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Abstract: In this study, we demonstrate breakdown voltage at 1500 V of GaN on a QST power
device. The high breakdown voltage and low current collapse performance can be attributed to
the higher quality of GaN buffer layers grown on QST substrates. This is primarily due to the
matched coefficient of thermal expansion (CTE) with GaN and the enhanced mechanical strength.
Based on computer-aided design (TCAD) simulations, the strong electric-field-induced trap-assisted
thermionic field emissions (TA-TFEs) in the GaN on QST could be eliminated in the GaN buffer. This
demonstration showed the potential of GaN on QST, and promises well-controlled performance and
reliability under high-power operation conditions.

Keywords: GaN on engineered poly-AlN substrates; QST substrate; GaN on Si substrate; HEMT;
high breakdown voltage

1. Introduction

Gallium nitride (GaN) has emerged as a crucial material for the next generation of
high-frequency and high-power devices due to its exceptional properties, including a
high concentration of two-dimensional electron gas (2DEG), superior carrier mobility, low
on-resistance, and high breakdown voltage [1–3]. These attributes have propelled GaN to
the forefront of semiconductor materials, enabling its utilization across a broad spectrum of
high-performance electronic and optoelectronic devices. Traditionally, sapphire and silicon
substrates have been favored for GaN device fabrication due to their availability and cost-
effectiveness. However, their lower thermal conductivity presents a significant challenge for
GaN epitaxy, particularly in achieving thick epi-layer stacks for high breakdown voltages
exceeding 1200 V [4].

This challenge has been addressed through the incorporation of carbon-doped GaN
(GaN:C) buffer layers with HEMT devices, which primarily improves drain leakage currents
and increases the breakdown voltage [5]. To tackle these challenges effectively, enhancing
the growth of high-resistivity GaN buffers is crucial for achieving robust electrical insulation
from silicon substrates, characterized by minimal leakage currents and a high breakdown
voltage.
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In our study, we introduce superlattice buffer layers on Qromis Substrate Technology
(QS) substrates to reduce the difference in thermal expansion coefficients. This approach
enhances the interfacial quality and electronic properties of GaN-based devices. The supe-
rior epitaxial quality of GaN layers on QST substrates, compared to those on Si substrates,
is expected to significantly enhance device performance [6,7]. Our analysis revealed the
superior performance of AlGaN/GaN high-electron-mobility transistors (HEMTs) with
QST substrates, achieving a hard breakdown of up to 1500 V. This improvement can be
attributed to the superior thermal expansion coefficient between QST substrates and GaN
epitaxy, contributing to the enhanced effectiveness of GaN:C thickness to reduce drain
leakage currents compared to Si substrates. It is believed that the improved GaN on QST
epitaxy process leads to a higher breakdown value.

2. Materials and Methods

The epitaxial layers of the Al0.24Ga0.76N/GaN-power high-electron-mobility transis-
tors (HEMTs) were grown on high-thermal-conductivity QST substrates by metal–organic
chemical vapor deposition (MOCVD). Prior to the preparation of the buffer and active
layers, an AlN nucleation layer (NL) was grown to compensate for lattice mismatch and
reduce dislocation density within the fabricated devices. This involved the initial growth
of a 60 nm AlN nucleation layer to elevate the conduction band energy within the buffer
layer and mitigate leakage currents. The AlN NL served to establish a robust foundation
for epitaxial growth, enhancing the electrical isolation and thermal conductivity of the
device. Following the nucleation layer, a 2 µm thick AlN/GaN superlattice buffer layer was
prepared. Subsequently, buffer layer thicknesses ranging from 1 µm to 3 µm were prepared
for a comparison of breakdown voltages. Following this, a 300 nm thick undoped GaN
channel layer was grown. The structural diagram is depicted in Figure 1a. Subsequently,
the AlGaN barrier layer and GaN cap layer were grown on the channel layer, facilitating
the formation of high-electron-mobility and two-dimensional electron gas (2DEG) at the
interface with the AlGaN barrier layer. The quality of this layer is crucial for the device’s
overall performance, particularly in terms of on-resistance (RON).
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Figure 1. The epitaxial structure of (a) cross-section schematic view. TEM images of (b) GaN on QST
and (c) GaN on Si substrate.

The composition and thickness of these layers are meticulously calculated to optimize
the device’s electrical characteristics. The epitaxial layer structure of the GaN on QST
and Si substrate and its cross-sectional transmission electron microscopy (TEM) image are
illustrated in Figure 1b,c, showcasing the QST substrate high-quality epitaxial growth and
the interfaces between the various layers. HEMTs fabricated on QST substrates demon-
strate high breakdown voltages and mechanical strength, highlighting the advantages of
employing QST for the development of robust and efficient HEMT power devices. This
fabrication approach underscores the significance of layer engineering in creating devices
capable of withstanding high voltages and thermal stresses, rendering them suitable for a
broad range of high-power applications.
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For the fabrication of MIS-HEMTs, the device process commenced with mesa isolation
via Ar implantation. Subsequently, source/drain (S/D) ohmic contact formation was
carried out using Ti/Al/Ni/Au stacking layers, followed by annealing at 875 ◦C. After this
high-temperature process, ALD-grown 2/20 nm thick AlN/Al2O3 layers were deposited
to serve as both the gate dielectric layer and the first passivation layer [8]. Next, the gate
metal was deposited and patterned. Following this, a thick SiO2 inter-layer dielectric
(ILD) was applied, followed by the deposition metal 1 (M1), thick SiO2 inter-metal-layer
dielectric (IMD), and metal 2 (M2). The M1 layer was 1 mm thick Al and the M2 layer
was 2.5 mm thick Al. The backend process followed the CMOS BEOL rule. Finally, a thick
SiNx passivation layer was deposited onto the patterned device structure. The device
dimensions, denoted by LG/LGS/LGD, were 2/3.5/22 µm, with these geometric parameters
playing a critical role in determining the overall device performance. Figure 2 presents a
cross-sectional schematic view of the fabricated devices.
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3. Result and Discussion

To investigate the impact of QST substrates on device performance, we measured
the transfer device characteristics of the fabricated devices, as shown in Figure 3. The
threshold voltage was about −12.7 V, and the subthreshold swing was about 98.1 mV/dec,
which implies that the device is a well-controlled metal–insulator–semiconductor (MIS)
depletion-mode (D-mode) HEMT.
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To demonstrate the superiority of QST substrates over Si substrates, the investigation
extended into the off-state behavior of devices. The off-state leakage current was defined
as VD for ID achieved at 1 µA, as shown in Figure 4a. The variation in GaN:C thickness
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(1~3 µm) of the ID,off leakage current was analyzed when fixing the SL thickness at 2 µm. It
was demonstrated that a thicker GaN:C layer of 3 µm more effectively improved the ID,off
leakage current. The obtained values of BV showed a positive correlation to the thickness of
GaN:C, which is consistent with a previous report of GaN on Si epitaxy [4]. The breakdown
voltages were investigated as a function of the total thickness of the epitaxial structure,
as depicted in Figure 4b. The maximum thickness of the GaN buffer layer (SLs+GaN:C)
in the QST substrate was 5 µm, whereas the maximum thickness of the GaN buffer layer
in the Si substrate was 5.5 µm. A breakdown voltage capability of 1500 V was achieved
with GaN on the QST substrate, compared to only 1200 V for GaN on the Si substrate. A
linear trend was observed between high breakdown voltage and thickness in GaN on the
QST substrate. Therefore, it is believed that a GaN buffer layer thicker than 5 µm on the
QST substrate could achieve high performance. A thick GaN buffer layer (>10 µm) will be
pursued in future work. Devices grown on highly resistive substrates experience a limited
supply of carriers from the depleted region of the substrate, primarily from thermally
generated carriers. This leads to substrate depletion [9,10], a phenomenon observed only
with highly resistive substrates. As substrate depletion occurs, the electric field on the
substrate intensifies, triggering different carrier generation processes such as Shockley–
Read–Hall (SRH) generation and/or impact ionization. The QST substrate, composed of
materials with a coefficient of thermal expansion (CTE) as a handling layer of the Si(111)
layer, exhibits higher resistivity [11]. Consequently, it can withstand a higher electric field,
resulting in a higher breakdown voltage than the GaN on Si substrate.

Figure 4. (a) Off-state ID–VD characteristics with GaN:C thickness; (b) breakdown voltage of epitaxial
structures on Si substrate for various epitaxial thickness.

Figure 4. (a) Off-state ID–VD characteristics with GaN:C thickness; (b) breakdown voltage of epitaxial
structures on Si substrate for various epitaxial thickness.

The bowing of epitaxial structures on Si or QST substrates is depicted as a function
of the full width at half maximum (FWHM) of X-ray rocking curves from GaN (10–12)
diffraction, as shown in Figure 5. Moreover, bowing corresponds to a concave shape; the
definition of bowing is illustrated in the inset of this figure. This indicates that threading
dislocations alleviate the compressive stress induced in the superlattice (SL) structure and
following the thick GaN:C layer during growth, resulting in larger concave bowing with
tensile stress due to thermal expansion mismatches during the cooling process after growth.
Dislocation dynamics significantly influence the bowing of semiconductor layers. This can
be referenced by studies that explore the impact of dislocation density on material bowing
and mechanical properties [12,13]. It has been observed that the peak FWHM of the XRD
rocking curve remains consistent, while the bowing varies. This indicates that although
lattice mismatching is compatible, the resultant thermal coefficient mismatching differs
from that observed in GaN on Si structures. Considering QST substrates, it is noted that
while the top layer remains Si(111), a thick core layer with a matched CTE is introduced into
the QST substrate. Therefore, the thermal-induced lattice mismatch is mitigated [11]. The
wafer bowing of GaN on QST is smaller than that of GaN on Si, despite similar dislocation
densities. This is because the CTE layer of the QST substrate enables the release of substrate
bowing during the cooling process after the growth of GaN in MOCVD. GaN on QST not
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only ensures precise stress management in the epitaxial layer structure, but also necessitates
improvement in the crystallinity of epitaxial films to grow GaN on Si with reduced bowing.
The obtained bowing ranges from 10 to 30 µm for 200 mm wafers, which is sufficiently
small for processing in a conventional fabrication line for Si devices.

Figure 5. Bowing of epitaxial structures as a function of the FWHM of X-ray rocking
curves from GaN(10–12).

Figure 5. Bowing of epitaxial structures as a function of the FWHM of X-ray rocking curves from
GaN(10–12).

The pulsed output characteristics obtained at bias points of (VGS, VDS) = (0 V, 0 V),
(−12 V, 0 V), and (−12 V, 10 V). The results indicate the presence of trap states that
significantly affect the devices’ current response to voltage changes. Figure 6 presents
the gate and drain lag measurements for GaN HEMTs grown on QST, highlighting their
response under varied bias conditions. Specifically, for the GaN on QST sample, the gate
lag percentages were 13.3% at VD = 6 V and 10.6% at VD = 10 V; drain lag percentages were
31.9% at VD = 6 V and 30.2% at VD = 10 V. These findings are crucial for understanding the
dynamic behavior of the devices under a range of bias conditions. This behavior suggests
that trap-induced lag is a critical factor in device performance, particularly affecting the
reliability and operational efficiency under varying electronic loads. The ID versus the
VDS characteristics of GaN HEMTs on QST, when subjected to the aforementioned bias
conditions, reveal significant insights, indicating superior buffer layer quality with fewer
trap states and a more efficient trap release mechanism. Hence, the advanced buffer layer
in the GaN on QST HEMTs correlates with enhanced device performance, characterized
by reduced gate/drain lag effects under the specified measurement conditions. This
underscores that the buffer layer of GaN on QST substrates providing a more formidable
barrier against trap-related degradation, thereby ensuring greater charge carrier mobility
and augmented device reliability [14,15].

QST substrates enhance GaN HEMTs by providing a stable, thermal expansion coeffi-
cient platform for growth, reducing defects that cause carrier trapping. Optimized epitaxial
growth on QST leads to uniform, high-quality buffer layers, crucial for minimizing trapping
and the resulting drain lag.

The low-temperature (5 K) photoluminescence (PL) spectrum served as a diagnostic
tool to assess the material quality, carrier concentration, and trap states in GaN HEMT
devices. In contrast, we carried out previous work on an optimal GaN on Si device as
a reference [16]. Regarding material quality, the sharpness and the positioning of the
near-band-edge emission peak were crucial indicators. A notably narrow and intense peak,
typically at approximately 360 nm for GaN, denoted a high crystalline quality with minimal
defects. For GaN HEMT devices, the spectrum revealed that the PL peak, as shown in
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Figure 7, for devices on QST substrates was sharper and more pronounced than that on Si
substrates, signifying a superior material quality of the QST substrate.
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As for carrier concentration, the PL peak intensity correlated directly with the radiative
recombination rate, which could be linked to the carrier concentration. It was found
that higher-intensity peaks were suggestive of elevated carrier concentrations within the
material, provided that non-radiative processes were not predominant. Moreover, trap
states were inferred from additional peaks in the longer wavelengths, typically in the visible
range, which were indicative of deep-level or defect-related emissions. The PL spectrum
for GaN on Si exhibited a broader peak with additional features in comparison to GaN
on QST, potentially indicating a higher density of trap states in the Si substrate material.
Analyzing the spectral data, the GaN on QST peak was discerned to be narrower and more
intense at the band edge, coupled with fewer long-wavelength emissions, thus implying an
improved material quality, enhanced carrier concentration, and a reduced number of trap
states in comparison to GaN on Si [17,18].

To gain a deeper understanding of the physical phenomenon of TA-TFE in AlGaN/GaN
HEMTs of GaN on Si substrate, TCAD simulations were performed under high-bias op-
eration. The simulated device structure of the GaN on Si substrate is the same as that
in this study. Simulation models include the drift–diffusion model, polarization, SRH,
Auger recombination model, and doping–electric field dependence mobility. The measured
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breakdown voltage on the device of GaN on Si substrate provides a good calibration of
the breakdown dependence TA-TFE model. Y.-H. Li et al. studied the mechanisms of GaN
MISHEMT degradation, various negative bias voltages, and various temperatures, as well
as dc negative gate bias stress (dc-NGBS) and ac negative gate bias stress (ac-NGBS). The
dynamic RON is higher at higher temperatures, indicating the extracted trap energy levels
in the GaN layer due to TA-TFE dominating the degradation of dc-NGBS [19].

The TA-TFE phenomenon occurs due to the increased negative bias applied to the gate.
This causes the lateral energy band to elevate beneath the gate region within the GaN layer.
Consequently, there is significant bending of the energy band at the channel edge, as illus-
trated by the lateral energy band depicted in Figure 8c. The cut line referred to is indicated
in the x-direction from −4 µm to 14 µm in Figure 8a,b. These findings also contribute to a
deeper understanding of semiconductor device physics, particularly emphasizing electron
transport mechanisms and leakage paths under strong electric fields [20]. Through TCAD
modeling, it was observed that the energy band diagram analysis when VG was −15 V
and VD was 1200 V showed that the strong electric field caused significant band bending,
thereby exacerbating the TA-TFE in the AlGaN/GaN HEMT of the GaN on Si substrate, as
shown in Figure 8a. This phenomenon leads to the generation of electron–hole pairs, where
electrons are extracted from the drain and holes accumulate in the GaN buffer, especially
with the assistance of dislocation traps under high-electric-field conditions. In comparison,
in a comparative analysis of AlGaN/GaN HEMT with the GaN on QST substrate, it was
found that fewer holes accumulated in the GaN buffer under high electric field conditions,
as shown in Figure 8b.
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Figure 8. The total current density in the GaN buffer of (a) the GaN on Si substrate and (b) the GaN
on QST substrate at VG = −15 V, VD = 1200 V. (c) Schematic of the energy band across the GaN
channel along the horizontal axis and the TA-TFE mechanism.

In order to further study the breakdown mechanism of AlGaN/GaN HEMT on the
GaN on Si substrate, especially under the high electric field, the electrical fitting indicated
that as the drain voltage increases, the generation of GaN buffer holes also increases directly.
This result shows a significant leakage current from the source to the drain. When the level
of hole generation in the GaN buffer is low, the increase in leakage current between the
source and drain is only slight (shown by the black line), a situation very similar to that of
the GaN on QST substrate. These holes are a consequence of recombination, whereby the
electrons trapped by acceptor sites are recombined, creating leakage pathways within the
buffer, as shown in Figure 9a. Figure 9b displays the fitting parameters as a ratio of h+/[C].
As the ratio approaches 1, the effect of carbon in mitigating the leakage current becomes
negligible.
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GaN on Si and GaN on QST substrates may exhibit differences in the density and
characteristics of traps for electrons and holes caused by dislocations and carbon doping.
It has been observed that when the level of hole generation in the GaN buffer is low,
the increase in leakage current between the source and drain is insignificant, similar to
the behavior observed for GaN on QST substrate, and conversely shown for GaN on Si
substrate. However, Figure 9 also demonstrates the efficacy of carbon in reducing the
leakage current [20,21]. Therefore, while similarities in trap behavior may exist, differ-
ences in the effectiveness of carbon doping in reducing leakage current could contribute to
distinct breakdown mechanisms between GaN on Si and GaN on QST substrates under
high-electric-field conditions. Due to the superior lattice match and thermal expansion co-
efficient between QST substrates and GaN epitaxy compared to Si substrates, there may be
differences in the effectiveness of carbon doping in reducing leakage current. The improved
lattice matching and similar thermal expansion coefficient between QST substrates and
GaN may lead to a more structurally intact GaN crystal during epitaxial growth on QST
substrates, reducing the formation of dislocations and thereby decreasing the trap density
for electrons and holes. In contrast, GaN grown on Si substrates may be more susceptible
to dislocation formation, resulting in higher trap densities. Consequently, the effectiveness
of carbon doping in reducing leakage current differed due to the distinct characteristics of
QST and Si substrates, thereby influencing distinct breakdown mechanisms under high
electric field conditions.

4. Conclusions

Our research into GaN-based power HEMT devices on QST compared to conventional
Si substrates highlights critical insights into device performance, particularly focusing on
breakdown voltage capabilities. The GaN on QST devices show a superior high-voltage
off-state performance, achieving excellent breakdown voltages of up to VDS = 1500 V
at room temperature. Measurements of gate/drain lag and PL have demonstrated the
exceptional buffer layer quality of QST substrates. These evaluations revealed a lower
prevalence of trap states and a more effective trap release mechanism compared to other
substrates. The significant advantage in breakdown voltage for GaN on QST highlights the
potential of QST substrates to enhance the performance and reliability of GaN-based power
devices. This superior breakdown voltage capability positions GaN on QST as a promising
candidate for next-generation high-efficiency power devices, underscoring the importance
of substrate technology in advancing semiconductor device performance. Through detailed
simulations, we effectively demonstrated how optimized device structures and doping
profiles on QST substrates could significantly mitigate substrate leakage and minimize
electron injection under high-bias conditions.
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