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Abstract: Accurately detecting spine vertebrae plays a crucial role in successful orthopedic surgery.
However, identifying and classifying lumbar vertebrae from arbitrary spine X-ray images remains
challenging due to their similar appearance and varying sizes among individuals. In this paper, we
propose a novel approach to enhance vertebrae detection accuracy by leveraging both global and
local spatial relationships between neighboring vertebrae. Our method incorporates a two-stage
detector architecture that captures global contextual information using an intermediate heatmap from
the first stage. Additionally, we introduce a detection head in the second stage to capture local spatial
information, enabling each vertebra to learn neighboring spatial details, visibility, and relative offset.
During inference, we employ a fusion strategy that combines spatial offsets of neighboring vertebrae
and heatmap from a conventional detection head. This enables the model to better understand
relationships and dependencies between neighboring vertebrae. Furthermore, we introduce a new
representation of object centers that emphasizes critical regions and strengthens the spatial priors
of human spine vertebrae, resulting in an improved detection accuracy. We evaluate our method
using two lumbar spine image datasets and achieve promising detection performance. Compared to
the baseline, our algorithm achieves a significant improvement of 13.6% AP in the CM dataset and
surpasses 6.5% and 4.8% AP in the anterior and lateral views of the BUU dataset, respectively.

Keywords: lumbar vertebrae detection; spatial relationship; deep learning; X-ray image analysis

1. Introduction

The lumbar spine is an essential support and protective system in the human body. In
recent years, with the aging population and changes in modern lifestyles, the incidence
of spinal diseases is gradually increasing [1]. X-ray is a simple, fast, and economical
modality for disease diagnosis, making it one of the basic methods for examining the
spine. Traditionally, the diagnosis and treatment of spinal diseases heavily depend on the
subjective experience of doctors. Even when following the same diagnostic criteria for
lumbar X-ray images, experienced doctors may provide different assessment conclusions [2].
Recently, with the development of deep learning in medical image analysis [3–8], automated
vertebrae detection can offer a promising solution to assist doctors in spinal treatment. The
automatic vertebrae detection task aims to automatically localize and recognize vertebrae
by extracting features from X-ray images. By providing precise information about the
position and class of each vertebra, this task assists surgeons in conducting spinal diagnosis
and treatment with greater accuracy and efficiency.
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However, the task of automatic vertebrae detection in X-ray images encounters signif-
icant challenges, as shown in Figure 1. (1) Variations in the field of view. Only a partial
subset of the spine can be captured in each image, and the number of visible vertebrae
within the region exhibits variability. Since the presence of certain specific vertebrae (such
as the sacrum or thoracic vertebra) cannot be guaranteed in the input image, it is impossible
to utilize these vertebrae for classifying other vertebrae. (2) Similar visual characteristics.
Vertebrae exhibit similar visual characteristics, and individual shapes and sizes differ. This
further increases the difficulty of category recognition. (3) Excessive interference informa-
tion. These images suffer from reduced contrast, blurred vertebral edges, and frequent
confusion with surgical markers such as Kirschner wires, PVP catheters, forceps, and
screws, as illustrated in Figure 1a–d. These objects have the potential to occlude vertebrae
or introduce artifacts, exacerbating the intricacies of the detection task. In summary, the
similarity and diversity of data pose challenges for vertebrae detection. Therefore, there
is an urgent need for a deep learning model that can extract robust spatial features of
vertebrae from complex images, thereby optimizing the classification and localization of
vertebrae.

Figure 1. The challenge of automatically identifying vertebrae in the lumbar spinal image. (a–f) are
lumbar spine X-ray images from two different datasets, demonstrating challenges including variations
in fields of view, abundant interference information, variability in numbers of vertebrae, similar
visual features of vertebrae, and variations in vertebral shape and size due to individual differences.
The center points of different categories of vertebrae are distinguished by different colors.

Recently, deep learning-based detection techniques have demonstrated significant
potential in accurately identifying and localizing spinal structures [9–12]. The complexity
and limitations of traditional handcrafted feature extraction methods [13,14] have driven
the adoption of convolutional neural networks (CNNs) as a direct and simple approach
for localizing vertebrae in images. Compared to traditional methods, CNN can extract
more robust features [9,10], resulting in better detection performance. However, these
methods still face challenges such as blurred vertebral edges and occlusion of landmarks.
To address these issues, CNN-based heatmap methods reformulate the vertebrae detection
problem as a keypoint prediction problem, directly predicting the centers of the vertebrae.
For instance, Yi et al. [11] applied these maps generated by a 2D Gaussian function to locate
the central points of the thoracic and lumbar vertebrae. Similarly, the Gaussian function is
used to generate a heatmap for regressing the expected centroids of vertebrae and fitting
the spinal curve [12]. These approaches not only simplify the network but also handle
higher-resolution images. Although these methods using the Gaussian function achieve
success, they do not effectively represent the distance of each pixel inside the bounding
box to the target center. To address this, FCOS [15] introduced the concept of centerness,
which leverages the normalized distances between points within the object region and
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the center, suppressing inaccurate predictions during inference. Furthermore, performing
spinal detection solely based on the center points of each vertebra fails to fully consider the
distinctive linear structure of the spine.

Utilization of spatial prior information is also particularly crucial in various medical
imaging applications, especially in the field of spinal imaging that involves structures with
linear features. While the similarity of vertebrae challenges their classification, exploiting
the spatial relationships among these structures enables us to improve the accuracy of
category recognition in detection tasks by leveraging knowledge about expected positions,
sequential order, and other pertinent aspects within the spine. Deep learning-based meth-
ods also extensively investigate the exploration of spatial relationships between target
objects [16,17] in the computer vision domain. For example, MonoPair [16] enhances the
accuracy of occluded object detection by effectively capturing the spatial relationships
between paired objects. GANet [17] devises a local information aggregation module that
adaptively captures the localized correlations between neighboring keypoints, thereby
augmenting the interconnectivity between neighboring keypoints. However, despite the
significance of spatial prior information and recent progress in computer vision detection
tasks, it has not been extensively explored for spine vertebrae detection by recent deep
learning-based approaches.

To address the aforementioned challenges, in this paper, based on X-rays of the lumbar
spine, we propose a novel method to enhance spine vertebrae detection accuracy by
leveraging the spatial relationships between vertebrae. Our method leverages both global
and local spatial priors to improve the accuracy of detection. Specifically, to capture the
global spatial prior, we employ a two-stage detector. In the first stage, an intermediate
heatmap is generated to encode global spatial information of vertebrae, providing valuable
clues for subsequent stages. The second stage takes the intermediate heatmap and the
original image as input to output the final results. This two-stage architecture enables
the model to benefit from the contextual information provided by vertebrae, leading to
enhanced detection performance. Furthermore, we introduce a novel detection head to
capture the local spatial information. This detection head is specifically designed to predict
neighboring vertebrae information, enabling each vertebra to learn the neighboring spatial
information, visibility, and relative offsets of its neighboring vertebrae. In the inference
step, we design a fusion strategy to incorporate the spatial information of neighboring
vertebrae, where each vertebra combines the spatial offsets of its neighboring vertebrae
with its central heatmap. Therefore, by incorporating this local spatial information, our
method achieves improved accuracy in spine vertebrae detection by enabling the model to
better understand the relationships and dependencies between neighboring vertebrae. In
summary, combining the global and local spatial priors, our method effectively captures
the inherent spatial characteristics of the spine vertebrae, which in turn can boost the spine
detection results.

Furthermore, we introduce a novel representation of object centers that offers advan-
tages in the detection process, specifically by emphasizing critical regions. In this way,
we further improve the model’s ability to concentrate on the spine center, mitigating the
impact of limited data samples and excessive interference from intraoperative images.

To evaluate the effectiveness of our approach, we conduct a comprehensive evaluation
using two lumbar spine datasets. The experimental results show that our method achieves a
promising performance when compared with standard detection models. The effectiveness
of each component is validated via ablation studies as well. In the validation of the
CM spine dataset, our model achieves an average performance improvement of 13.6%
AP over the standard object detection model CenterNet [18]. In the anterior view and
lateral view of the BUU spine dataset [19], our model achieves average performance
improvements of 6.5% AP and 4.8% AP respectively, compared to CenterNet. When
compared to YOLOv5 [20], our model demonstrated average performance improvements
of 1.9% AP and 0.8% AP in BUU. Furthermore, our model surpasses Faster R-CNN [21] by



Electronics 2024, 13, 2137 4 of 19

10.0% and 12.3% AP. Our code and data are available at: https://github.com/zengyuyuyu/
Neighbor (accessed on 19 March 2024).

Our main contributions are summarized as follows:

• We propose a novel two-stage method for accurate spine vertebrae detection to capture
global spatial priors by encoding spine information in the intermediate heatmap and
feeding them into a second detection sub-network along with the original image.

• We introduce a detection head that focuses on capturing the local spatial information,
which is specifically designed to predict neighboring vertebrae information, allowing
each vertebra to learn the spatial relationships and dependencies with its neighboring
vertebrae.

• A modified center map function is built upon the standard Gaussian function of
the heatmap-based detection method to represent centers of spine vertebrae, which
enhances the accuracy and reliability of spine detection.

2. Related Work

Vertebrae detection is crucial for diagnosing and treating spinal diseases. Its main
objective is to accurately localize the target vertebrae using bounding boxes and annotate
their categories in images. This section first introduces general CNN-based object detection
paradigms. Then, based on the current mainstream heatmap keypoint detection algorithms,
it introduces heatmap detection algorithms for the center or centroid points of vertebrae.
Finally, considering the linear structural characteristics of the spine, it presents vertebrae
detection methods based on spatial relationships. Summary details of the related work are
shown in Table 1.

Table 1. Summary of existing related work.

Section Reference Contribution Limitation

Section 2.1

[21–23]
These methods introduce deep learning into object
detection. Slow and complex computation.

[24–27]
These methods propose a novel end-to-end object
detection architecture. Complex computation.

[18,28,29]
These methods eliminate predefined anchors and
reduce computational complexity. Unable to capture spatial relationships effectively.

Section 2.2

[13,14]
These methods propose different handcrafted
feature extraction strategies. Complex and limited feature extraction.

[9,30]
These methods transfer the vertebrae detection
task into keypoint detection.

Fail to address variations in scale and occlusion of
the vertebrae effectively.

[31,32]
These methods define the Gaussian heatmap to
represent vertebrae position. Lack of precise position information.

[12]
This method utilizes the Gaussian heatmap and
combines it with offset to generate a more reliable
vertebrae position.

Unable to capture spatial relationships effectively.

Section 2.3

[33,34]
These methods use heuristic-based graphical
models or set the bottom vertebra and count
others one by one.

Strong subjectivity.

[35–38]
These methods consider the inherent linear
structure of the spine.

Insufficiently explored strong spatial priors
information between the spine and vertebrae.

- Ours
Our method explores global and local spatial
relationships to improve vertebrae detection
accuracy.

-

https://github.com/zengyuyuyu/Neighbor
https://github.com/zengyuyuyu/Neighbor
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2.1. General CNN-Based Object Detection

In recent years, with the widespread application of CNNs in various fields, many
general CNN-based detection frameworks have been proposed and developed. General
CNN-based object detection methods can be mainly categorized into two types: anchor-
based and anchor-free.

Anchor-based detectors utilize predefined anchors to represent prior information
about objects at different locations and sizes. The R-CNN series methods introduced deep
learning into object detection and are considered milestones in the field. R-CNN [22] uses a
selective search algorithm to generate proposals and then utilizes a CNN to extract features
from each proposal. However, extracting features individually for each proposal results in
low computational efficiency and high memory consumption. Fast R-CNN [23] and Faster
R-CNN [21] are proposed to solve these issues. For example, Fast R-CNN directly takes the
entire image as input to the CNN for feature extraction and introduces a region of interest
pooling to map each proposal back to the feature map, avoiding the issue of redundant
feature computation. Built upon Fast R-CNN, Faster R-CNN introduces a region proposal
network to replace the inefficient selective search algorithm that generates a large number
of proposals, further improving detection speed. While the R-CNN series methods have
made significant breakthroughs, they all require the processing of numerous proposals,
which still poses some limitations on computational efficiency and speed. To address
these issues, the YOLO series methods [24–27] propose a novel end-to-end object detection
architecture. YOLOs innovatively transform the detection task into a regression problem,
enabling simple and direct object recognition and location. In summary, anchor-based
detectors can design reasonable anchors according to specific applications and are suitable
for more complex or target-dense scenarios. However, it requires processing each anchor,
which increases the computational complexity of the network.

Unlike anchor-based detectors, anchor-free detectors attempt to address the compu-
tational complexity issue in anchor-based methods. Anchor-free detectors do not rely on
predefined anchors to assist in object detection. Instead, they directly perform dense map-
ping on the feature map to compute the classification and bounding box. CornerNet [28]
is a typical anchor-free object detection method. It eliminates the reliance on predefined
anchors and represents the object position by the top-left and bottom-right corners of the
bounding box, thereby improving detection efficiency. Based on CornerNet, CenterNet [18]
achieves object detection directly by predicting the center point. This approach is more
flexible, and can accurately detect objects, even when occluded. Additionally, there are
other anchor-free methods such as ExtremeNet [29]. These methods employ different
strategies to achieve object detection, but their common objective is to eliminate predefined
anchors, reduce computational complexity, and improve detection efficiency. Compared to
anchor-based methods, anchor-free methods have simpler designs and higher computa-
tional efficiency. Therefore, inspired by mainstream object detection algorithms [18], we
design an anchor-free object detection framework for our study.

2.2. Heatmap Keypoint Detection

The heatmap-guided keypoint detection method exhibits promising performance
prospects in various computer vision tasks. Several mainstream heatmap keypoint detec-
tion algorithms are proposed, as well as some specifically designed for vertebrae detection.
Unlike regression-based approaches, this method achieves precise localization by gen-
erating a heatmap with prominent peak values. It offers simplicity in design, reduced
computational overhead, and efficient handling of multi-object detection challenges.

The mainstream heatmap-based object detection methods commonly use corner points,
center points, or extremal points as keypoints and utilize a 2D-Gaussian kernel to gener-
ate the corresponding heatmap. Similarly, for the vertebrae detection task, many works
treat it as keypoint detection, such as detecting the center or centroid point of vertebrae.
Chen et al. [9] combined a CNN and a random forest classifier to slide extract vertebrae
candidates. This method achieves better performance than traditional handcrafted fea-
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ture extraction methods [13,14]. Levine et al. [30] proposed an anchor-based detection
architecture and estimated the 3D centroid position by combining slice detections in a 2D
structure. However, this regression-based approach fails to address variations in scale and
occlusion of the vertebrae effectively. Taking into consideration this issue, Yang et al. [31]
introduced a depth image-to-image network that defines a Gaussian heatmap of the ground
truth to represent the position of the vertebrae. Zhang et al. [32] predict spinal landmarks
using Gaussian distribution representation. The heatmap can provide a more detailed
representation of the central distribution of vertebrae. Even if a portion of the vertebra
is obscured, the vertebra can still be accurately located by the peak of the object on this
map. To improve the accuracy of localization in detection, based on the idea of CenterNet,
Zhou et al. [12] further predict the offset of vertebra center point, to optimize the predicted
position of vertebrae. Therefore, our work inspired by these methods designs a reliable
vertebral center point heatmap detection algorithm.

2.3. Spatial Relationship in Vertebrae Detection

Relationship plays a crucial role in vertebrae detection, and many researchers apply
this relationship in their algorithms. The distinct linear structure of the spine, along with its
ordered categories for neighboring vertebrae, enables effective utilization of relative positional
and categorical information, which can improve performance across various instances.

Previous vertebrae labeling methods often rely on heuristic-based graphical models [33]
or set the bottom vertebra and count others one by one [34]. For the inherent sequential
structure of the spine, Windsor et al. [35] proposed a vertebrae detection method based on
the whole spine. It first detects landmarks for all vertebrae and then sequentially sorts and
classifies them. However, these methods often require assumptions about the data in advance,
such as a fixed number of vertebrae or a specific vertebra, which cannot address variations in
the field of view. To address this, Liao et al. [36] proposed a method for vertebrae identification
and localization based on spine CT images. This method first utilizes a CNN to extract
information around the target vertebra, including nearby organs, ribs, and other information
to obtain short-range contextual information for roughly estimating the position of the target
vertebra. To better consider the unique anatomical structure of the spine, bidirectional RNN
is introduced to capture long-range contextual information. Although this method achieves
good detection results, it is computationally expensive and time-consuming. Zhang et al. [37]
modeled the spatial correlation between vertebrae from top to bottom as a sequential dynamic
interaction process. Can-See [38] enables each detected vertebra to receive and propagate
semantic information to neighboring instances, achieving self-calibration of the detection
objects. While these studies consider the unique linear structure of the spine, they do not
fully explore the strong spatial prior information between the spine and vertebrae. Therefore,
inspired by spatial relationships, our work designs a new approach that leverages the strong
spatial relationships among vertebrae to optimize localization and classification results.

3. Method

We propose a novel approach to improve the accuracy of vertebrae detection by
leveraging the spatial relationships between neighboring vertebrae. The overview of our
proposed method is illustrated in Figure 2. We choose CenterNet [18] as the baseline
for improvement. However, these improved components are not limited to a specific
framework but can also be extended to other object detection algorithms.

Our method utilizes a two-stage approach to capture global spatial information of
spine vertebrae. In the first stage, the backbone network extracts features from the input
image, generating a heatmap specifically for vertebrae. The second stage takes the inter-
mediate heatmap from the first stage, along with the original image, to produce enhanced
vertebrae detection results. To leverage local spatial information of vertebrae, the second
stage also predicts the results for neighboring vertebrae. During the inference step, a neigh-
boring optimization strategy is employed to generate a fused heatmap, which subsequently
produces enhanced vertebrae detection results.
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Figure 2. Overview of our proposed method. The training of the entire network is divided into two
stages. In the first stage, the backbone network (light gray) extracts the intermediate heatmap from
the input image. In the second stage, the backbone network (dark gray) is followed by five prediction
branches. The first three branches (green) are used to predict the size, offset, and heatmap of each
vertebra, while the last two branches (blue) are used to predict the visibility and relative offsets of
neighboring vertebrae. During the inference step, the information of neighboring vertebrae is utilized to
optimize the heatmap of each vertebra.

3.1. Global Spatial Relationship

We propose a new two-stage precise spine detection method to capture global spatial
priors. The global spatial priors represent the spatial contextual information of the entire
image, which refers to the analysis of the distribution, shape, and size relationships among
vertebrae in the entire image for detection. Given an input image I1 with the size of
H ×W, in the first stage, the backbone network extracts features from I1 and generates
an intermediate heatmap M specifically for spine, with the size of 1

4 H × 1
4 W × C1. Then,

we reshape M to H ×W × C2, the same size as the input image I1. In the second stage,
the resized heatmap M is added to the original input image I1 through element-wise
summation, resulting in a new feature map I2. This map is fed into the second detection sub-
network for prediction, yielding enhanced vertebrae detection results. The transformation
from the output M of the first-stage backbone network to the input I2 of the second-stage
backbone network can be written as:

I2 = S(U(F(M))) + I1, (1)

where F represents the convolution function, U is an upsampling function, and S represents
the softmax operator. In this way, the output of the first stage M encodes the global spatial
information of vertebrae by providing the heatmap of the entire vertebrae present in the
input image. By fusing M with the original input I1 to generate the input I2 for the second
stage, our method incorporates the global spatial relationships of vertebrae in a neural
network, which in turn can produce more accurate lumbar vertebrae detection results.
C1 = 5 and C2 = 3 are used in the experiments.

3.2. Local Spatial Relationship

In addition to capturing global spatial relationships, we introduce a novel scheme
to explore the local spatial relationships of vertebrae. The local spatial priors represent
the information between the target vertebrae and their neighbor vertebrae in the image.
Unlike global spatial priors, the local spatial priors focus more on analyzing and utilizing
the features of local regions in the image to optimize vertebrae detection. For a vertebra,
there are strong spatial priors between its neighbors. For example, for a certain vertebra,
the relative distance to its neighboring vertebra is within a limited distance and it is easy to
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estimate the rough location of the neighboring vertebra. To make use of such local spatial
information, different from the standard detection model that predicts the individual
vertebrae, our method additionally predicts the neighbor of each vertebrae.

We first revisit the conventional heatmap-based detection network [18]. CenterNet [18]
consists of three prediction heads, the output of object size S ∈ R 1

s H× 1
s W×2, the offset of

object center to its downsampled center O ∈ R 1
s H× 1

s W×2, and the heatmap of objects
H ∈ R 1

s H× 1
s W×C. In addition to CenterNet, our network also predicts information about

its upward and downward vertebra. Typically, we add two output heads to compute the
visibility of neighbors V ∈ R 1

s H× 1
s W×2 and relative offsets to its neighbors D ∈ R 1

s H× 1
s W×4.

For example, V(:, :, 1) indicates the probability map of its upward vertebra, and V(:, :, 2)
indicates the existence of its downward vertebra. D(:, :, 1 : 2) computes the relative
offset of its upward vertebra and D(:, :, 3 : 4) records the relative distance between its
downward vertebra.

During the training, we follow CenterNet to compute the standard vertebra loss
Lcenter. For the additional spatial relationship output, we compute classification loss Ln

v for
V and Ln

d loss for the relative distance prediction D. In summary, the training loss can be
denoted as:

Loss = Lcenter + Lneighbor

= {λcLc + λsizeLsize + λoffLoff}+ {λvLn
v + λdLn

d},
(2)

where λc = 1, λsize = 0.1, λoff = 1, λv = 10, and λd = 0.01.
In the inference step, a neighboring vertebrae optimization strategy has been designed

to adjust the central heatmap of each vertebra by utilizing neighboring vertebra information.
For example, utilizing upward neighborhood information to update the vertebra heatmap
is shown in Figure 3. The spinal structure is ordered from L5, L4, L3, L2, to L1, with the
L5 vertebra serving as the initial point. In Algorithm 1, using the i-th vertebra, we show
the steps of the proposed neighboring vertebrae optimization method using upward local
spatial prior.

Finding the i-th vertebra:The location of the i-th vertebra can be directly inferred from
the heatmap prediction H of the CenterNet-like head by taking the maximum value. Its
probability value pi is then used to update its neighbor’s existence value.

Finding the neighbor of the i-th vertebra: By having neighbor location prediction D,
for example, D(xi, yi, 1 : 2) outputs the relative offset (dx, dy) to its upward neighbor at
location (xi, yi). Therefore, for the i-th vertebra at a location (xi, yi), its upward neighbor is
at location (xi, yi) + (dx, dy).

Updating heatmap with neighbor vertebra: After inferencing the upward neighbor
vertebra, we have additional information to update the original heatmap from CenterNet
output when the visibility value pn > τ. Typically, we use a weighted 2D Gaussian function
as the heatmap inferred by local spatial prior:

Hn = w· exp
(
− (x− xn)2 + (y− yn)2

σ2
n

)
, (3)

where (xn, yn) is the coordinates of its upward neighbor vertebra, σn is a Gaussian variance,
and w = pi/2 is applied to weight the Gaussian function by using the probability value of
i-th vertebra. Then, the heatmap of its upward neighbor vertebra (the (i− 1)-th vertebra)
can be updated by H(:, :, i− 1)← H(:, :, i− 1) + Hn.

Analogously, one can update the vertebrae heatmap by considering the downward
local spatial prior. Finally, we can obtain the updated vertebrae heatmap by using local
spatial relationship information. A simple post-processing algorithm [18] can be applied to
generate vertebrae from the updated heatmap.
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Figure 3. Neighboring vertebrae optimization strategy. In the inference step, the heatmap (green) is
optimized by using the prediction information (blue) of the neighboring vertebrae so as to obtain a
new heatmap (orange).

Algorithm 1: Pseudo-code of neighboring vertebrae optimization strategy.
Input: Vertebrae heatmap H; visibility of neighbors V; relative offsets of neighbors D; threshold τ;

Gaussian parameter σn
Output: Optimized heatmap of objects H

1 for i = 5, 4, · · · , 2 do
/* find location of Li vertebra */

2 (xi , yi)← argmax(H(:, :, i))
3 pi ← max(H(:, :, i))

/* find its upward neighboring vertebra */
4 (dx, dy)← D(xi , yi , 1 : 2)
5 (xn, yn)← (xi , yi) + (dx, dy)

/* update its neighbor’s heatmap */
6 pn ← V(xi , yi , 1)
7 if pn > τ then

/* draw an weighted gaussian-shape heatmap at (xn, yn) */
/* σn: Gaussian variance; pi/2:center point value */

8 Hn ← draw_gaussian((xn, yn), σn, pi/2)
/* update vertebral heatmap */

9 H(:, :, i− 1)← H(:, :, i− 1) + Hn

10 end
11 end
12 Return: H

3.3. CenterMap

Our proposed heatmap method is adapted from CenterNet [18] and FCOS [15].
CenterNet employs the center points of bounding boxes to represent objects. By leverag-
ing a Gaussian kernel, it maps the center points of ground-truth bounding boxes onto a
heatmap, thereby mitigating the penalty imposed on negative positions within the positive
position radius. The 2D-Gaussian disk Hg is defined as follows:

Hg = exp
(
− (x− xc)2 + (y− yc)2

2σ2

)
, (4)

where (xc, yc) is the coordinates of the center point of the object on the feature map, and σ
is an object size-adaptive standard deviation.

However, the heatmap in CenterNet does not take into account the proximity of other
positions within the bounding box to the target center. In order to suppress low-quality
detection bounding boxes, FCOS introduces the concept of centerness, which effectively
describes the normalized distance from a position to the object center. The centerness Hc is
defined as follows:

Hc =

√
min(l, r) ·min(t, b)
max(l, r) ·max(t, b)

, (5)
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where (l, r, t, b) represents the distances from a certain position inside the bounding box to
the four sides of the bounding box. The value of Hc ranges from 0 to 1. When the value
of Hc is 1, it means that the pixel is precisely located at the center of the target. When the
value is 0, it indicates that the pixel is not inside the bounding box.

As shown in Figure 4, in this paper, we propose a centermap representation method
that combines the 2D Gaussian heatmap Hg from CenterNet and the heatmap Hc repre-
senting centerness. By fusing these two heatmaps, we can simultaneously consider both
the center and positional distribution of objects. This fusion technique effectively mitigates
the penalty imposed on negative positions near the center while also enhancing the repre-
sentation of information from other locations within the bounding box. As a result, our
approach offers a more comprehensive depiction of object centrality. Mathematically, the
centermap is defined as follows:

CenterMap =
√

Hg · Hc, (6)

where Hg utilizes a Gaussian kernel for center encoding, and Hc quantifies the proximity
of each position to the center. Both sets of heatmaps have a size of 1

4 H × 1
4 W × C1.

(a) Hg (b) Hc (c) CenterMap

Figure 4. Comparison of different methods for heatmap representation; our approach offers a
more comprehensive depiction of object centrality. (a) 2D Gaussian function in CenterNet [18],
(b) centerness in FCOS [15], and (c) ours.

4. Experiment
4.1. Dataset

We conduct extensive experiments on two lumbar spine datasets.
CM Spine Dataset. We use a mobile dual-mode G-arm X-ray machine (Geelin500-A) to

collect 208 1024× 1024 lumbar spine X-ray anterior view images during surgical procedures.
The X-ray focal spot size is set to 0.6 mm, and the X-ray target angle is set to 10°. These
images are from patients suffering from lumbar disc herniation or vertebral compression
fractures. Among them, 148 images were used for training and 60 images were used for
testing. For each collected image, we annotate the L1 to L5 vertebrae, and the entire dataset
contains 537 vertebrae in total. To account for the varying number of vertebrae in each
image, we compute the statistical occurrence of vertebrae in the dataset. Table 2 illustrates
the results, showing relatively fewer occurrences of the L1 and L2 vertebrae, while the L3,
L4, and L5 vertebrae exhibit a higher frequency. The combination of the L3, L4, and L5
vertebrae appears most frequently, followed by the combination of the L4 and L5 vertebrae.
In contrast, images containing all five types of vertebrae are the least common.

BUU Spine Dataset [19]. The Burapha Spine Dataset is a publicly available dataset of
lumbar spine X-ray images. Although the entire dataset contains 3600 anterior view images
and 3600 lateral view images, currently only 400 samples are publicly available. Therefore,
we use 400 anterior view images and 400 lateral view images for the experiment. To account
for these two distinct perspectives, we conduct separate experiments for each view. For
each experiment, 300 images were selected for training and 100 images were selected for
testing. The data are collected from 400 unique patients, with a gender distribution of
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127 males and 273 females. The age range of the patients spans from 6 to 89 years, with
an average age of approximately 50 years. Furthermore, the dataset contains lumbosacral
transitional vertebrae cases, including seven sacralization images.

Table 2. In the CM spine dataset, the statistical occurrence of vertebral combinations in the training
and testing sets. The combination of L3, L4, and L5 vertebrae appears most frequently.

# In Training Set # In Testing Set

L1 10 5
L5 0 2

L1-L2 26 4
L4-L5 30 12
L1-L3 24 5
L3-L5 48 25
L1-L4 1 2
L2-L5 9 4
L1-L5 0 1

4.2. Evaluation

We use AP for detection evaluation metrics as in CenterNet [18]. AP is the mean of
the average precision for the intersection over union (IOU) thresholds from 0.5 to 0.95 with
a step size of 0.05. AP(50) is the average precision with an IOU threshold of 0.5. AP(75) is
the average precision with an IOU threshold of 0.75.

AP is a metric closely associated with precision and recall in object detection tasks.
Precision represents the proportion of correctly predicted targets among all predicted
targets, while recall represents the proportion of correctly predicted targets among all true
targets. AP provides a comprehensive evaluation that combines both precision and recall.
One commonly used variant is AP(50), which is calculated based on precision and recall.
By setting the IOU threshold to 0.5 and plotting precision on the vertical axis and recall
on the horizontal axis, we can generate a “precision-recall” curve. AP(50) corresponds to
the area under this curve, representing the model’s performance. A larger area under the
“precision-recall” curve indicates better performance.

4.3. Implementation Details

All experiments are conducted using PyTorch 1.1.0 on an NVIDIA RTX 2080Ti GPU
(Santa Clara, CA, USA) . The network is randomly initialized under the default settings
without any pre-training on external datasets. During the training process, we employ
an Hourglasss network [28] as the backbone, and both of the two backbone networks
in the network have the same structure but do not share parameters. The input size of
the network is set to 512× 512, and the output size is 128× 128. For the neighboring
vertebrae optimization strategy in Section 3.2, we set τ = 0.75 and σn = 2.5. An Adam
optimizer [39] is used, with a base learning rate of 1.25× 10−4. All models are trained from
scratch with 100 epochs and the per-GPU batch size is set to 1. Other hyperparameters
such as data augmentation strategies and training are set mainly to the same ones used in
CenterNet [18].

4.4. Main Results
4.4.1. Results on CM Spine Dataset

In Table 3, on the CM spine dataset, we compare our method with the standard
detection model based on CNN. Compared to CenterNet [18], the experimental results
show that our method achieves better detection performance. In the detection of vertebral
L1 to L5, our method surpasses CenterNet by 6.0%, 7.7%, 20.1%, 25.1%, and 9.3% AP,
respectively.
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Table 3. Results of vertebrae detection on the CM spine dataset. The best AP is in bold.

Method Vertebrae AP AP_(50) AP_(75)

CenterNet [18]

L1 0.225 0.356 0.297
L2 0.156 0.284 0.172
L3 0.288 0.457 0.353
L4 0.364 0.722 0.233
L5 0.446 0.739 0.497

Avg (L1–L5) 0.296 0.512 0.310

Ours

L1 0.285 0.432 0.379
L2 0.233 0.310 0.293
L3 0.489 0.737 0.583
L4 0.615 0.880 0.750
L5 0.539 0.878 0.688

Avg (L1–L5) 0.432 0.647 0.539

4.4.2. Results on BUU Spine Dataset

For the BUU spine dataset [19], we evaluate our method on both the anterior view and
the lateral view, and the experimental results are listed in Tables 4 and 5, respectively. In
Table 4, our method outperforms CenterNet, YOLOv5 [20], and Faster R-CNN [21] in the
anterior view, achieving 6.5%, 1.9%, and 10.0% AP improvements in the detection of the
five vertebrae, respectively. Similarly, in Table 5, we present a detailed comparison of the
detection performance for the lateral view. Our method also surpasses CenterNet, YOLOv5,
and Faster R-CNN with 4.8%, 0.8%, and 12.3% AP improvements in the average detection
performance of the five vertebrae, respectively. In addition, when the IOU threshold is set
to 0.5, we plot the “precision-recall” curves, as shown in Figures 5 and 6. These curves
provide a more detailed representation of each precision and its corresponding recall.

Table 4. Results of vertebrae detection on the anterior view of BUU spine dataset. * indicates results
from method [19] which used 3600 images for training.

Method Image
Number Vertebrae AP AP_(50) AP_(75)

Faster R-CNN [21]

400 L1 0.581 0.863 0.725
400 L2 0.585 0.854 0.767
400 L3 0.608 0.872 0.770
400 L4 0.547 0.899 0.633
400 L5 0.495 0.940 0.482
400 Avg (L1–L5) 0.563 0.886 0.675

CenterNet [18]

400 L1 0.618 0.897 0.766
400 L2 0.599 0.921 0.805
400 L3 0.564 0.946 0.579
400 L4 0.664 0.966 0.865
400 L5 0.543 0.954 0.578
400 Avg (L1–L5) 0.598 0.937 0.719

YOLOv5 [20]

400 L1 0.644 0.904 0.840
400 L2 0.651 0.900 0.813
400 L3 0.692 0.924 0.859
400 L4 0.679 0.943 0.888
400 L5 0.552 0.957 0.618
400 Avg (L1–L5) 0.644 0.926 0.804

3600 * Avg (L1–L5) 0.819 0.967 0.959
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Table 4. Cont.

Method Image
Number Vertebrae AP AP_(50) AP_(75)

Ours

400 L1 0.660 0.938 0.857
400 L2 0.694 0.974 0.875
400 L3 0.732 0.987 0.895
400 L4 0.701 0.986 0.885
400 L5 0.526 0.978 0.533
400 Avg (L1–L5) 0.663 0.973 0.809

Table 5. Results of vertebrae detection on the lateral view of BUU spine dataset. * indicates results
from method [19] which used 3600 images for training.

Method Image
Number Vertebrae AP AP_(50) AP_(75)

Faster R-CNN [21]

400 L1 0.466 0.647 0.589
400 L2 0.551 0.743 0.625
400 L3 0.634 0.858 0.796
400 L4 0.617 0.874 0.748
400 L5 0.566 0.865 0.727
400 Avg (L1–L5) 0.567 0.797 0.697

CenterNet [18]

400 L1 0.575 0.811 0.709
400 L2 0.675 0.928 0.880
400 L3 0.683 0.978 0.826
400 L4 0.656 0.982 0.810
400 L5 0.620 0.955 0.764
400 Avg (L1–L5) 0.642 0.931 0.798

YOLOv5 [20]

400 L1 0.575 0.830 0.703
400 L2 0.717 0.946 0.906
400 L3 0.717 0.963 0.900
400 L4 0.715 0.957 0.900
400 L5 0.685 0.965 0.869
400 Avg (L1–L5) 0.682 0.932 0.856

3600 * Avg (L1–L5) 0.835 0.958 0.955

Ours

400 L1 0.668 0.917 0.821
400 L2 0.731 0.975 0.906
400 L3 0.696 0.970 0.864
400 L4 0.682 0.976 0.896
400 L5 0.674 0.964 0.805
400 Avg (L1–L5) 0.690 0.960 0.858

Figure 5. The “precision-recall” curve for different methods at an IOU threshold of 0.5 on the
anterior view of the BUU spine dataset. Our method demonstrates superior performance compared
to CenterNet. (a) Ours and (b) CenterNet.
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Figure 6. The “precision-recall” curve for different methods at an IOU threshold of 0.5 on the lateral
view of the BUU spine dataset. Our method outperforms CenterNet. (a) Ours and (b) CenterNet.

4.5. Ablation Studies

We conduct ablations on the CM spine dataset.

4.5.1. Effect of the Two-Stage Detector

In order to verify the effect of global spatial prior information on detection models, we
compare two different detectors: a one-stage detector and a two-stage detector. Table 6 lists
a performance comparison between the two detectors. The results indicate that, compared
to the one-stage detector, the two-stage detector is better at capturing the global spatial prior
information of the spine vertebrae. Therefore, the two-stage detector largely outperforms
the use of the one-stage detector.

Table 6. Comparison of different detectors. Train denotes the training category and Evaluate denotes
that only L5 vertebrae are evaluated.

Train One-Stage Two-Stage Evaluate AP AP_(50) AP_(75)

L5 ✓ L5 0.374 0.739 0.290
L5 ✓ L5 0.395 0.777 0.354

L1–L5 ✓ L5 0.446 0.739 0.497
L1–L5 ✓ L5 0.491 0.822 0.505

4.5.2. Impact of Different Heatmap Representation

To investigate the impact of object center representation methods on the proposed
model, we also study different center graph functions. Compared to the standard Gaussian
function, using an improved centermap function to represent the ground truth of the
object can enhance the accuracy of detection, as shown in Table 7. Experimental results
demonstrate that centermap provides more precise and comprehensive ground truth
information, which is of significant importance for network training.

Table 7. Comparison of different methods for heatmap representation.

Train Gaussian CenterMap Evaluate AP AP_(50) AP_(75)

L5 ✓ L5 0.374 0.739 0.290
L5 ✓ L5 0.406 0.753 0.457

L1–L5 ✓ L5 0.446 0.739 0.497
L1–L5 ✓ L5 0.482 0.856 0.549

4.5.3. Training Category

To study the importance of the inherent spatial characteristics of the spine in vertebrae
detection tasks, we compare the impact of training on five categories (L1 to L5) versus train-
ing on a single category (L5) regarding the detection results of the L5 vertebra. According
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to the results in Tables 6–8, compared to training on a single category alone (L5), training
on all five categories (L1 to L5) yields a higher average precision (AP) result. In addition,
according to Table 8, it can be observed that when training is performed on five categories
(L1 to L5) with both the two-stage detector and the centermap method simultaneously, the
detection performance of L5 is improved.

Table 8. Impact of training category and effect of the simultaneous introduction of the two-stage and
centermap methods.

Train Two-Stage CenterMap Evaluate AP AP_(50) AP_(75)

L5 L5 0.374 0.739 0.290
L5 ✓ ✓ L5 0.445 0.852 0.376

L1–L5 L5 0.446 0.739 0.497
L1–L5 ✓ ✓ L5 0.538 0.883 0.682

4.5.4. Effect of the Local Spatial Relationship

Tables 9 and 10 illustrate the impact of local spatial relationships on model performance.
During the training phase, the local spatial information detection head leads to significant
improvements in the detection, as shown in Table 9. Experimental results demonstrate that this
detection head enables the model to better comprehend the relationships between neighboring
vertebrae, resulting in enhanced performance. Specifically, with stable L5 recognition, there is
an obvious boost in AP for other vertebrae. The performance of L4 is boosted by 10.3% AP
(Row 4 and Row 9). Additionally, L3, L2, and L1 are also boosted by 4.8% AP (Row 3 and
Row 8), 1.5% AP (Row 2 and Row 7), and 9.8% AP (Row 1 and Row 6), respectively.

Table 9. Ablation study of the local spatial relationship during the training phase. Neighbor-train
denotes the local spatial information detection head during the training phase, while Neighbor-infer
denotes the neighboring vertebrae optimization strategy during the inference phase.

Vertebrae Neighbor-Train Neighbor-Infer AP AP_(50) AP_(75)

L1 - 0.181 0.360 0.141
L2 - 0.198 0.369 0.177
L3 - 0.222 0.469 0.148
L4 - 0.452 0.694 0.564
L5 - 0.538 0.883 0.682

Avg (L1–L5) - 0.318 0.555 0.342

L1 ✓ - 0.279 0.430 0.371
L2 ✓ - 0.213 0.291 0.274
L3 ✓ - 0.270 0.399 0.345
L4 ✓ - 0.555 0.793 0.673
L5 ✓ - 0.539 0.878 0.688

Avg (L1–L5) ✓ - 0.371 0.558 0.470

Table 10. Ablation study of local spatial relationship during the inference phase.

Vertebrae Neighbor-Train Neighbor-Infer AP AP_(50) AP_(75)

L1 ✓ 0.279 0.430 0.371
L2 ✓ 0.213 0.291 0.274
L3 ✓ 0.270 0.399 0.345
L4 ✓ 0.555 0.793 0.673
L5 ✓ 0.539 0.878 0.688

Avg (L1–L5) ✓ 0.371 0.558 0.470
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Table 10. Cont.

Vertebrae Neighbor-Train Neighbor-Infer AP AP_(50) AP_(75)

L1 ✓ ✓ 0.285 0.432 0.379
L2 ✓ ✓ 0.233 0.310 0.293
L3 ✓ ✓ 0.489 0.737 0.583
L4 ✓ ✓ 0.615 0.880 0.750
L5 ✓ ✓ 0.539 0.878 0.688

Avg (L1–L5) ✓ ✓ 0.432 0.647 0.539

Furthermore, on the basis of introducing local spatial information detection heads,
a strategy for optimizing neighboring vertebrae is further incorporated during the infer-
ence stage. This method not only improves the classification accuracy of the algorithm
but also obtains more precise object positional information, as demonstrated in Figure 7.
Consequently, the proposed approach achieves the best performance, as shown in Table 10.
Specifically, the performance of L4 is boosted by 6.0% AP (Row 4 and Row 9). Additionally,
L3, L2, and L1 are also boosted by 21.9% AP (Row 3 and Row 8), 2.0% AP (Row 2 and Row
7), and 0.6% AP (Row 1 and Row 6), respectively.

(a) Ground Truth (b) Without neighbor (c) Neighbor (train+infer)

Figure 7. Qualitative results: (a) represents the ground truth for object detection, while (c) compared
to (b), incorporates the learning and utilization of neighboring vertebra local spatial information
during both training and inference stages. The bounding boxes of different categories of vertebrae
are distinguished by different colors.

5. Discussion

This study is dedicated to lumbar vertebrae detection, aiming to automatically de-
tect the category, center point position, length, and width of each vertebra. This method
can be effectively integrated into X-ray devices as a tool to assist doctors in diagnosis
and treatment. On the visualization interface of X-ray devices, surgeons can observe in
real-time the algorithm-assisted predicted bounding boxes of vertebrae and their informa-
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tion. Furthermore, surgeons can refine or correct the predicted position by interactively
moving the box to more desirable locations using a keyboard and mouse. To this end,
the adjusted bounding box information can be automatically calculated by the algorithm.
Additionally, our current model and data focus on the L1 to L5 vertebrae detection but
do not include the abnormal vertebrae, such as L6 vertebrae caused by lumbarization. In
the future, we will expand the research scope to achieve precise vertebrae detection under
various abnormalities.

6. Conclusions

In this paper, we introduce a vertebrae detection method based on inherent spatial
characteristics of the spine. This method utilizes the spatial relationships between vertebrae
to improve the accuracy of lumbar vertebrae detection. CenterNet is an anchor-free CNN-
based object detection method. Its simple design and high computational efficiency make
it an ideal choice as our baseline. Even though we choose CenterNet as the baseline
framework and make improvements upon it, we emphasize that the components of these
improvements are not limited to the CenterNet framework but can be extended to other
object detection algorithms as well. Specifically, to better capture global and local priors,
we design a two-stage detector and introduce a local spatial detection head. Additionally, a
neighboring vertebrae optimization strategy is designed to optimize the detection results.
We conducted experiments on different datasets. In the CM spine dataset, compared with
CenterNet, our algorithm achieved an average performance improvement of 13.6% AP.
In the BUU spine dataset of the anterior and lateral views, compared to CenterNet, the
average performances improved by 6.5% and 4.8% AP, respectively. Compared to YOLOv5,
our model demonstrated average performance improvements of 1.9% and 0.8% AP in BUU.
Furthermore, compared to Faster R-CNN, our model surpassed 10.0% and 12.3% AP. These
experimental results demonstrate that the proposed method achieves better performance
in vertebrae detection when compared to the standard method.
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