under the assumption of negligible overhead, it can identify
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more transmission paths in an unknown environment. However, as the number of pairs
increases, more packets exist concurrently in the network environment, increasing packet
collisions and resulting in a lower average packet delivery ratio. GPSR only considers the
distance between the current packet and the destination vehicle. It may select relay nodes
that cannot reach the destination vehicle during forwarding. With TDRL-RP and VRDRT,
no additional processing is performed when untrained real-time vehicles are incorporated,
causing both algorithms to have suboptimal average packet delivery ratios. TDRL-RP
employs the current vehicle position as input but fails to exhibit good adaptability to
dynamic environmental changes. If the current environment differs significantly from
the trained environment, such as when the current vehicle position deviates from the
trained one, the decisions made by TDRL-RP fall below the performance of GPSR, even
in sparse periods. Although VRDRT does not handle untrained real-time vehicles, its
training process references the current vehicle positions, the distance between the RSU
and a vehicle, and the vehicle density. Consequently, for sparse periods, VRDRT still
outperforms GPSR, TDRL-RP, IDRF_DQN, and IDRF_DQN_REF in terms of the average
end-to-end delay. VRDRT has a higher average end-to-end delay for congested periods
than IDRF_DOQN.

The proposed IDRF_DOQN algorithm only uses DOQN to determine which relay nodes to
use for packet forwarding without considering the approaching intersections of the possible
relay vehicles and real-time new vehicles. It consistently relays packets to the vehicle
determined by the DQN decision to have the highest delay weight, causing its performance
to surpass that of TDRL-RP only for sparse periods and that of GPSR exclusively for
congestion periods. In IDRF_DQN_REF, the combination of DQN and RF identifies new
relay paths. DQN is utilized to train the weights of relay nodes, while RF recalculates
the probabilities of approaching intersections. This addresses issues such as consistently
forwarding packets to the vehicle with the highest delay weight calculated by DQN, the
possibility for the relay to carry packets for a long time, and incomplete packet transmission
between vehicles. However, IDRF_DQN_RF does not account for potential improvements
in packet relay paths arising from newly introduced real-time vehicles. Therefore, the IDRF
framework introduced in this study executes relay vehicle decision-making by considering
new vehicles in real time, end-to-end delays, and inter-vehicle connection stabilities in the
real-time phase. By combining the integrated RF and DQN models in the offline phase to
overcome the abovementioned constraints, the IDRF determines the optimal packet relay
paths based on the real-time VANET environment. For sparse periods, with 32 pairs, the
average packet delivery ratio of IDRF surpasses that of Epidemic. Notably, for congestion
periods with 16 and 32 pairs, the average packet delivery ratios of the IDRF outperform
those of Epidemic.

Figures 34 and 35 illustrate the average end-to-end delays for different numbers
of pairs for sparse and congested periods, respectively. Epidemic disseminates packets
through broadcasting, which could yield the optimal packet forwarding path with the
shortest end-to-end delay in an unknown VANET environment. Since there are multiple
forwarding paths, Epidemic calculates the average delay for all possible paths through
which packets may ultimately be received by the destination vehicle. This aggregation
contributes to the relatively higher performance in terms of the average end-to-end delay
observed in Epidemic. GPSR, which does not consider how vehicles carry packets, exhibits
the poorest average end-to-end delay performance. TDRL-RP and VRDRT, which do not
address the handling of untrained real-time vehicles, may result in prolonged packet-
carrying delays during transmission to such vehicles.

As mentioned above, the IDRF_DQN approach exclusively prioritizes vehicles with
the highest delay weights, namely those associated with the packet forwarding path with
the shortest end-to-end delay. Therefore, IDRF_DOQN yields the lowest average end-to-end
delay for packets received among all methods. IDRF_DQN_RF considers both the DQN
for selecting vehicles with the highest delay weights and the RF for determining vehicle
movement direction, leading to a slightly higher performance in terms of the average end-to-
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end delay compared to IDRF_DQN, yet its performance remains lower than other methods.
IDREF is built upon the foundation of IDRF_DQN_RF and further considers new forwarding
paths consisting of untrained real-time vehicles. When compared to the optimal propagation
paths achieved through trained vehicles, IDRF exhibits a slightly higher average end-to-end
delay than IDRF_DQN and IDRF_DQN_REF, but it still outperforms the other methods.

Figures 36 and 37 show the average overhead ratio with different numbers of pairs for
sparse and congested periods. Packets are disseminated through broadcasting using the
Epidemic protocol. As the number of pairs increases, the number of replicated packets in
the VANET environment also increases, resulting in the highest average overhead ratio.
Although GPSR only considers the distance relationship between the vehicle carrying the
packet and the destination vehicle, it performs better than VRDRT. Given that VRDRT
requires the retrieval of vehicle information in each time frame, its increasing average
overhead ratio is notable, causing it to exhibit a higher average overhead ratio compared to
other protocols, except for Epidemic. Meanwhile, TDRL-RP continually uses trial and error
to train different transmission paths during packet forwarding. Consequently, its average
overhead ratio is also higher than those obtained by the methods proposed in this paper,
namely IDRF_DQN, IDRF_DQN_RE and IDRF.

IDRF_DQN achieves the lowest average overhead ratio among the compared methods
as it focuses solely on employing DON to make packet relay decisions. However, its
performance regarding the average packet delivery ratio is unsatisfactory. IDRF_DQN_RF
enhances this by incorporating RF decisions to determine the vehicle movement direction
in cooperation with DQN-based packet relay decisions. Although this is better than the
strategy of constantly relaying packets to the vehicle with the highest DON delay weight,
the resulting forwarding path might not be the shortest, leading to a slightly higher average
overhead ratio than that obtained with IDRF_DQN. Enhancing IDRF_DQN_REF, the IDRF
approach considers untrained real-time vehicles. Despite using the analysis unit in the
real-time phase to gather real-time vehicle information, the average overhead ratio of the
IDRF remains higher than that of IDRF_DQN_RF due to the necessity of traversing more
hops in unknown real-time environments. It is noteworthy, however, that even though
the IDRF exhibits the highest average overhead ratio among the three methods proposed
in this paper, it still performs better regarding this aspect compared to other relevant
research approaches.

By comparing the data for different numbers of pairs for sparse and congested periods,
it can be observed that when the number of pairs is set to 32, the average packet delivery
ratio of the IDRF surpasses that of VRDRT during both sparse and congested periods. This
improvement is remarkable, as the IDRF outperforms all other methods. Furthermore,
when the number of pairs is set to 32 for the congested period, the average packet delivery
ratio of IDRF_DQN_REF also exceeds that of VRDRT. Additionally, the three methods
introduced in this paper, IDRF_DQN, IDRF_DQN_RF, and IDRE, consistently demonstrate
lower average end-to-end delays and overhead ratios than other methods. When the
performance results of Epidemic represent a score of 100%, those of all other routing
protocols can be normalized accordingly. The statistical analysis presented in Table 8
indicates that the IDRF achieves significant performance enhancements over TDRL-RP and
VRDRT for both sparse and congested periods.

Table 8. Average performance improvements obtained with the IDRF over TDRL-RP and VRDRT
with different numbers of pairs for sparse and congested periods.

Sparse Period EF?)RISLOE? I]‘)fﬁf)(l){‘:;r Congested Period %R;Lol\ﬁ)r Igﬁg‘;{,’;r
Average packet delivery ratio +19.24% +4.97% Average packet delivery ratio +6.27% +3.56%
Average end-to-end delay —32.00% —12.73% Average end-to-end delay —24.57% —15.86%
Average overhead ratio —5.14% —11.68% Average overhead ratio —6.59% —16.68%
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4.4. Different Transmission Ranges for Sparse and Congested Periods

Figures 38-43 depict the simulation results for sparse and congested periods with four
transmission ranges (300, 425, 550, and 675). The results are used to analyze the impacts on
the average packet delivery ratio, average end-to-end delay, and average overhead ratio of
all routing algorithms. There are more vehicles during congested periods than in sparse
periods, leading to more available transmission nodes. Compared to sparse periods, the
routing algorithms’ average packet delivery ratios increase in congested periods, while
the average end-to-end delays and overhead ratios decrease. The average packet delivery
ratios for all routing algorithms rise in both sparse and congested periods. In contrast,
the average end-to-end delays and overhead ratios decrease as the transmission range
increases, which increases the ability to select more vehicles for packet transmission.
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Figure 38. The average packet delivery ratio with different transmission ranges for sparse periods.
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Figure 39. The average packet delivery ratio with different transmission ranges for congested periods.
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Figure 40. The average end-to-end delay with different transmission ranges for sparse periods.
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Figure 41. The average end-to-end delay with different transmission ranges for congested periods.
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The results collected with different transmission ranges for sparse and congested
periods show that the IDRF outperforms all other methods regarding the average packet
delivery ratio with varying transmission ranges. Moreover, with different transmission
ranges for congested periods, IDRF_DQN_RF exhibits a higher average packet delivery
ratio than all methods except for the IDRE. The three proposed methods in this paper,
IDRF_DQN, IDRF_DQN_REF, and IDRE, all demonstrate lower average end-to-end delays
and average overhead ratios than traditional routing methods. According to the statistical
analysis presented in Table 9, the IDRF achieves significant performance improvements
over TDRL-RP and VRDRT for both sparse and congested periods. Compared to previous
observations, a notable aspect here is that with larger transmission ranges, the distance
covered by each hop increases, enabling faster delivery to the destination vehicles. Addi-
tionally, in congested periods, the higher number of available vehicles for relay vehicle
selection contributes to the better performance of the IDRF compared to sparse periods. In
conclusion, the IDRF can maintain stability with different environmental parameters and
achieve better results for the three performance metrics tested in this study.

Table 9. Average performance improvements with the IDRF over TDRL-RP and VRDRT with different
transmission ranges for sparse and congested periods.

Sparse Period EF?)RIELOE? I]‘)fﬁf)(;{‘:;r Congested Period %R;Lol\ﬁ)r I]\)]{{{E(I){YFI
Average packet delivery ratio +19.54% +9.62% Average packet delivery ratio +7.85% +6.06%
Average end-to-end delay —41.36% —11.84% Average end-to-end delay —21.42% —14.77%
Average overhead ratio —7.08% —16.77% Average overhead ratio —7.60% —22.19%

5. Discussion
5.1. Performance Improvement Using the Corrected Trajectory Data

To evaluate performance improvements using the corrected trajectory data over the
original data, a simulation was conducted with Epidemic using different numbers of pairs
for sparse periods. Epidemic disseminates packets through broadcasting to identify the
most transmission paths in VANET. Figures 4446 illustrate Epidemic’s average packet
delivery ratio, end-to-end delay, and overhead ratio with four and eight pairs of source
and destination vehicles. These results show that, when using the corrected trajectory
data, Epidemic achieves a 20% higher average packet delivery ratio, a 0.9 s lower average
end-to-end delay, and a lower average overhead ratio (by 265) than the values achieved
using the original trajectory data. Without a loss of generality, other routing schemes also
perform better when using the corrected trajectory data.
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5.2. Four Approaches to the Correction of Vehicle Trajectory Data

Four approaches to the correction of vehicle trajectory data are presented in the litera-
ture. As mentioned above, because the historical GPS trajectory must be rectified before
training the DON model, this study adopted the approach presented in [28], whereby the
roads on the map are matched by calibrating known GPS trajectory information with accu-
rate map data. The second approach, the Differential Global Positioning System (DGPS), is
an improved GPS method that references ground stations as well as GPS satellites [29]. The
DGPS can be used to correct trajectory data by comparing the positions of reference stations
and signal sources to correct the difference error in the trajectory data and, therefore, obtain
more accurate positional information. The third approach is to smooth GPS trajectory data,
which can be another feasible method to obtain more precise data [30]. The errors in the
trajectory can be corrected based on historical data and real-time information from other
sensors, making the trajectory closer to the actual path. Finally, gradient descent minimizes
GPS errors by adjusting parameters to measure the difference between the corrected trajec-
tory and actual geographic positions [31]. Through gradient descent, this loss function is
minimized by iteratively adjusting the positions of trajectory points, gradually reducing
errors. However, the latter three approaches require relevant real-time information from
other reference stations or sensors to correct GPS locations, and cannot be applied to the
offline phase of the proposed IDRF.

6. Conclusions and Future Work

Due to the highly dynamic characteristics of VANET networks, the IDRF based on
the SDN architecture has been adopted to incorporate historical vehicle trajectories into
training and account for the addition of vehicles to the forwarding path in real time. Several
algorithms have been proposed for the offline phase, i.e., GPS trajectory correction by the
vehicle trajectory continuity algorithm, the determination of the actual vehicle movement
trajectory, the addition of arrival information at the intersection, and an estimation of
the average vehicle speed on the road segment. These algorithms rectify historical tra-
jectories and employ DQN to determine the optimal relay node and RF to determine the
intersection probabilities. Additionally, this study introduces the estimation of vehicle
arrival times at intersections, the vehicle link connection stability, and the delay time at
the road segment based on real-time information collected by vehicles in the real-time
phase. This information is organized into road segment tables and intersection tables for
each road segment and intersection. DQN and RF are then recalculated using these tables,
considering the addition of new vehicles in real time to estimate the delay of new vehicles
and make relay node decisions for new packet forwarding paths. In simulations using the
historical GPS trajectories of 10,357 taxis traveling within Beijing city, the IDRF is shown
to consistently outperform other algorithms. Compared to TDRL-RP and VRDRT, the
IDRF shows performance improvements for the average packet delivery ratio, end-to-end
delay, and overhead ratio with different numbers of pairs, and the transmission ranges
are at least 3.56%, 12.73%, and 5.14%, and 6.06%, 11.84%, and 7.08%, respectively. This
is due to its ability to adapt to real-time changes in VANET networks, which leads to an
improved average packet delivery ratio, reduced average end-to-end delay, and a lower
average overhead ratio for both sparse and congested periods. Thus, the IDRF addresses
the limitations of traditional routing protocols such as TDRL-RP and VRDRT associated
with the handling of real-time VANET networks.

In the future, the following research issues will be addressed: First, how can DQN
parameters such as reward, learning rate «, and discount factor y be adapted to real-
time VANET environments? Second, with the progress of advanced artificial intelligence
models, the IDRF will be improved to transition from the current RF to the Extremely
Randomized Trees model [37] and from the current DQN to the Dueling DQN [38,39] or
Double DON [40]. The training times and simulation results of the improved IDRF will be
compared to those of the original IDRF to validate this improvement.
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