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Abstract: Versatile Video Coding (VVC) achieves impressive coding gain improvement (about 40%+)
over the preceding High-Efficiency Video Coding (HEVC) technology at the cost of extremely high
computational complexity. Such an extremely high complexity increase is a great challenge for power-
constrained applications, such as Internet of video things. In the case of intra coding, VVC utilizes the
brute-force recursive search for both the partition structure of the coding unit (CU), which is based
on the quadtree with nested multi-type tree (QTMT), and 67 intra prediction modes, compared to
35 in HEVC. As a result, we offer optimization strategies for CU partition decision and intra coding
modes to lessen the computational overhead. Regarding the high complexity of the CU partition
process, first, CUs are categorized as simple, fuzzy, and complex based on their texture characteristics.
Then, we train two random forest classifiers to speed up the RDO-based brute-force recursive search
process. One of the classifiers directly predicts the optimal partition modes for simple and complex
CUs, while another classifier determines the early termination of the partition process for fuzzy
CUs. Meanwhile, to reduce the complexity of intra mode prediction, a fast hierarchical intra mode
search method is designed based on the texture features of CUs, including texture complexity, texture
direction, and texture context information. Extensive experimental findings demonstrate that the
proposed approach reduces complexity by up to 77% compared to the latest VVC reference software
(VTM-23.1). Additionally, an average coding time saving of 70% is achieved with only a 1.65%
increase in BDBR. Furthermore, when compared to state-of-the-art methods, the proposed method
also achieves the largest time saving with comparable BDBR loss. These findings indicate that our
method is superior to other up-to-date methods in terms of lowering VVC intra coding complexity,
which provides an elective solution for power-constrained applications.

Keywords: versatile video coding; quadtree with nested multi-type tree; intra coding; random forest;
complexity reduction

1. Introduction

As the next generation of the video coding standard, Versatile Video Coding (VVC) [1]
has been developed by the Joint Video Exploration Team of the ITU-T Video Coding Group
and the ISO/IEC Moving Picture Experts Group. The purpose of VVC standard is to
provide adequate coding gain enhancement over the High Efficiency Video Coding (HEVC)
standard to meet the requirements of the future video market, such as 4 K/8 K ultra-high
definition, high dynamic range, virtual reality, and 360 degree video content. According to
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reports, the VVC reference software (VTM) achieves a 45% bitrate reduction when compared
to HEVC (HM) under standard test settings [2]. In fact, the coding efficiency improvement
mainly benefits from several newly adopted innovative video coding techniques (e.g.,
the quadtree with nested multi-type tree (QTMT) partition structure [3], 65 directional
intra prediction modes, and affine motion compensated prediction [4]), which leads to an
extremely high encoding complexity increase. Based on the AHG report, the intra coding
complexity of VTM increases more than 10 times over that of HM under the All-Intra test
configuration [5]. However, such a high computational complexity will bring a significant
challenge for power-constrained applications, such as Internet of video things (IoVT) [6].
The substantial volume of data also poses potential risk for IoVT security. Especially
in terms of real-time requirements, more rapid video encoding and decoding is desired.
Consequently, fast coding algorithms of VVC must be developed in order to decrease the
computing complexity.

Brute-force recursive RDO searches of intra prediction modes and the partition struc-
ture of CU occupy most of the time in VVC intra coding. VVC adopts the QTMT partition
structure to make CU partition shapes more flexible as shown in Figure 1. A quadtree (QT)
is first used to partition a coding tree unit (CTU), and then each leaf node is partitioned by
a multi-type (MT) structure until the size of the CU is the smallest. Vertical binary tree (BV),
horizontal binary tree (BH), vertical ternary tree (TV), and horizontal ternary tree (TH) are
four partition options of a multi-type tree (MT) structure. A QTMT partition structure is
depicted in Figure 1, where different lines indicate different partition modes. Indeed, the
QTMT coding block structure better suits the characteristics of various texture patterns,
resulting in significant coding efficiency gain. However, such an impressive performance
improvement comes at the expense of extremely high computational complexity. Based
on the principle of the QTMT structure with several limitations, it can be deduced that
there are, in total, more than 30,000 possible CU partition modes for a 128 × 128 CTU. With
so many Rate-Distortion Optimization (RDO) based brute-force recursive searches, they
contribute to the largest proportion of the encoding time.Therefore, a central priority is to
achieve an efficient CU partition method for the fast coding algorithm.

QT No Split (NS)

BH BV

TH TV

Figure 1. An illustration of the QTMT partition structure [1].

In addition, to further reduce the spatial redundancy of the intra frames, VVC designs
up to 67 intra prediction modes, whereas HEVC only allows for 35. Meanwhile, several
advanced prediction techniques are also proposed to further improve the intra coding effi-
ciency, such as matrix weighted intra prediction [7], multi-reference line intra prediction [8],
and intra sub-partition [9]. Evidently, the improvement of the VVC intra coding efficiency
beyond HEVC requires more calculations. Therefore, instead of conducting the brute-force
traversal of the expensive RDO process for all 67 modes as shown in Figure 2, the classical
three-step fast intra mode decision (TS-FMD) [10] of HEVC is inherited by VVC to reduce
the computational complexity of the intra mode prediction. First, VVC adopts rough mode
decision (RMD) [11] to limit the number of modes for the RDO search process. In RMD,
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N (usually 2 or 3) modes with the smallest Hadamard transform-based (HAD) cost are
chosen from the original 35 modes of HEVC to construct a candidate list. The HAD cost is
calculated as follows:

HADCost = SATD + λ · BitMode (1)

where SATD is the sum of residual signal’s absolute Hadamard transformed differences, λ
represents the Lagrange multiplier, and BitMode specifies the number of bits for encoding
the intra mode information. Second, two kinds of intra mode are integrated to create
a final candidate list consisting of two neighbors (left and right) of the N RMD modes
and a most probable model (MPM) generated by the neighboring CUs. Finally, two or
three models from the candidate list with minimal HAD-cost proceed through the RDO
process to generate the final intra prediction mode. The RD-cost for each mode is calculated
as follows:

RDCost = SSE + λ · BitTotal (2)

where SSE is the sum of squared errors between the original and reconstructed CU, and
BitTotal is the bits budget to encode the selected mode. It can be seen that TS-FMD selects
the best mode with about 40 times of the RMD process and 2 or 3 times of the RDO process.
The TS-FMD approach can reduce the complexity of the intra prediction processing to some
extent but requires additional reduction in the computing complexity.

Start intra prediction

Calculate HAD cost for 35 modes and choose 
N best modes

Calculate HAD cost for adjacent modes of N 
modes

Traverse MIP modes

Get MPMs and adopt MRL

Calculate RD cost for candidate modes and 
adopt ISP

Select the best mode

End intra prediction

RMD process

RDO process

Figure 2. Flowchart of the three-step intra mode decision in VVC reference software.

To minimize the computational cost of VVC significantly, we propose a fast intra
coding algorithm that integrates a more efficient CU partition strategy and a fast intra
mode prediction scheme. First, a detailed statistical analysis for the CU depth distribution
and intra prediction mode is presented, which motivates us to design the fast intra coding
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algorithm. From the distribution of the CU depth, the RDO brute-force recursive search of
the CU partition process is sped up by using random forest-based classification. The CUs are
categorized as simple, fuzzy, and complex CUs based on their texture characteristics. One
random forest classifier predicts the best partition modes of simple and complicated CUs
directly, while another random forest identifies the early termination of the partition process
for fuzzy CUs. This approach not only maximizes the potential for speed improvement
but also effectively mitigates bitrate distortion (BDBR) losses, particularly for fuzzy CUs.
Meanwhile, a fast hierarchical intra mode search method based on the CU texture feature
is presented, and experimental results prove that our method significantly lessens the
computational cost of intra mode prediction while causing negligible RD loss.

The remainder of this paper is structured as follows. Section 2 provides an overview of
the related work. The statistical distribution of intra prediction and CU depth is explored in
Section 3. Section 4 describes our algorithm in details. The extensive experimental results
and several ablation studies are shown in Section 5, while Section 6 ends with a conclusion.

2. Related Works

The fast intra coding algorithm focuses on two main tasks, the fast CU partition mode
decision and fast intra mode prediction, respectively.

2.1. Fast CU Partition Structure Decision

For the CU partition structure decision, there are three kinds of strategies, including
early termination, multi-classification, and joint classification. The early-termination policy
attempts to determine whether the recursive CU partition terminates after partitioning at
the current depth level. It is easy to understand that the early termination mainly happens
in the region of smooth texture. It maintains the RD performance well, but the reduction
in computational complexity is also limited. The multi-classification strategy designs a
sophisticated prediction model to directly obtain the optimal partition mode. It reduces the
computational complexity significantly. However, the complex partition structure of VVC
leads to the limitation of prediction accuracy and greater loss of RD performance. For the
sake of improving the prediction accuracy while achieving a large amount of time saving,
joint classification is designed to predict the probability of each partition mode, and one or
more partition modes with highest probability are selected as the candidates of the final
encoding mode.

For each of the above three strategies, three categories of common methods are used,
including heuristic methods, traditional machine learning methods, and end-to-end deep
learning methods. The heuristic methods first extract some handcrafted features in the
encoding process (e.g., image texture complexity, rate-distortion cost, and context informa-
tion), and the decision criteria are based on the preset thresholds. Its efficiency is influenced
by the chosen features and decision criteria simultaneously. The greatest advantage of
heuristic methods is that they are very simple but accuracy is limited. Traditional machine
learning methods employ advanced classifier (e.g., decision tree) to automatically learn a
decision function instead of manually designing one of the heuristic methods. However, it
still needs to select some handcrafted features. On the contrary, end-to-end deep learning
methods attempt to accomplish the feature extraction and decision work automatically
with advanced deep neural networks.

2.1.1. Heuristic Methods

In the last few years, several heuristic methods have extensively been adopted for
the fast CU partition structure decision algorithms in HEVC and VVC. By considering the
spatial correlation, Gu et al. used context information to skip some CU depths that are
rarely found in neighboring CUs [12]. Li et al. proposed an early intra CU size decision
approach for VVC based on a configurable decision model [13]. Ni et al. proposed a texture
analysis-based TT and BT partition strategy with the gradient-based intra mode decision to
accelerate VVC intra coding [14]. In [15], the Bayesian decision rule was used to design an
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early termination framework for CU partition based on the distribution of partition modes
and RD cost. Similarly, an early termination strategy based on the HAD and RD cost was
presented in [16]. Saldanha et al. proposed to remove abundant predictions by analyzing
the characteristics of current block and encoding context using selected intra prediction
modes [17]. In [18], Cui et al. predicted the likelihood of partition modes according to the
directional gradient, and then eliminated the unlikely partitions. Fan et al. suggested that
if the texture of the current CU was found to be smooth, CU partition would be terminated.
Then, the gradient could be utilized to determine whether or not to split the CU by QT
partition. Finally, one QTMT partition would be selected based on the difference of the
variance of the sub-CUs [19].

2.1.2. Machine Learning Methods

Since CU partition can be regarded as a classification problem, both VVC and HEVC
employ machine learning. Kim et al. suggested a fast CU partition approach based on
Bayesian decision making that predicts whether the CU partition should be terminated via
offline and online joint learning [20]. Wang et al. proposed a fast CU decision algorithm
based on FSVMs and DAG-SVMs for coding complexity reduction, which divides the
CU-partitioning process into two stages and symmetrically extracts some of the same CU
features [21]. The fast CU size decision method was guided by the SVM classification
of the complexity degree [22]. Erabadda et al. devised a weighted SVM-based CU size
selection algorithm [23]. This algorithm extracts texture complexity, RD cost and context
information to train the model. Shan et al. proposed a fast CU partition algorithm based
on SVM and the Laplace Transparent Composite Model (LPTCM) [24]. To obtain the
partition mode, the feature vectors called the Summation of Binarized Outlier Coefficient
are recovered from the original frames using LPTCM and fed to the online trained SVM.
The decision tree-based fast CTU partition structure in [25] explores the distribution of CU
depths and designs a joint-classification framework to predict the partition probability for
each partition mode. Zhang et al. designed an individual fast CU partition scheme for
different CU types based on their texture complexity, while the CU with simple texture
complexity was not handled efficiently [26].

2.1.3. Deep Learning Methods

Benefiting from the development of deep learning, end-to-end prediction of CU
partition modes have been developed to lessen the computational complexity of video
coding recently. Wu et al. proposed a hierarchical grid fully convolutional network to
predict the QTMT partition structure for fast VVC intra coding [27]. Chen et al. proposed
to predict CU partition modes for VVC intra coding by a CNN model, which is trained
with the neighboring line pixels and quantization parameters [28]. In [29], heuristic and
deep learning methods were combined. A threshold-based texture classification model
was first conducted to terminate the partition process of the homogeneous CUs. Then,
three different CNNs were designed to predict the partition modes for the remaining CUs.
In [30], a bagged tree model was employed to predict the splitting of a CTU, and the
partition problem of a 32 × 32-sized CU was modeled as a 17-output classification task.
Wang et al. [31] proposed a densely connected convolution neural network to predict
the partition of coding units (CUs), which significantly reduces the coding complexity.
Zan et al. proposed a redesigned U-NET with a quality parameter fusion network to
accelerate the QTMT partition process [32]. Tang et al. proposed an adaptive CU partition
choice with a pooling-variable CNN architecture, which is applicable to a wide range of
CU sizes and requires only one parameter set to be configured [33]. In [34], a CNN was
built for each 64 × 64 CU to predict a probability vector to speed up the partition process
during encoding.
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2.2. Fast Intra Mode Prediction

Based on the discovery that intra mode prediction is highly associated to texture
features, the fast intra mode prediction algorithms focus on modeling such a relationship to
accelerate the intra mode prediction process. Each block had five different edge directions,
determined in [35]. A limited set of intra modes was defined for the specified edge
type, reducing the complexity of the RMD process. In [36], a gradient-based strategy
was presented to decrease the number of RMD and RDO candidate modes: the average
gradients in the horizontal (AGH) and vertical (AGV) directions were utilized to determine
the rough range of the block direction; the number of RMD and RDO modes was reduced
based on the values of AGH, AGV, and AGH/AGV. In addition, Zhang et al. also proposed
a gradient-based method to eliminate irrelevant orientation modes from the candidate
list [37]. In order to further reduce the complexity, a mode classification based on texture
features was developed to adaptively reduce the number of intra modes in chrominance.
Jamali et al. not only utilized the Prewitt operator in the gradient but also tried to skip
needless modes by predicting the cost of RDO [38]. In [39], progressive rough mode search
(pRMS) was conducted based on the HAD cost, selecting potential modes rather than
traversing all candidates. In the subsequent RDO process, fewer candidate modes were
selected by pRMS. Jamali et al. succeeded in rejecting non-promising modes from further
processing by utilizing the prediction modes and saving significant computations [40].
Ogata et al. [41] offered a fast intra mode decision that limits the number of possible modes
by using DCT coefficients and outliers from nearby blocks.

In addition, machine learning and deep learning were also applied for intra mode
prediction. Ryu et al. designed a random forest which uses four pixel points as features to
reduce the number of candidates before optimizing rate-distortion [42]. Song et al. offered
a fast intra mode prediction algorithm based on CNN which outputs the probability of each
mode being selected as the optimal mode [43]. Meanwhile, a corner detection algorithm
was developed to further minimize the number of candidate modes entering the RDO
process. Ting et al. used an improved LeNet-5 CNN model to predict the probability of
each mode, which achieved higher prediction accuracy [44].

3. Statistical Analysis of Intra Coding

The statistical study of VVC intra coding is useful for proposing and comprehending
novel algorithms. The following study employs 26 JCT-VC test sequences encoded with
VTM7.0 and placed in an all-intra configuration. These test sequences range from Class A1
to Class F with varying resolutions and contents.

3.1. CU Partition Depth Distribution

Similar to [26], the CU depth distribution of different sequences with QPs ∈ {22, 27, 32, 37}
is shown in Table 1. It should be noted that only one sequence of each class is analyzed
based on VTM 2.0 in [26]. However, our analysis is based on all of the sequences of each
class. In addition, our experiments are implemented with VTM 7.0, which includes some
new advanced intra coding techniques as compared to VTM 2.0. The results are the average
values for each class. Di,j denotes the CU depth with QT depth of i, i ∈ {1, 2, 3, 4} and MT
depth of j, j ∈ {1, 2, 3}. There are some statistical conclusions that can be observed from
Table 1 as follows:

(1) High-resolution sequences tend to be coded with a large CU size, and lower-resolution
sequences prefer using a small CU size.

(2) The percentage of large size CU increases gradually with the increasing of QP.
(3) The percentage of CUs decreases with the decreasing of the CU size on the trend.
(4) Nearly two thirds of regions are coded with MT CUs.
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Table 1. CU depth distribution for sequences with different resolution and QPs (%).

Class QP D1,0
Quadtree Depth 2 Quadtree Depth 3 Quadtree Depth 4

D2,0 D2,1 D2,2 D2,3 D3,0 D3,1 D3,2 D3,3 D4,0 D4,1 D4,2

A1 22 20.9 20.5 19.2 11.1 8.9 2.9 5.3 5.8 3.3 1.2 0.6 0.4
A1 27 28.1 29.4 19.7 9.2 5.4 2.4 2.4 1.7 1.0 0.4 0.2 0.1
A1 32 36.8 30.8 18.1 6.8 3.3 1.7 1.2 0.6 0.3 0.2 0.1 0
A1 37 51.2 27.3 12.3 4.4 2.4 1.1 0.8 0.3 0.1 0.1 0 0

A2 22 13.4 10.6 16.4 19.3 18.1 4.6 6.6 6.1 3.0 1.1 0.5 0.3
A2 27 21.8 16.6 22.5 16.0 12.0 3.6 3.4 2.2 1.1 0.5 0.2 0.1
A2 32 24.4 18.5 23.4 15.1 11.1 2.5 2.6 1.5 0.5 0.3 0.1 0
A2 37 29.4 22.1 24.8 12.8 7.6 1.4 1.1 0.5 0.1 0.1 0 0

B 22 6.5 6.1 13.8 17.6 15.5 4.1 8.0 11.4 6.7 7.3 2.0 1.1
B 27 11.1 11.0 20.1 16.8 11.7 4.9 7.5 7.2 5.9 2.0 1.2 0.9
B 32 14.5 15.2 23.6 14.9 10.2 4.1 6.2 5.0 3.7 1.3 0.8 0.5
B 37 19.2 19.6 25.8 13.0 9.2 3.2 4.3 2.9 1.6 0.7 0.3 0.2

C 22 0 1.2 3.7 5.6 7.6 4.2 13.8 22.1 24.0 5.8 6.2 5.8
C 27 0.2 2.2 5.5 7.6 11.1 6.0 16.2 19.2 17.4 5.8 4.8 3.8
C 32 0.3 4.3 11.3 12.4 14.4 7.2 14.9 14.6 11.5 3.9 3.0 2.2
C 37 1.2 10.3 16.8 15.4 16.0 6.5 12.2 9.9 6.5 2.7 1.6 0.9

D 22 0 1.8 3.5 4.5 7.1 4.2 13.3 20.4 25.1 5.0 7.3 8.0
D 27 0 1.7 5.9 7.0 9.4 5.8 16.1 17.8 18.4 5.5 6.1 6.1
D 32 0.3 3.7 9.4 10.0 11.1 8.5 16.1 14.7 14.4 4.4 4.1 3.4
D 37 0.6 7.5 14.5 13.0 14.3 8.8 13.9 11.2 9.1 3.2 2.4 1.6

E 22 8.5 15.6 19.5 14.1 12.4 4.9 8.4 7.3 5.8 1.5 1.2 0.7
E 27 21.9 13.0 16.4 12.9 11.2 4.9 7.1 5.8 4.2 1.3 0.9 0.5
E 32 25.8 15.2 17.8 12.1 10.7 4.3 5.9 4.1 2.5 0.9 0.5 0.2
E 37 30.2 17.5 20.0 11.9 9.4 3.3 3.7 2.3 1.1 0.5 0.2 0

F 22 7.0 12.2 19.0 11.6 7.6 6.3 9.5 9.1 8.9 3.0 3.0 2.9
F 27 9.1 15.0 20.4 12.4 8.9 5.8 9.3 7.7 5.9 2.3 1.8 1.5
F 32 11.0 18.3 21.4 13.0 9.5 5.9 7.9 5.3 4.2 1.5 1.2 0.9
F 37 14.9 20.6 23.0 12.1 7.5 5.3 6.9 4.5 3.0 0.9 0.7 0.5

Average 14.6 13.9 16.7 11.9 10.1 4.6 8.0 7.9 6.8 2.3 1.8 1.5

In addition, some intuitive observations between the texture complexity and CU
partition mode can be found in Figure 3 as follows:

(1) Generally, flat regions imply a simple CU partition mode, while rich texture regions
adopt a more complex CU partition structure.

(2) Since two directions of multi-type tree partition are employed in VVC, the partition
direction is related to the texture direction. Taking the edge areas as an example, the
texture extends vertically with the woman’s body, and thus the majority of partitions
tend to be vertical as well.

(3) If the texture complexity among the sub-CUs is different, the current CU probably
needs to be split into smaller CUs.

Texture Area Edge Area Area with  complexity 

difference
Smooth Area

Figure 3. An example of quadtree with nested multi-type tree coding block structure.
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Furthermore, statistical analysis of the relationship between the texture complexity and
CU partition mode is performed as follows. The variance of a CU is defined as its texture
complexity. As shown in Figure 4, by comparing the texture complexity of the current CU
and its neighboring CUs, we classify CUs into three categories. If the texture complexity of
the current CU is smaller than the minimum texture complexity of its neighboring CUs, it
is classified as a simple CU; if the texture complexity of the current CU is greater than the
maximum value of its neighboring CUs, it is classified as a complex CU. Otherwise, it is
classified as a fuzzy CU. The partition probability of the three CU categories is shown in
Table 2:

(1) Nearly two-thirds of the complex CUs need to be further partitioned, especially for
the videos with lower resolution.

(2) More than 70% of simple CUs terminate the partition process at the current depth
level, especially for the videos with high resolution.

(3) The probability of early termination for fuzzy CUs is about 50%.

Current CU

CU
U

CU
UL

CU
L

CU
LD

CU
UR

Figure 4. Neighboring CUs.

Table 2. Further partition probability of different CU (%).

Class Simple Fuzzy Complex

A1 21.85 43.87 58.8
A2 26.04 50.2 65.32
B 27.12 51.92 66.44
C 30.29 50.49 73.01
D 31.96 59.52 71.04
E 25.89 52.65 64.89
F 38.13 54.29 65.39

Average 28.75 52.99 66.42

It seems that the partition process for complex and simple CUs has an obvious ten-
dency, while the partition for fuzzy CUs is ambiguous. Therefore, we propose different
acceleration schemes for the three categories of CUs, respectively.

3.2. Intra Prediction Mode Distribution

The 67 intra prediction modes of VVC can be divided into DC mode, planar mode,
and angle mode. The distribution of the intra mode is presented in Table 3, and some
observations can be obtained as follows:
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(1) Intra mode distribution is closely related to the sequence resolution. High-resolution
sequences have more flat areas, which tend to select DC or planar mode as the
best mode.

(2) About 78.6% of the CUs best mode can be found in MPM, and it reaches 85% for
some sequences with a high spatial correlation.

Table 3. Intra mode distribution of different sequences (%).

Class Planar DC Angel Modes NMPM
NT

A1 47.0 6.2 46.8 81.2
A2 41.5 7.9 50.6 84.5
B 40.6 6.4 53.0 83.8
C 25.5 4.4 70.1 76.4
D 29.3 4.2 66.5 67.9
E 32.2 4.0 63.7 78.0
F 13.0 2.5 84.5 78.7

Average 32.7 5.1 62.2 78.6

To lessen the computational cost of intra mode prediction, a feasible way is to narrow
down the candidate list by removing some improbable modes. According to the first
conclusion, the CUs can first be divided into two types, one is a flat CU and the other one is
a non-flat CU. For flat CU, only DC and planar modes are checked to obtain the best mode.
This method reduces the complexity to a certain extent, but there are still more than 60% of
CUs that select directional modes.

Intuitively, the intra prediction direction is inextricably related to the texture direction.
For example, as shown in Figure 5, the texture direction is 135° diagonal. The optimal
intra prediction direction is more likely corresponding to it. The opposite direction of the
texture direction is nearly impossible to be chosen as the optimal intra modes. It inspires us
that the complexity reduction benefits from eliminating modes in unnecessary directions.
The gradient is adopted to reflect the texture direction. As shown in Figure 5, it is clear
that the texture direction (135° diagonal) has the smallest gradient value. By contrast, the
opposite direction of the texture direction (45° diagonal) is almost impossible to be selected
as the intra prediction direction, which has the largest gradient value. We investigate the
probability that CUs choose the modes located in the direction with the biggest gradient
value, which is shown in Table 4 and it can be found that no more than 10% of CUs select
the modes in the direction with the biggest gradient value.

135 45h vG G G G = 

Texture direction: 135°

Figure 5. Relation between texture direction and gradient.



Electronics 2024, 13, 2150 10 of 25

Table 4. Probability of choosing mode in directions with the largest gradient (%).

QP Horizontal Vertical 45 135

22 10.67 3.37 4.98 12.25
27 10.55 3.44 4.93 10.89
32 9.99 3.43 5.06 9.52
37 9.25 3.94 5.29 8.19

Average 10.11 3.52 5.06 10.21

4. Proposed Algorithm

Based on the above analysis of the statistical results in Section 3, an efficient fast
algorithm for VVC intra coding is proposed, which is composed of random forest-guided
classification for fast CU partition and hierarchical search-based fast intra mode prediction.

4.1. Random Forest-Guided Classification for Fast CU Partition
4.1.1. System Overview of CU Partition Structure

The proposed fast CU partition algorithm uses the random forest classifier to deal
with different kinds of CU. By comparing the texture complexity between neighboring CUs,
we classify CUs into three categories: simple, complex, and fuzzy. To find the best partition
mode for simple and complex CUs, we utilize the same trained random forest classifier.
Another random forest is utilized for fuzzy CU to decide if the partition process terminates.
The overall structure is shown in Figure 6.

Start encoding a CTU

Extract features

CU classification

Complex Simple Fuzzy

RFPM RFET

QT BH BV TH TV NS Terminate

Traversing 5 
partition modes

Depth+=1

N

Y

Intra prediction

Move to next CU

Depth+=1

Figure 6. Flowchart of the proposed fast CU partition decision based on random forest classifier.

4.1.2. Feature Extraction

In addition to texture complexity, four other features related to the partition mode will
be analyzed, including gradient information, the sub-CUs complexity difference, context
information, and block information.

Texture complexity: Variance can be used to describe texture complexity as follows:

Var =
1

W · H

W

∑
x=1

H

∑
y=1

(P(x, y)− Mean)2 (3)

Mean =
1

W · H

W

∑
x=1

H

∑
y=1

P(x, y) (4)
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where W is the width of target CU, H is the height of target CU, and P(x, y) is the pixel
value at position (x,y).

However, the two pictures shown in Figure 7 have the same variance but different
textures, which leads to a different partition. It means that variance can only describe the
global texture complexity, not the local one. So neighboring mean squared error (NMSE) is
introduced to describe the local texture complexity as follows:

NMSE =
1

W · H

W

∑
x=1

H

∑
y=1

(MADP(x, y)− MeanMADP)
2 (5)

where MADP is the mean of absolute difference between pixels as follows:

MADP(x,y) =
1
8

(|P(x, y)− P(x − 1, y − 1)|+ |P(x, y)− P(x − 1, y)|
+|P(x, y)− P(x − 1, y + 1)|+ |P(x, y)− P(x, y − 1)|
+|P(x, y)− P(x, y + 1)|+ |P(x, y)− P(x + 1, y − 1)|
+|P(x, y)− P(x + 1, y)|+ |P(x, y)− P(x + 1, y + 1)|)

(6)

Figure 7. Different CUs with same variance.

Gradient: As mentioned earlier, the partition direction is related to the texture
direction, so the gradient is also one of the features related to the partition mode. Besides
the normalized gradient (Gavg) and maximum gradient (Gmax), the average gradient in
different directions, including horizontal, vertical, diagonal down right (DDR) and diagonal
down left (DDL), should also be considered. The average gradients in the above directions
are expressed as GHOR, GVER, GDDR, and GDDL, respectively. All the above gradients are
formulated as Equation (7) to Equation (11):

Gd(x, y) = Sd · P, d ∈ {HOR, VER, DDR, DDL} (7)

P =

 p(x − 1, y − 1) p(x − 1, y) p(x − 1, y + 1)
p(x, y − 1) p(x, y) p(x, y + 1)

p(x + 1, y − 1) p(x + 1, y) p(x + 1, y + 1)

 (8)

Gd =
1

W · H

W

∑
x=1

H

∑
y=1

|Gd(x, y)|, d ∈ {HOR, VER, DDR, DDL} (9)

Gavg =
1
4 ∑ Gd, d ∈ {HOR, VER, DDR, DDL} (10)

Gmax = arg max(Gd(x, y)), d ∈ {HOR, VER, DDR, DDL} (11)

where Sd is Sobel operators.
Sub-CUs Complexity Difference: Variance difference is used to represent the texture

complexity between sub-CUs, which is related to whether a sub-CU should be further
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partitioned. Under five partition modes, including QT, BH, BV, TH and TV, the sub-CUs
complexity difference (SCCD) is represented as follows:

SCCDQT = 1
4

4
∑

i=1
(vari − varQT)

2

SCCDBH = 1
2

2
∑

i=1
(vari − varBV)

2

SCCDBV = 1
2

2
∑

i=1
(vari − varBH)

2

SCCDTH = 1
3

3
∑

i=1
(vari − varTH)

2

SCCDTV = 1
3

3
∑

i=1
(vari − varTV)

2

(12)

where vari is the variance of the i-th sub-CU obtained by Equation (3), and var is the
average value of the sub-CUs variance.

Context Information: Select neighboring CUs complexity (NCC) and neighboring
CUs depth (NCD), including the maximum, minimum, and average values, to represent
the context information because the texture complexity and partition mode between neigh-
boring CUs shown in Figure 4 are very similar due to the spatial correlation of video
content. Different values of NCC are expressed as NCCmax, NCCmin, NCCavg, and different
values of NCD under QT and MT are shown as NCDQT_max, NCDQT_min, NCDQT_avg,
NCDMT_max, NCDMT_min, and NCDMT_avg, respectively.

Block Information: Three important pieces of block information are selected as
features to be extracted, including the width and height of CU, QT depth (DQT), and MT
depth (DMT).

4.1.3. Random Forest Training

The random forest classifier (RFC) [45] is composed of multiple independent decision
trees. The output of each decision tree has an impact on the final output, which ensures
the stability of the RFC output. By randomly selecting equal sample sets, the RFC model
reduces the error of imbalanced data and avoids overfitting. Meanwhile, it can process
high-dimensional data by randomly selecting subsets of features with equal probability.
This paper uses classification and regression tree (CART) [46] as the basic decision tree
of RFC.

CART constructs binary trees using the feature and threshold that yield the smallest
Gini index at each node. The Gini index of a node m indicates the impurity of data, which
is expressed as follows:

G(Dm) =
K

∑
k=1

pmk(1 − pmk) = 1 −
K

∑
k=1

(pmk)
2 (13)

pmk =
Nmk
Nm

(14)

where Dm represents the data at node m with Nm samples, K indicates the number of
classification, Nmk specifies the number of samples belonging to class k, and pmk means the
proportion of class k in node m.

For each candidate split θ = ( f , tm) consisting of a feature f and threshold tm, partition
the data into Dle f t

m (θ) and Dright
m (θ). The Gini index is then used to calculate the quality of

a proposed split of node m:

Q(Dm, θ) =
Nle f t

m
Nm

G(Dle f t
m (θ)) +

Nright
m
Nm

G(Dright
m (θ)) (15)
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The parameters that minimize the impurity are selected in the next step.
Finally, the recursive process is continuously conducted for subsets Dle f t

m (θ∗) and
Dright

m (θ∗) until the greatest depth permitted has been reached G(Dm) = 1 or Nm = 1:

θ∗ = arg min
θ

Q(Dm, θ) (16)

The illustration of our random forest (RF) is shown in Figure 8. For training RF, part of
the sequences from the JCT-VC standard dataset is selected as the training sequence (7 out
of 30, marked with * shown in Tables 5 and 6). To create the training set, we use the first
40 frames of each sequence in each class as the training set, which are encoded with the
all-Intra configuration. We reported the performance on both the training sequences (BDBR:
1.2%, ∆T: 56.96%) and the testing sequences (BDBR: 1.21%, ∆T: 57.21%) when utilizing
VTM7.0. Similarly, we also reported the performance on the training sequences (BDBR:
1.27%, ∆T: 56.02%) and the testing sequences (BDBR: 1.32%, ∆T: 60.11%) when utilizing
VTM23.1. These results indicate that our models possess good generalization ability, despite
being trained on a limited subset of frames from a small number of sequences. Table 7
shows the distribution of the CU partition. The proposed RF is trained for 26 features with
10 trees in the forest and maximum depth of 15 features and minimum samples that split
a node of 20. Among the trained RFs, six are for RFPM and two are for RFET . Then, the
trained RFs are imported into VTM 7.0.

Table 5. Results of the proposed algorithm compared with VTM7.0 encoder (the training sequences
are marked with *).

Class Sequence
FCPD FIMP Overall

BDBR BDPSNR ∆T BDBR BDPSNR ∆T BDBR BDPSNR ∆T
(%) (dB) (%) (%) (dB) (%) (%) (dB) (%)

A1
Tango2 * 0.49 −0.04 60.25 0.32 −0.02 21.76 0.67 −0.06 66.84

FoodMarket 0.44 −0.04 59.63 0.94 −0.04 19.68 1.23 −0.06 64.68
Campfire 1.04 −0.09 56.22 0.74 −0.01 25.69 1.62 −0.11 65.95

A2
Catrobot * 1.02 −0.05 57.8 0.39 −0.02 25.79 1.25 −0.07 64.58

DaylightRoad2 0.93 −0.07 63.62 0.68 −0.01 27.98 1.44 −0.07 71.88
ParkRuning3 0.58 −0.03 53.52 0.55 −0.01 20.36 0.99 −0.05 59.67

B

BasketballDrive 1.8 −0.06 61.76 0.75 −0.01 23.47 2.39 −0.07 67.87
BQTerrace * 1.42 −0.11 63.97 0.79 −0.04 28.74 1.92 −0.14 70.08

Cactus 1.35 −0.09 63.46 0.48 −0.03 25.64 1.69 −0.11 69.43
Kimono 1.06 −0.02 66.89 0.22 −0.01 22.71 1.1 −0.03 72.25

ParkScene 1.82 −0.17 63.35 0.26 −0.01 27.84 1.89 −0.18 72.19

C

BasketballDrill 0.99 −0.2 53.24 0.37 −0.04 29.65 1.22 −0.24 65.63
BQMall 1.11 −0.1 61.24 0.39 −0.04 27.84 1.39 −0.13 69.26

PartyScene * 1.3 −0.16 51.93 0.8 −0.01 35.11 2.09 −0.14 65.64
RaceHorsesC 0.48 −0.15 52.83 0.54 −0.05 32.32 0.93 −0.22 64.16

D

BasketballPass 1.28 −0.16 46.06 0.62 −0.02 31.11 1.6 −0.09 59.74
BlowingBubbles * 0.83 −0.09 53.78 0.48 −0.01 29.27 1.09 −0.15 63.09

BQSquare 0.49 −0.08 49.71 0.64 −0.06 33.38 0.93 −0.2 62.11
RaceHorses 0.36 −0.04 41.18 0.32 −0.07 31.94 0.62 −0.15 56.29

E
FourPeople * 1.72 −0.13 62.53 0.4 −0.07 25.33 2.09 −0.19 70.57

Johnny 1.9 −0.16 64.29 0.94 −0.06 23.66 2.67 −0.11 72.24
KristenAndSara 2.12 −0.13 65.58 0.38 −0.06 24.98 2.29 −0.19 72.98

F

BasketballDrillText 1.53 −0.14 55.31 1.08 −0.06 25.29 2.45 −0.17 64.51
ChinaSpeed 2.17 −0.18 54.31 0.81 −0.04 34.74 2.32 −0.19 66.19

SlideEditing * 1.65 −0.18 48.44 1.09 −0.04 30.51 2.25 −0.17 59.74
SlideShow 1.48 −0.18 54.78 0.71 −0.06 31.02 2.09 −0.2 66.58
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Table 5. Cont.

Class Sequence
FCPD FIMP Overall

BDBR BDPSNR ∆T BDBR BDPSNR ∆T BDBR BDPSNR ∆T
(%) (dB) (%) (%) (dB) (%) (%) (dB) (%)

Training average 1.2 −0.11 56.96 - - - - - -
Test average 1.21 −0.11 57.21 - - - - - -

Average 1.21 −0.11 57.14 0.6 −0.03 27.53 1.62 −0.13 66.31

Table 6. Results of the proposed algorithm compared with VTM23.1 encoder (the training sequences
are marked with *).

Class Sequence
FCPD FIMP Overall

BDBR BDPSNR ∆T BDBR BDPSNR ∆T BDBR BDPSNR ∆T
(%) (dB) (%) (%) (dB) (%) (%) (dB) (%)

A1

Tango2 * 0.57 −0.05 62.28 0.35 −0.03 23.12 0.92 −0.07 69.5
FoodMarket 0.58 −0.07 62.34 1.01 −0.05 21.22 1.49 −0.08 67.65

Campfire 1.19 −0.3 58.90 0.79 −0.02 27.23 1.86 −0.13 70.06
Drums 1.32 −0.16 60.60 0.82 −0.03 28.17 1.73 −0.14 68.28

A2

Catrobot1 * 1.09 −0.06 59.86 0.43 −0.04 27.24 1.38 −0.08 67.56
DaylightRoad2 1.10 −0.10 66.30 0.8 −0.03 29.24 1.46 −0.08 74.9
ParkRuning3 0.73 −0.07 56.22 0.59 −0.03 22.31 1.28 −0.06 69.11
TrafficFlow 0.61 −0.06 54.73 0.47 −0.02 20.89 1.23 −0.05 66.82

B

BasketballDrive 1.93 −0.11 64.46 0.8 −0.03 25.34 2.42 −0.08 70.51
BQTerrace * 1.48 −0.13 66.05 0.85 −0.05 30.35 1.97 −0.15 75.22

Cactus 1.48 −0.14 66.16 0.52 −0.04 27.44 1.71 −0.13 76.92
Kimono 1.19 −0.07 69.59 0.25 −0.03 24.41 1.45 −0.04 74.44

ParkScene 1.93 −0.21 66.04 0.3 −0.03 29.57 1.92 −0.19 74.64
MarketPlace 1.38 −0.15 64.66 0.71 −0.03 27.88 1.78 −0.13 69.34
RitualDance 1.47 −0.14 64.21 0.79 −0.03 25.66 1.84 −0.13 66.28

C

BasketballDrill 1.13 −0.24 55.93 0.41 −0.05 31.34 1.49 −0.25 67.89
BQMall 1.24 −0.14 63.93 0.45 −0.05 29.45 1.41 −0.14 72.07

PartyScene * 1.37 −0.17 54 0.83 −0.03 36.39 2.13 −0.15 68.26
RaceHorsesC 0.63 −0.19 55.52 0.57 −0.06 34.28 1.27 −0.23 66.36

D

BasketballPass 1.39 −0.20 48.75 0.64 −0.03 32.38 1.62 −0.09 66.72
BlowingBubbles * 0.91 −0.11 55.85 0.54 −0.03 31.44 1.14 −0.17 67.12

BQSquare 0.63 −0.11 52.41 0.66 −0.07 34.67 1.07 −0.23 64.78
RaceHorses 0.52 −0.07 43.88 0.36 −0.09 33.43 1.04 −0.15 59.32

E
FourPeople * 1.79 −0.14 64.6 0.42 −0.09 27.61 2.15 −0.19 72.81

Johnny 1.21 −0.20 66.98 0.96 −0.07 25.52 2.71 −0.13 74.59
KristenAndSara 2.23 −0.17 68.27 0.4 −0.08 26.43 2.31 −0.2 75.41

F

BasketballDrillText 1.67 −0.18 58.00 1.1 −0.07 27.57 2.49 −0.19 67.98
ChinaSpeed 2.28 −0.22 56.99 0.85 −0.05 36.78 2.34 −0.2 68.28

SlideEditing * 1.71 −0.19 50.51 1.19 −0.05 32.82 2.28 −0.19 61.91
SlideShow 1.59 −0.22 57.57 0.79 −0.07 33.2 2.12 −0.21 69.34

Training average 1.27 −0.12 59.02 - - - - - -
Test average 1.32 −0.15 60.11 - - - - - -

Average 1.31 −0.14 59.86 0.66 −0.05 28.78 1.73 −0.14 69.47
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Table 7. Partition distribution of training set.

Partition Type QP 22 QP 27 QP 32 QP37

NS 5,079,696 3,492,693 3,243,862 2,353,272
QT 771,644 505,940 442,246 302,200
BH 2,444,758 1,480,714 1,178,438 744,162
BV 2,348,766 1,433,616 1,147,124 723,560
TH 595,808 366,073 349,944 242,860
TV 586,848 380,857 353,132 241,424
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Context Information

Block Information

Select

Features

Select
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.
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Figure 8. Illustration of the random forest RFPM or RFET .

4.2. Fast Intra Mode Prediction

In [25], Yang et al. proposed the one-dimensional gradient decent search method to
reduce the RMD search range. Based on our above analysis in Section 3, we employ three
texture features to design a hierarchical search method to further reduce the search range
as shown in Figure 9.

First, flat CUs tend to choose the planar or DC mode as the best intra mode. Thus,
variance threshold τf of a CU is carefully tuned to divide the CUs into two categories,
including flat and non-flat. For flat CUs, the RMD process is skipped, and only DC and
planar modes are checked in the RDO process to obtain the best intra mode. In our
experiments, τf is set as 0.3 × QP.

Second, the optimal intra mode direction is almost consistent with the texture direction.
In other words, the prediction orientation deviating from the texture direction is rarely
chosen as the best intra mode. Thus, the direction information of CU is conducted to narrow
down the search range of the coarse search process.

(1) The 65 directional prediction modes are divided into four groups. Prediction modes
from 10 to 26 are categorized as the horizontal group (Ch), prediction modes from 42
to 58 are categorized as the vertical group (Cv), prediction modes from 2 to 10 and 58
to 66 are categorized as the 45° diagonal group (C45), and prediction modes 26 to 42
are categorized as the 135° diagonal group (C135).

(2) The gradients of four directions are computed, including horizontal (GHOR), vertical
(GVER), diagonal down right (GDDR), and diagonal down left (GDDL). The maximum
value of GHOR, GVER, GDDR, GDDL is denoted as Gmax. Only if Gmax/Gi is larger than
a threshold τd is the corresponding prediction mode group added into the coarse
search range, where the i ∈ {HOR, VER, DDR, DDL}. One exception is that all 67
prediction modes are added into the search range only if all Gmax/Gi are smaller
than τd. In our experiments, τd is set to 1.5.
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Third, the optimal prediction modes of the neighboring CUs are usually similar, which
is represented as the MPM list. It is very helpful for choosing the initial point for the coarse
search. The RMD process is conducted on the six modes in the MPM list. The mode with
the smallest HAD cost is chosen as the initial search point for the coarse search process.
If the initial search point is not within the search range, all 65 modes are included in the
search range.

Fourth, the optimal mode Mc of the coarse search is set as the initial point for the fine
search, and the search range is from Mc − 2 to Mc + 2, and the step size is 1. Finally, the
two modes with the smallest HAD cost after the fine search are checked through the RDO
process. The mode with the smallest RDO cost is chosen as the optimal intra prediction
mode. The planar mode is not included in the two modes, and the RDO cost of the planar
mode also needs to be compared.

Start intra prediction

Variance threshold calculation

Flat CU

Search range setting

Search process

RD-Cost Comparison

Search range = [Mc -2,Mc +2]

Optimal intra prediction mode 

with smallest RD-Cost

Texture complexity

Texture direction

Texture

Context information

Coarse search

Fine search

yes

no
Initial search point setting

Search step size = 4

Initial search point = Mc 

Search step size = 1

Search process

`

no

Mode Mc with the smallest 

HAD-Cost

Two modes with the smallest 

HAD-Cost

Planar and 

DC modes 

RDO Process

RMD process

Figure 9. Flowchart of the hierarchical search method for fast intra mode prediction.
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5. Experimental Results

We implement the proposed method on top of both VTM 7.0 and VTM 23.1. In the
evaluation process, we use all of the video sequences from JCT-VC standard test set and fix
quantization parameters to 22, 27, 32, 37, named as QP values. For quantitative analysis, we
employ BDBR and BDPSNR for the rate-distortion assessment, as well as the time-saving
rate for estimating the complexity reduction. The time-saving rate ∆T is defined as

∆T =
TVTM − TFast

TVTM
(17)

where TVTM is the encoding time of the original VTM 7.0 or VTM 23.1, and TFast is the
encoding time of our improved fast method. We practice our method on a laptop with Intel
Core i7-9750H and 2.6 GHz GPU.

5.1. Performance Evaluation of Proposed Algorithm

Table 5 shows the test performance of the proposed fast CU partition decision (FCPD),
fast intra mode prediction (FIMP), and the overall method. It can be seen that FCPD can
save the coding time by 66.89% at most, 41.18% at least, and 57.14% on average, with
only 1.21% BDBR increasing and 0.11 dB BDPSNR decreasing on average. Meanwhile, the
results also show that the performance between testing sequences and training sequences
(the sequences with *) are almost the same, which indicates that our two random forest
models have good generalization ability.

FIMP can save coding time by 35.11% at most, 19.68% at least, and 27.53% on average,
with only 0.6% BDBR increasing and 0.03 dB BDPSNR decreasing on average, which proves
that within acceptable loss, FIMP significantly improves efficiency by eliminating some
needless modes. In Table 5, we also calculate the overall performance of the proposed fast
algorithm composed of FCPD and FIMP. The experimental results show that approximately
66.31% of the coding time is saved with a tolerable 1.62% BDBR performance loss on average.
It can be seen that the proposed method significantly reduces the coding complexity, making
it more suitable for power-constrained application scenarios. In addition, as shown in
Table 6, we test all sequences on top of VTM23.1, and the results show that our algorithm
also achieves the maximum time saving within the acceptable loss range of BDBR.

5.2. Comparison with Others

We compare our algorithm with three of the most advanced methods, namely, those of
Ni 2022 [14], Wang 2023 [21], and Li 2024 [22]. As shown in Table 8, the T/B = TS/BDBR
denotes the measurement for the trade-off between the time savings and BDBR perfor-
mance. While the proposed method may not achieve the optimal balance, it stands out
in maximizing the encoding time savings among other advanced techniques, while keep-
ing the BDBR loss within an acceptable range. It can be seen that our algorithm offers
substantial time savings while maintaining an acceptable level of BDBR loss. The relative
time-saving improvements are 27.38%, 15.45%, and 13.32%, respectively. Meanwhile, the
relative BDBR losses incurred are 1.21%, 0.58%, and 0.52%, respectively.

A quantitative analysis comparing our model with deep learning-based methods is
presented in Table 9. This includes methods from Zan 2023 [32], Wu 2022 [27], and Chen
2023 [28]. It can be seen that our algorithm on top of VTM 23.1 achieves the maximum time
saving of 69.85% with the minimum BDBR loss of 1.65% (the time saving of the proposed
method on top VTM 7.0 is slightly reduced to 66.69%). The particularly high T/B ratio
(69.85) demonstrates the superiority of our model in achieving the trade-off between time
savings and BDBR loss in comparison to deep learning-based methods.
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Table 8. Performance comparison between the proposed algorithm and state-of-the-art algorithms.

Class Sequence

Ni 2022 [14]
(VTM11.0)

Wang 2023 [21]
(VTM10.0)

Li 2024 [22]
(VTM7.0)

Ours
(VTM7.0)

Ours
(VTM23.1)

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

A1

Tango2 0.58 47.35 81.68 / / / 0.99 56.85 57.42 0.67 66.84 99.76 0.92 69.5 75.54
FoodMarket 0.52 50.29 96.71 1.14 54.85 48.11 0.97 53.53 55.19 1.23 64.68 52.59 1.49 67.65 45.40

Campfire 0.26 43.58 167.62 1.25 57.16 45.73 0.86 49.67 57.76 1.62 65.95 40.71 1.86 70.06 37.67
Drums / / / 1.37 58.04 42,36 / / / / / / 1.73 68.28 39.47

A2

Catrobot1 0.37 41.43 111.97 / / / 1.12 55.99 49.99 1.25 64.58 51.66 1.38 67.56 48.96
DaylightRoad2 0.26 33.29 128.04 1.23 52.29 42.51 0.97 54.53 56.22 1.44 71.88 49.92 1.46 74.9 51.30
ParkRuning3 0.27 41.57 153.96 1.31 55.45 42.32 1.09 53.57 49.15 0.99 59.67 60.27 1.28 69.11 53.99
TrafficFlow / / / 0.92 54.39 59.12 / / / / / / 1.23 66.82 54.33

B

BasketballDrive 0.36 44.73 124.25 / / / / / / 2.39 67.87 28.40 2.42 70.51 29.14
BQTerrace 0.3 40.05 133.50 1.03 54.98 53.38 1.29 52.41 40.63 1.92 70.08 36.5 1.97 75.22 38.18

Cactus 0.4 42 105 1.28 56.81 44.38 / / / 1.69 69.43 41.08 1.71 76.92 44.98
Kimono 0.34 43.03 126.56 1.36 57.47 42.26 1.22 57.56 47.18 1.1 72.25 65.68 1.45 74.44 51.34

ParkScene 0.37 40 108.11 / / / 0.95 59.22 62.34 1.89 72.19 38.20 1.92 74.64 38.88
MarketPlace 0.58 40.41 69.67 0.91 51.89 57.02 / / / / / / 1.78 69.34 38.96
RitualDance 0.43 42.55 98.95 / / / / / / / / / 1.84 66.28 36.02

C

BasketballDrill 1.16 47.88 41.28 0.76 49.38 64.97 0.94 50.68 53.91 1.22 65.63 53.80 1.49 67.89 45.56
BQMall 0.52 45.43 87.37 1.04 50.66 48.71 / / / 1.39 69.26 49.83 1.41 72.07 51.11

PartyScene 0.32 41.5 129.69 0.85 55.92 65.79 0.95 53.66 56.48 2.09 65.64 31.41 2.13 68.26 32.05
RaceHorsesC 0.29 44.9 154.83 1.09 56.24 51.6 0.91 53.75 59.07 0.93 64.16 69 1.27 66.36 52.25

D

BasketballPass 0.44 42.02 95.5 0.94 52.43 55.78 / / / 1.6 59.74 37.34 1.62 66.22 40.88
BlowingBubbles 0.39 40.66 104.26 0.93 53.61 57.65 0.91 54.88 60.31 1.09 63.09 57.88 1.14 67.12 58.88

BQSquare 0.36 40.3 111.94 0.86 53.28 61.95 1.16 55.55 47.89 0.93 62.11 66.78 1.07 64.78 60.54
RaceHorses 0.37 41.54 112.27 1.07 57.39 53.63 1.01 49.45 48.96 0.62 56.29 90.79 1.04 59.32 57.04

E
FourPeople 0.62 39.57 63.82 / / / 0.89 58.72 65.98 2.09 70.57 33.77 2.15 72.81 33.87

Johnny 0.62 44.16 71.23 / / / 0.96 59.33 61.80 2.67 72.24 27.06 2.71 74.59 27.52
KristenAndSara 0.55 41.19 74.89 / / / 1.23 57.62 46.85 2.29 72.98 31.87 2.31 75.41 32.65

Average 0.44 42.47 96.52 1.07 54.4 50.84 1.02 54.83 53.75 1.51 66.69 44.17 1.65 69.85 42.33
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Table 9. Performance comparison with deep learning methods.

Class Sequence

Wu 2022 [27]
(VTM7.0)

Chen 2023 [28]
(VTM14.0)

Zan 2023 [32]
(VTM7.0)

Ours
(VTM7.0)

Ours
(VTM23.1)

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B

BDBR TS T
B(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

A1

Tango2 1.52 66.71 43.89 1.98 52.45 26.49 / / / 0.67 66.84 99.76 0.92 69.5 75.54
FoodMarket 1.57 50.97 32.46 1.18 52.91 44.84 / / / 1.23 64.68 52.59 1.49 67.65 45.40

Campfire 2.20 64.08 29.13 1.45 59.86 41.28 / / / 1.62 65.95 14.71 1.86 70.06 37.67
Drums / / / / / / / / / / / / 1.73 68.28 39.47

Average (A1) 1.76 60.59 34.43 1.54 55.07 35.76 1.89 63.97 33.85 1.17 65.82 56.26 1.50 68.87 45.91

A2

Catrobot1 2.37 65.4 27.59 1.75 43.27 24.73 / / / 1.25 64.58 51.66 1.38 67.56 48.96
DaylightRoad2 1.8 71.2 39.56 1.67 50.49 30.23 / / / 1.44 71.88 49.92 1.46 74.9 51.30
ParkRuning3 1.26 58.94 46.78 0.79 48.37 61.23 / / / 0.99 59.67 60.27 1.28 69.11 53.99
TrafficFlow / / / / / / / / / / / / 1.23 66.82 54.33

Average (A2) 1.81 65.18 36.01 1.40 47.38 33.84 2.00 68.82 34.41 1.23 65.38 53.15 1.34 69.60 51.94

B

BasketballDrive 1.32 76.68 58.09 2.22 50.38 22.69 / / / 2.39 67.87 28.40 2.42 70.51 29.14
BQTerrace 2.98 62.57 21.00 2.61 47.38 18.15 / / / 1.92 70.08 36.50 1.97 75.22 38.18

Cactus 2.02 70.67 34.99 2.03 46.57 22.94 / / / 1.69 69.43 41.08 1.71 76.92 44.98
Kimono 2.09 74.18 35.49 / / / / / / 1.1 72.25 65.68 1.45 74.44 51.34

ParkScene 2.16 65 30.09 / / / / / / 1.89 72.19 38.20 1.92 74.64 38.88
MarketPlace / / / 1.25 49.22 39.38 / / / / / / 1.78 69.34 38.96
RitualDance / / / 1.83 49.82 27.22 / / / / / / 1.84 66.28 36.02

Average (B) 2.11 69.82 33.09 1.99 48.67 24.46 2.35 73.33 31.20 1.80 70.36 39.09 1.87 72.48 38.76

C

BasketballDrill 3.65 57.35 15.71 3.29 50.38 15.31 / / / 1.22 65.63 53.80 1.49 67.89 45.56
BQMall 2.33 65.65 28.18 2.47 58.55 23.70 / / / 1.39 69.26 49.83 1.41 72.07 51.11

PartyScene 2.07 59.27 28.63 1.85 49.33 26.66 / / / 2.09 65.64 31.41 2.13 68.26 32.05
RaceHorsesC 1.52 64.92 42.71 1.73 50.40 29.13 / / / 0.93 64.16 68.99 1.27 66.36 52.25

Average (C) 2.39 61.80 25.86 2.34 52.17 22.29 2.50 67.06 26.82 1.41 66.17 46.93 1.58 68.65 43.45

D

BasketballPass 2.33 59.25 25.43 2.22 51.84 23.35 / / / 1.6 59.74 37.34 1.62 66.22 40.88
BlowingBubbles 3.15 54.63 17.34 1.67 53.27 31.90 / / / 1.09 63.09 57.88 1.14 67.12 58.88

BQSquare 1.95 59.64 30.58 2.91 55.85 19.19 / / / 0.93 62.11 66.78 1.07 64.78 60.54
RaceHorses 2.68 60.96 22.75 1.93 55.08 28.54 / / / 0.62 56.29 90.79 1.04 59.32 57.04

Average (D) 2.53 58.62 23.17 2.18 54.01 24.78 2.16 64.58 29.90 1.06 60.31 56.90 1.22 64.36 52.75

E
FourPeople 2.80 70.00 25.00 2.68 57.10 21.31 / / / 2.09 70.57 33.77 2.15 72.81 33.87

Johnny 2.82 68.11 24.15 2.93 56.60 19.32 / / / 2.67 72.24 27.06 2.71 74.59 27.52
KristenAndSara 2.88 67.92 23.58 3.00 50.21 16.74 / / / 2.29 72.98 31.87 2.31 75.41 32.65

Average (E) 2.83 68.68 24.27 2.87 54.64 19.04 3.11 73.75 23.71 2.35 71.93 30.61 2.39 74.27 31.08

Average 2.19 65.53 29.92 2.07 51.79 25.02 2.33 68.76 29.51 1.51 66.69 44.17 1.65 69.85 42.33
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5.3. Ablation Study

We conduct ablation experiments to analyze the impact of major components in the
proposed algorithm. For the FCPD scheme, we first investigate the prediction accuracy
of the two random forests, including RFPM and RFET . Figure 10 illustrates the prediction
accuracies of RFPM and RFET for different sequences under four QP settings. It can be
observed that the prediction accuracies of RFPM and RFET are both beyond 90%. The
prediction accuracies are also stable for different sequences and different QP settings.
Therefore, the FCPD scheme can efficiently maintain the RD performance. Moreover, in
order to evaluate the effectiveness of the employed features, the importance proportion of
the five types of features in the random forest classification is shown in Table 10. It can be
observed that the contribution of each feature is beyond 10%, and the sub-CUs complexity
difference contributes the most (beyond 30%). It demonstrates that all of the employed
features are effective and representative.
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Figure 10. The accuracy of the two random forest classifiers. (a) RFPM; (b) RFET .

Table 10. The importance of features.

Features Proportion
RFPM RFET

Block Information 0.17 0.2
Texture Complexity 0.1 0.11

Gradient Information 0.16 0.16
Sub-CUs Complexity difference 0.39 0.33

Context Information 0.18 0.2

The proposed FCPD scheme is composed of accelerating of the simple, fuzzy, and
complex CU partition decision. Figure 11 reports the time saving of each component.
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FCPD improves complex CUs the most, which saves 30–60% encoding time. Meanwhile,
predicting the optimal partition mode for simple CUs and the early termination process
for fuzzy CUs also bring considerable complexity reduction, about 10–25% encoding time
saving, respectively.

(a) (b)

(c) (d)

Figure 11. Influence of different components in FCPD for different sequences. (a) BasketballDrive;
(b) RaceHorses; (c) BasketballPass; (d) Johnny.

For the FIMP scheme, we investigate the prediction accuracy, which indicates the ratio
of the CUs that the predicted intra modes by FIMP are same as the original VTM encoder.
Overall, as shown in Figure 12, the average accuracy of different sequences is around 90%
and the accuracy is slightly higher with the increasing of QPs.
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Figure 12. The accuracy of FIMP.

To the proposed FCPD, FIMP, and overall algorithm, we compare the RD performance
and time saving under four different QP values as shown in Figure 13. Figure 13a shows
that the RD performance results of FCPD, FIMP, and the overall algorithm are almost com-
parable to the VTM encoder. Figure 13b indicates that the proposed algorithm maintains
similar complexity reduction over different QP values.
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(a) (b)

Figure 13. Performance results of the proposed FCPD, FIMD, and overall algorithm compared with
VTM-7.0 encoder of RaceHorseC. (a) RD curves; (b) time saving under different QPs.

6. Conclusions

We propose a fast VVC intra coding method for power-constrained applications. The
proposed method is divided into two parts. First, a fast CU partition scheme is proposed
based on two random forest classifiers. The CUs are categorized as simple, fuzzy, and
complex CUs based on their texture characteristics. One random forest classifier predicts
the best partition modes of simple and complicated CUs directly, while another random
forest identifies the early termination of the partition process for fuzzy CUs. This approach
not only maximizes the potential for speed improvement but also effectively mitigates
bitrate distortion (BDBR) losses, particularly for fuzzy CUs. Second, a hierarchical search
method based on texture features is proposed to accelerate the intra mode prediction
process. Experimental findings indicate that our algorithm obtains significant complexity
reduction with acceptable loss compared with the latest VVC reference software (VTM 23.1).
Further, when compared to state-of-the-art methods, the proposed method also achieves
the largest time saving with comparable BDBR loss.
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Abbreviations
The following abbreviations are used in this manuscript:

VCC versatile video coding
HEVC high-efficiency video coding
CU coding unit
QTMT quadtree with nested multi-type tree
BDBR Bjøntegaard delta bit rate
BDPSNR Bjøntegaard delta peak signal-to-noise rate
QT quadtree
CTU coding tree unit
MT multi-type
BV vertical binary tree
BH horizontal binary tree
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TV vertical ternary tree
TH horizontal ternary tree
RDO rate-distortion optimization
TS-FMD the classical three-step fast intra mode decision
RMD rough mode decision
MPM most probable model
SVM support vector machine
LPTCM Laplace transparent composite model
CNN convolutional neural network
AGH the average gradients in the horizontal
AGV the average gradients in the vertical
pRMS progressive rough mode search
NMSE neighboring mean squared error
DDR diagonal down right
DDL diagonal down left
SCCD sub-CUs complexity difference
NCC neighboring CUs complexity
NCD neighboring CUs depth
RFC random forest classifier
CART classification and regression tree
RF random forest
FCPD fast CU partition decision
FIMP fast intra mode prediction
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