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Abstract: This study introduces a novel Quantum Wasserstein Generative Adversarial Network
approach with a Gradient Penalty (QWGAN-GP) model that leverages a quantum generator alongside
a classical discriminator to synthetically generate time series data. This approach aims to accurately
replicate the statistical properties of the S&P 500 index. The synthetic data generated by this model
were compared to the original series using various metrics, including Wasserstein distance, Dynamic
Time Warping (DTW) distance, and entropy measures, among others. The outcomes demonstrate
the model’s robustness, with the generated data exhibiting a high degree of fidelity to the statistical
characteristics of the original data. Additionally, this study explores the applicability of the synthetic
time series in enhancing prediction models. An LSTM (Long-Short Term Memory)-based model was
developed to evaluate the impact of incorporating synthetic data on forecasting accuracy, particularly
focusing on general trends and extreme market events. The findings reveal that models trained
on a mix of synthetic and real data significantly outperform those trained solely on historical data,

improving predictive performance.

Keywords: quantum machine learning; synthetic data generation; financial time series prediction;
generative adversarial networks (GANSs)

1. Introduction

In recent years, the finance industry has witnessed a paradigm shift towards leveraging
advanced computational techniques for modeling, forecasting, and analyzing financial
markets. Among these techniques, synthetic data generation has emerged as a revolutionary
approach, offering new perspectives for overcoming challenges inherent in financial data
analysis, particularly due to the limitations of real-world data regarding availability, privacy
concerns, and the representation of rare events.

This paper introduces a methodology for generating synthetic data about the S&P
500 index, utilizing Quantum Wasserstein Generative Adversarial Networks (QWGANSs).
This approach represents a confluence of quantum computing and advanced Machine
Learning, aimed at capturing and replicating the intricate dynamics of financial markets.
The S&P 500 index, a bellwether for the U.S. economy, presents a complex and dynamic
system influenced by many factors, making its accurate modeling and prediction a daunt-
ing task. Traditional financial modeling techniques often grapple with capturing the full
spectrum of market behaviors, especially when it comes to predicting extreme market
movements or black swan events, which, though infrequent, have profound impacts on
the market. The advent of quantum computing offers unprecedented computational ca-
pabilities, potentially enabling the modeling of complex systems more accurately than
classical computing. In this context, the application of Quantum Wasserstein Generative
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Adversarial Networks (QWGANS) for synthetic data generation marks a significant inno-
vation. QWGAN s leverage the principles of quantum mechanics to model the probability
distributions of financial indices, such as the S&P 500, facilitating the generation of data
that mirror their real-world complexities.

The primary aim of this work is to explore the effectiveness of QWGANSs in generating
synthetic data that accurately reflect the dynamics of the S&P 500 index. Furthermore,
this paper expands its analysis to include the Brazilian stock market index (BOVESPA) to
demonstrate the generalizability of the methodology employed.

By synthesizing data that include representations of extreme market conditions, this
work intends to bridge the gap in datasets where such events are under-represented.
Subsequently, the synthetic data generated by QWGANSs will be utilized to train a Long
Short-Term Memory (LSTM) model to assess the impact of this synthetic dataset on the
accuracy of S&P 500 forecasts. This investigation will include a comparative analysis of
the performance of models trained with various combinations of real and synthetic data,
emphasizing the utility of synthetic data in enhancing predictive models.

The novel aspect of this study is its emphasis on forecasting extreme events within
stock markets. Given the rarity yet significant impact of such events, traditional datasets
often lack sufficient instances to train models effectively for their prediction. By employing
QWGAN-generated data, which include simulated instances of extreme market behavior,
this research seeks to improve the predictive models” ability to forecast such events accu-
rately. In this sense, this study is poised to contribute significantly to the field of financial
forecasting and risk management by demonstrating the potential of quantum-enhanced
synthetic data in improving the accuracy and robustness of predictive models. Moreover,
by focusing on the prediction of extreme market events, this research addresses a critical
gap in current financial modeling practices, offering insights into more effective strategies
for risk assessment and management in the face of market volatility.

This article is structured as follows. Section 2 reviews the related work. Section 3
provides the foundations of classic quantum computing and Quantum Machine Learn-
ing. Section 4 presents a case study and the corresponding model. A second case study
(BOVESPA) is proposed to further corroborate the approach’s generalization capabilities.
Section 5 reviews the results of the experiments, and, finally, Section 6 concludes this work.

2. Related Work

Quantum Generative Adversarial Networks (QGANSs) are at the forefront of combin-
ing quantum computing with Al, with the potential to outperform traditional GANs in
computational efficiency and data handling.

Huang et al. [1] present a detailed study related to the use of the Hadamard test
quantum algorithm for obtaining gradients required for training QGANSs. This method,
which is crucial for training efficiency, is implemented by exploiting a superconducting
quantum processor including five frequency-tunable transmon qubits. The experiment
pursued by the authors proves the feasibility of QGANS in practical quantum computing
environments. Dallaire et al. [2] delve into the quantum cost function, which is a specific
component in optimizing QGAN performance. By tuning this function, QGANs can be
properly trained to produce desired outputs. In this sense, the authors” work highlights the
importance of theoretical foundations in advancing QGAN technology.

However, this kind of model faces challenges, including the nascent stage of quantum
computing technology and training stability issues similar to those in classical GANSs.
The integration of classical data into quantum processes demands sophisticated encod-
ing methods, with QGANSs requiring efficient algorithms for both data processing and
model training. S. Chakrabarti et al.’s development of a quantum Wasserstein GAN (QW-
GAN) [3] demonstrates significant advancements in processing speed and data handling
through innovative loss functions and quantum-specific methodologies. B.T. Kiani et al. [4]
introduce a QWGAN model that utilizes the quantum Earth Mover’s (EM’s) distance,
showcasing its effectiveness in overcoming optimization challenges and noise sensitivity.
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This model’s success in generating complex quantum states and its practical application
in real-world scenarios underscore the quantum EM distance’s potential in enhancing
quantum learning processes.

On the anomaly detection front, Herr et al. [5] explore a quantum variational GAN,
AnoGAN, using a hybrid quantum-—classical approach to improve training stability and
efficiently process classical data without conversion to quantum states. Their work suggests
quantum AnoGAN'’s comparable performance to classical models, indicating the feasibility
of quantum approaches in specific scenarios. Situ et al. [6] tackle the vanishing gradient
problem in generating discrete data distributions with a QGAN, employing a hybrid
architecture to efficiently produce complex data patterns. Their approach demonstrates
the capability of quantum models to efficiently generate discrete data, leveraging quantum
circuitry to enhance model performance.

Kalfon et al. [7] address anomaly detection in time series with a cQGAN model, intro-
ducing Successive Data Injection (SuDal) encoding to optimize data representation within
limited qubit resources. Their model, tested on various datasets, shows high accuracy in
anomaly detection, enhanced by dynamic thresholding to manage noisy data effectively.

Lastly, in [8], Ostaszewski et al. study the functional relationship between quantum
control pulses in ideal conditions and those affected by an unwanted drift, utilizing LSTM
neural networks to model and correct for these disturbances efficiently. The methodology
section is divided into two parts, i.e., (i) a model of the quantum system describing a model
involving two interacting qubits, influenced by a control and a drift Hamiltonian, using
the GKSL master equation, and (ii) an architecture detailing the use of LSTM networks,
suitable for time series data like control pulses, to approximate the correction needed to
counteract the effects of drift. The authors discuss the performance of the neural network
in generating control pulses that counteract drift, stating that the trained LSTM networks
are shown to effectively create control pulses with high fidelity. Furthermore, a notable
result consisting of the network’s ability to adapt to local variations in control pulses and
maintain high fidelity under changing conditions is tested and confirmed. The authors
conclude by remarking on the effectiveness of using LSTM neural networks for modeling
and correcting quantum control schemes in noisy environments, suggesting that this
approach is promising for the further development of quantum technologies.

The article delves into the domain of quantum mechanics, focusing on the correction
of quantum control pulses affected by drift using LSTM neural networks. The authors’
research is crucial for enhancing the precision and stability of quantum systems, offering
new methodologies in an area traditionally governed by quantum physics and control the-
ory. By employing LSTMs, the study presents a novel way to model and mitigate complex
quantum behaviors, which could significantly influence future quantum technologies by
enhancing system reliability and performance.

Conversely, the present article navigates the financial sector, introducing the applica-
tion of Quantum Wasserstein Generative Adversarial Networks (QWGANs-GP) to generate
synthetic data that enhance the prediction accuracy of financial time series, such as the
S&P 500 index. This study not only represents an innovative blend of quantum computing
and generative adversarial networks but also marks a significant step towards integrat-
ing quantum-enhanced methods into financial forecasting. By improving the accuracy of
models, especially in predicting rare but impactful extreme market events, this research
could substantially influence risk management and market prediction strategies, potentially
leading to more robust financial systems.

Both articles showcase the potential of quantum computing to transcend traditional
boundaries and solve complex problems in diverse fields through hybrid quantum-—classical
systems and neural network applications. While [8] advances quantum computing in
theoretical and practical realms within physics, this article explores its pragmatic use in
economic forecasts, underscoring the broad applicability and transformative potential of
quantum technologies.
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3. Background

This section provides an overview of quantum computing applications (by summa-
rizing the Shor and Grover algorithms and the concept of Variational Quantum Algo-
rithms), Quantum Machine Learning (by describing the principles of Wasserstein GAN
and the WGAN with Gradient Penalty), and, finally, the Quantum Wasserstein Generative
Adversarial Network with Gradient Penalty.

3.1. An Overview about Quantum Computing

A quantum algorithm [9] constitutes a sequential methodology executable on a quan-
tum computing platform, characterized by operations that leverage the unique principles
of quantum mechanics, such as entanglement and superposition. These foundational quan-
tum phenomena enable quantum algorithms to potentially execute certain computational
tasks more efficiently than their classical counterparts.

Shor’s algorithm [10] epitomizes the quantum computational advantage by efficiently
decomposing an integer N into its prime factors. This quantum algorithm demonstrates
a significant computational speedup over the best-known classical factoring algorithms.
Specifically, Shor’s algorithm operates within polynomial time complexity, denoted as
O(log N), indicating that the required computational resources increase logarithmically
with the input size N. In contrast, classical factoring algorithms exhibit an exponential
time complexity, represented as O(2"), underscoring the profound efficiency of quantum
algorithms in solving certain computationally intensive problems. Shor’s algorithm en-
compasses two integral segments: quantum mechanics-based operations and classical
pre-processing tasks. Initially, the classical segment reduces the integer factorization prob-
lem to the determination of a function’s periodicity, a task achievable with conventional
computing resources. Subsequently, the quantum segment undertakes the actual factoriza-
tion by accurately identifying the period of the function, a process known as period finding,
facilitated by the quantum computational environment. The practical deployment of Shor’s
algorithm encounters constraints related to the quantum computing infrastructure, specifi-
cally that the algorithm’s demand for qubits directly correlates with the magnitude of the
integer to be factorized. Presently, the nascent stage of quantum computing technology,
characterized by a limited qubit count and elevated error rates, presents substantial chal-
lenges in applying Shor’s algorithm for decrypting encryption schemes based on large
integers, such as RSA keys [11]. RSA, a pivotal public-key cryptosystem, utilizes a pair of
keys for encryption and decryption: a public key derived from two large prime numbers
for encryption, and a private key, kept confidential, for decryption. Only the possession of
the prime numbers, constituting the private key, enables message decryption.

Quantum Error Correction (QEC) emerges as a solution to counteract decoherence by
employing additional qubits to encode quantum information redundantly, thereby enabling
error detection and correction. Despite its potential, the high resource demands of QEC
pose significant challenges to the practical deployment of quantum computers in the near
term [12]. The efficacy of a quantum computer is not solely dependent on the quantity
of qubits but also on their quality. Key metrics such as energy relaxation and coherence
time gauge the stability and operational integrity of qubits. However, the prevailing noise
levels in quantum systems significantly exceed signal strengths, rendering the current QEC
approaches insufficient for achieving scalable quantum computing.

Variational Quantum Algorithms (VQAs) represent a forefront approach within the
NISQ paradigm, employing a methodology akin to neural network training. These al-
gorithms seek to optimize quantum circuits’” parameters to either minimize or maximize
a cost function related to a specific model, thus tackling optimization problems through
a confluence of quantum and classical computational efforts. The quantum segment of
VQAs, the Variational Quantum Circuit, processes input data to produce a measurable
output influenced by adjustable parameters, with the quantum component responsible for
executing the cost function and measurements, and the classical segment handling parame-
ter optimization. VQAs draw inspiration from the Variational Principle, a methodological
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framework aimed at deriving approximate solutions to analytically intractable problems,
such as obtaining the ground state energy of a quantum system via the Schrodinger
equation. This principle involves hypothesizing a wave function, |{(x)), contingent on
variational parameters, x, which are iteratively adjusted to minimize the energy estimate of
the wave function. According to the Variational Theorem, the energy estimate provided
by any trial wave function serves as an upper limit to the actual ground state energy, Ey,
thus directing the optimization process towards the minimal energy configuration. VQAs
are adaptable to specific problems yet adhere to a structured framework, incorporating
distinct phases for their operation as illustrated in the architecture diagram of a Variational
Quantum Algorithm (see Figure 1).

Quantum
State Quantum circuit
preparation
— A
U(z;6;) [2)—  Ulz;6)
- A

: Update Cost Output
01— 0; E[Y — f(z;0)]

Classical

Figure 1. Architecture of a Variational Quantum Algorithm.

3.2. Quantum Machine Learning

Quantum Machine Learning (QML) extends the principles of Machine Learning into
the quantum domain, aiming to harness quantum computational speedups for data pro-
cessing and algorithmic learning. QML offers novel approaches to processing and learning
from data in ways that classical computing cannot achieve alone. This synergy promises sig-
nificant advancements in computational efficiency and algorithmic complexity, particularly
in the era of Noisy Intermediate-Scale Quantum (NISQ) devices and beyond. Generative
models constitute a paradigm that can synthesize novel data instances, contrasting with
discriminative models which discern between differing data instances. Generative models
encapsulate the underlying data distribution, facilitating the estimation of the likelihood
of specific instances. Conversely, discriminative models predict the probability of labels
given the data instances. Generative modeling autonomously identifies and learns patterns
within input data, enabling the synthesis of new examples that plausibly align with the
original dataset.

A notable instance of generative models is the Generative Adversarial Network (GAN),
conceptualized by Goodfellow et al. [13]. A GAN comprises two core components:

*  Generator (G), which synthesizes new data instances from a randomly selected vector
following a Gaussian distribution.

¢  Discriminator (D), a binary classifier tasked with distinguishing between genuine data
(real) and synthetic data (fake) produced by the generator.

These two networks engage in a competitive dynamic, where the generator seeks to
deceive the discriminator, which in turn adapts to more accurately classify new synthetic
data. This iterative process enhances the generator’s ability to produce data increasingly
indistinguishable from actual data. The discriminator’s output, typically derived from a
sigmoid function, quantifies the probability of data being real, with D(x) representing this
probability. The discriminator aims to minimize a cross-entropy loss function, while the
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generator endeavors to maximize it, indicating a min—-max game between the two networks.
The process is visualized in Figure 2, illustrating the iterative training cycle that refines
both networks.

Random Generator Generated Update model
Input [ st ot et N )
Model Sample : '
Vector H :

A

Discriminator ./ Binary Classification
Model ’ / Real/Fake

Update model

Figure 2. GAN’s architecture.

The Wasserstein GAN (WGAN) [14,15] introduces a novel cost function grounded
in the Wasserstein metric, also known as the Earth Mover’s distance (EMD), offering a
measure of the cost to transform one data distribution into another. The WGAN framework
aims to minimize this distance, facilitating a more stable and convergent training process
compared to traditional GANs. This approach requires the discriminator, here referred to
as the Critic, to approximate a 1-Lipschitz function, guiding the generator to produce data
that minimize the Wasserstein distance between the synthetic and real data distributions.
An iteration of the WGAN, the WGAN with Gradient Penalty (WGAN-GP), incorporates
a gradient penalty into the Critic’s loss function to enforce the Lipschitz constraint more
effectively. This adjustment aims to stabilize the training process and mitigate common
issues such as mode collapse and vanishing gradients, marking a significant advancement
in the GAN methodology. Quantum GANs (QGANSs) aim to replicate the probabilistic
distribution of original data using quantum computational advantages. These models
leverage quantum algorithms to potentially surpass classical GANSs in learning efficiency
and data generation capabilities. The QGAN architecture can vary, including both fully
quantum and hybrid quantum-—classical configurations, with the latter often employing
a quantum generator alongside a classical discriminator to optimize performance and
feasibility in current quantum computational paradigms.

QGANSs embody a pioneering amalgamation of artificial intelligence and quantum
computing technologies. This emergent methodology, which has yet to be fully validated,
possesses the potential to eclipse the performance benchmarks established by traditional
classical GANs. According to Ngo et al. [16], QGANSs are poised to surpass classical GAN
models in the following key areas:

¢  Computational Power: The principle of quantum supremacy suggests that quantum
models can execute certain computations exponentially faster than their classical coun-
terparts. Within QGAN frameworks, this attribute frequently translates to a reduced
parameter requirement to achieve or exceed the performance levels of classical GANs.
¢ Data Handling Capabilities: Quantum computing exhibits a unique proficiency in
processing, manipulating, and generating particular data types, offering a distinct ad-
vantage in scenarios where classical computational approaches encounter limitations.

In particular scenarios, the hybrid quantum—classical computation paradigm, integrat-
ing a quantum generator with a classical discriminator, demonstrates superior performance
compared to entirely classical GAN models. This advantage primarily stems from the
accelerated and simplified convergence during the training phase. However, QGANs
also encounter specific challenges. Notably, the full potential of quantum computation
remains untapped, with current applications still navigating the NISQ era, affecting all
quantum algorithms. Furthermore, akin to classical GANs, QGANSs are susceptible to train-
ing instabilities, potentially complicating the achievement and maintenance of convergence.
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Additionally, the risk of model collapse, where the generator produces a limited or identical
output set, is present in both quantum and classical models [17].

A significant hurdle in QGAN development involves the integration of classical data
with quantum operations. When both the generator and discriminator are quantum-based,
classical data must be encoded into quantum states for input into the discriminator. Con-
versely, if only the generator is quantum, the generated data must be converted back into a
classical format for further analysis or application. This necessitates a careful consideration
of the interplay between classical and quantum data processing in QGANS.

Building on the foundational concepts of GANs, Wasserstein GANs (WGANSs), and the
advancements introduced by the WGAN with Gradient Penalty (WGAN-GP), the Quantum
Wasserstein Generative Adversarial Network with Gradient Penalty (QWGAN-GP, [18])
represents a pivotal evolution in the domain of QML. This model integrates the quantum
computing framework with the WGAN-GP architecture to address and potentially surpass
some of the limitations faced by classical GANs and QGANSs, particularly focusing on
training stability and the quality of generated data. The QWGAN-GP model leverages
quantum circuits to construct both the generator and the discriminator (or Critic, in the
context of WGANSs), exploiting quantum mechanical properties to enhance the generative
modeling process. The quantum generator creates quantum states that approximate the
distribution of a given quantum dataset, while the quantum discriminator evaluates the
authenticity of these generated states against real quantum data samples. The inclusion of
the gradient penalty term in the loss function, as inspired by WGAN-GP, aids in enforcing
the Lipschitz constraint more effectively, which is crucial for the training stability and
convergence of the model. By incorporating the gradient penalty, QWGAN-GP mitigates
common issues such as mode collapse and the vanishing gradient problem, which are
prevalent in classical GANs and some QGAN models. Moreover, quantum systems in-
herently provide an exponential increase in state space with a linear increase in qubits,
allowing QWGAN-GP models to potentially represent and process complex data distribu-
tions more efficiently than their classical counterparts. QWGAN-GP models hold promise
for applications in quantum chemistry, material science, and quantum cryptography, where
they can be used to generate and analyze quantum states that are difficult to simulate
classically. Despite their potential, QWGAN-GP models face challenges related to the
current limitations of quantum hardware, such as coherence times, qubit connectivity,
and error rates. These hardware constraints necessitate efficient quantum circuit designs
and error mitigation techniques to realize the practical deployment of QWGAN-GP models.
Furthermore, the complexity of training quantum models and the need for significant
classical computational resources for simulation and optimization highlight the importance
of hybrid quantum-—classical approaches in the near term.

4. Case Study and Problem Formulation

This section details a case study utilizing a QWGAN-GP model (the code used for the ex-
periments, together with the instructions to execute them, can be found on the Github repository
https:/ / github.com /EBarbierato/Enhancing-Financial-Time-Series-Prediction-) for synthesiz-
ing data corresponding to the S&P 500 index. It implements the model’s quantum generator
and classical Critic architectures (the architecture used to perform the experiments consists
of gBraid Lab, a comprehensive cloud platform tailored for quantum computing, equipped
with a custom notebook environment that integrates with tools like GitHub and VSCode. It
provides access to numerous quantum computing resources, including over 20 quantum
computers and simulators via the qBraid SDK. The SDK allows for easy programming
across different quantum frameworks and seamless execution on quantum hardware.
For example, users can create quantum circuits using one framework, like PennyLane,
then transpile these using another, such as Qiskit, and execute them on a third platform
like Amazon Braket, showcasing the SDK’s versatile application capabilities). Moreover,
it explores various S&P 500 predictions using an LSTM model with different synthetic
datasets to ascertain the optimal data combination for prediction accuracy. The dataset,
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derived from the “yfinance” Python library, spans 1 January 2000 to 31 December 2008,
a period chosen for encompassing the Great Financial Crisis, characterized by significant
market volatility and the occurrence of extreme events, thus reflecting the broader U.S.
economic landscape (see Figure 3 with daily resolution).

S&P 500 Index Over Time
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Figure 3. S&P 500 Close price values over time.

The model’s primary contribution lies in introducing an alternative Parametric Quan-
tum Circuit (PQC) designed to be computationally less complex while retaining efficiency.
It treats data points as a series of logarithmic returns, a choice reflecting the inadequacy of
solely studying index prices for comparing performance across different periods. Logarith-
mic returns are favored in financial time series analysis due to their properties, including
value compression and additivity over time, which facilitates the summation of returns
across periods to calculate the total return for the entire time frame, as highlighted in
econophysics studies.

4.1. Data Generation

The logarithmic returns can be calculated as per Equation (1), which takes the logarithm
of the Close price at time ¢ and subtracts from it the logarithm of the price at time ¢ — 1.

re=1In(p;) —In(pi_1) (1)

Figure 4 shows the evolution of the logarithmic returns of the S&P 500 over time.

Figure 5 depicts the Probability Density Function (PDF) of the logarithmic returns for
the S&P 500 index, indicating a divergence from a normal distribution. This divergence
is marked by an elevated peak density and tails that are more persistent compared to the
expected rapid decay in a normal distribution. To rectify this discrepancy, normalization
was applied to adjust the logarithmic returns to a mean of zero and a standard deviation of
one, standardizing all Log Returns to a consistent scale. The specific normalization formula
utilized is detailed in Equation (2):

T —Hu
Ttnorm = o (2)

To address the pronounced heavy tails in the distribution, diverging from normality,
a technique utilizing the inverse Lambert-W transform on normalized logarithmic returns
was employed, aiming to modify the distribution towards Gaussian characteristics. Lam-
bert’s W function, the inverse function of z = ue", facilitates a transformation suitable for
datasets with pronounced heavy tails, such as the normalized dataset V. This method,
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as delineated by Goerg et al. [19], enables the reshaping of the distribution to more closely
align with a Gaussian distribution, as detailed in Equation (3):

W(6v2)

Ws(o) = sgn(o)/

®)

where v is a value in a dataset, sgn(v) is the sign of v, J is a tunable parameter, and W is
the Lambert W function.

S&P 500 Log Returns Over Time
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Figure 4. S&P 500 Log Return values over time.
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Figure 5. S&P 500 Probability Density Function.

The rolling window technique generates a series of overlapping subsequences from
the original time series data, capturing temporal patterns and dependencies. It relies on
two parameters: the subsequence length () and the stride (s), which is the gap between
the starts of subsequences. Typically, the window length () is set longer than the stride
(s) to ensure sufficient overlap. For this analysis, m is set to 10 and s to 2, optimizing the
balance between overlap and computational efficiency.

The model to generate synthetic data for the S&P 500 index was trained on 2000 epochs
and the size of the batch, so the number of training samples used in one iteration of the
model training process to update the model’s parameters is equal to 20. The quantum
generator plays a crucial role in attempting to produce a data distribution that closely
approximates the true underlying distribution. In the model under discussion, the quantum
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circuit is composed of five qubits and is structured with three layers. It incorporates
single-qubit rotation gates to manipulate individual qubit states, entangles layers to create
quantum correlations between qubits, and re-uploads layers. This multi-layered approach
is designed to enhance the generator’s ability to capture the complexities of the S&P 500
data distribution.

In the quantum circuit for generating synthetic S&P 500 data, measurements are carried
out on each qubit using both the Pauli-X and Pauli-Z operators. Specifically, the setup
involves two distinct types of measurements: one on the X basis (Pauli-X) and one on the Z
basis (Pauli-Z). Consequently, each qubit encounters measurements with both operators,
allowing for the extraction of information about the qubit states on both the corresponding
X and Z bases. This methodology is advantageous as the X operator assesses the quantum
state in the superposition basis, distinguishing between the |+) and |—) states, which
represent the qubit being in an equal superposition of being in state |0) or |1) , but with
different relative phases. On the other hand, the Z operator measures the quantum state
in the computational basis, which corresponds to the |0) and |1) states. Combining these
measurements allows for the understanding of the qubit’s behavior and properties.

The encoding layer is responsible for setting the initial state of the qubits in the
quantum generator. In this case, the quantum generator circuit is initialized with a different
set of values by using random noise. Specifically, each value is between 0 and 27t and each
qubit receives a unique random angle for its initialization. Finally, the R, gate is applied
to prepare the initial quantum state of each qubit, with the parameter angle given by the
random values cited before. This method helps the generator explore a wide range of
possible outputs.

The PQC was created with the following method:

e Hadamard Gate: A Hadamard Gate was applied to each qubit at the beginning of
the circuit, transforming the initial state of each qubit, that is, |0), into an equal
superposition of both basis states, |0) and |1).

*  Rotation Layers: The decision to exclusively utilize the Ry and R, gates within the
quantum generator circuit was deliberate and was based on their impact on the qubit
amplitudes. In contrast, the R, gate primarily influences the phase of the qubit.
Consequently, focusing on the Ry and R, gates allows for precise control over the
qubit amplitudes, which is particularly relevant for shaping and manipulating the
quantum state to achieve the desired outcomes in the generative process.

*  Entangling layers: In the model, the entangling layers were constructed using CNOT
gates, which are non-parametrized gates. These CNOT gates were applied to every
pair of qubits within the quantum circuit. The purpose of using CNOT gates in this
manner is to establish entanglement between all pairs of qubits in the quantum circuit.

The presence of three layers in the model results in the repetition of both rotation
layers and entangling layers three times.
Figure 6 shows part of the PQC used in the quantum generator.

(0, 0): o H HRx(theta0)|-Ry(theta1)

(0, 1): - H HRx(theta2)|HRy(theta3)} - x ,J_I

(0, 2): - H HRx(thetad)HRy(thetas)]

(0. 3): - H HRx(thetas)HRy(thetar)] [x]
]
|

(0, 4): - H HRx(theta8)|-{Ry(thetag)

Figure 6. Encoding and single-layer representation of the quantum generator’s PQC.

Rx(theta10)HRx(theta15)HRy(theta16)}-

Rx(theta11)HRx(theta17)|HRy(theta18)}-

Rx(theta12)[Rx(theta19)|HRy(theta20)}-

Rx(theta13)HRx(theta21)|HRy(theta22)}-

Rx(theta14)HRx(theta23)HRy(theta24)}-

The Critic model is a convolutional neural network (CNN) designed to process sequen-
tial data. It takes the data generated by the quantum generator and learns to distinguish
between real (original) data and fake (generated) data.
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The Critic model comprises three convolutional layers with increasing numbers of
filters: 64, 128, and 128. This incremental increase in the number of filters enhances the
network’s capacity to extract intricate features from the input data, resulting in more
detailed feature maps as output. In particular, the first convolutional layer takes into
account the shape of the input data, which are in the form of (10,1). The number 10
corresponds to the length of the subsequences generated using a rolling window approach.
This consideration ensures that the network processes the input data in a manner that
respects their temporal structure.

After each convolutional layer, a LeakyReLU activation function is applied with a
factor of « = 0.1.

X, ifx>0
0.1x, else.

Leaky ReLU(x) = { (4)

The LeakyReLU function described by Equation (4) helps to prevent the dying ReLU
problem where neurons stop learning and allows the model to better capture complex
relationships, due to its nonlinearity [20].

After the three convolutional layers, the data go through flattening, which is a common
practice when transitioning from convolutional layers to fully connected layers. This
flattening reshapes the data into a one-dimensional vector, making them suitable for
feeding into a dense layer. Following the flattening step, a dense layer with 32 neurons
is employed, and the same LeakyReLU activation function is applied as before. Dense
layers are well suited for capturing complex data relationships. To prevent overfitting,
a dropout layer is introduced after the dense layer, where 20% of the neurons are randomly
omitted during the forward pass, helping improve the model’s generalization performance.
Finally, the output layer consists of a single neuron, which produces a single scalar value as
the model’s output. In general, there is no bound for the output value and higher values
indicate that the input is evaluated as real data, while lower values indicate the contrary.
The unbounded nature of the Critic’s output is related to the use of the Wasserstein distance
as a measure.

The cost function employed is the Wasserstein distance. To improve the training
stability of the model, it used a penalty term, enforcing the Lipschitz constraint.

Figure 7 depicts the two time series, with the original one in blue, while the one
regarding the data generated synthetically is in orange.

Original S&P 500 Log Returns Generated S&P 500 Log Returns
0.100 0.100

0.075 0.075
0.050 0.050
0.025 0.025

0.000 0.000

Log Return

-0.025 —0.025

—0.050 —0.050

-0.075 -0.075

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Date Date

Figure 7. Plot of the time series related to the original Log Returns and the generated Log Returns.

The results achieved with the previously mentioned model are promising. To assess
the characteristics of the two distributions, several metrics were employed for comparison.
One of the initial comparisons involves the use of a quantile-quantile (QQplot) plot to
visually assess the similarity or divergence between the two distributions.

In Figure 8, it is observed that both distributions, the original data distribution and
the synthetic data distribution generated by the model, deviate from normality. However,
there are some differences in their characteristics. The distribution of the original data
exhibits greater skewness, indicating that it deviates more significantly from a normal
distribution. Interestingly, in the central region, encompassing the quantiles between
—2 and 2, both distributions closely follow a normal distribution. This suggests that
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a substantial proportion of observations from each distribution are similar and exhibit
behavior consistent with a normal distribution within this range.

Ordered Values

0.100

0.075

0.050

0.025

0.000

—0.025

QQ Plot of Original S&P 500 Log Returns

Ordered Values

QQ Plot of Generated S&P 500 Log Returns

0.100
0.075
0.050
0.025
0.000

—0.025

—0.050 —0.050

-0.075 - -0.075

—0.100

—0.100

-1 0 1 2 3

-1 0 1 2
Theoretical quantiles

Theoretical quantiles

Figure 8. QQplot comparison between the original Log Returns and the generated Log Returns.

Next, the PDFs and CDFs of both distributions are compared.

Figure 9 shows that in the central part, where most of the changes are included,
the two distributions are pretty similar. In the tails, the original data present more extreme
events, with higher values, compared to the generated one, as the QQplot also highlights.
However, this representation does not perfectly reflect the two distributions because the
bins are a discretization of the Log Return values. Indeed, in Figure 10, which represents the
continuous PDEF, the two probability distributions nearly overlap each other. As evidence
of this high similarity, the Wasserstein distance, defined as the minimum amount of “work”
required to transform one distribution into the other, between the two distributions was
calculated, and it was found to be 0.0008608819538412148, which is nearly close to zero.

Histogram of Original vs. Generated S&P 500 Log Returns

BN Original S&P 500

50 Generated S&P 500

40 1

2304
wv
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Log Return

Figure 9. Histogram comparison between the original Log Returns and the generated Log Returns.

PDF of Original vs. Generated S&P 500 Log Returns
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Figure 10. PDF comparison between the original Log Returns and the generated Log Returns.
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The CDF representation in Figure 11 shows that the two distributions are very similar;
this graph highlights the probability that a Log Return picked at random is less than or
equal to that value. The orange line closely follows and overlaps the blue line, meaning
that the two distributions have the same probability.

CDF of Original vs. Generated S&P 500 Log Returns

—— CDF of Original S&P 500 Log Returns /—

CDF of Generated S&P 500 Log Returns  /

I I o o g
N IS o © o

Cumulative Distribution Function

o
o

-0.2 -0.1 0.0 0.1 0.2
Log Return Value

Figure 11. CDF comparison between the original Log Returns and the generated Log Returns.

In addition, the two autocorrelation functions (ACFs) of the two time series are
depicted below in Figure 12.

1.0 ACF for Original S&P 500 Log Returns 1.0 ACF for Generated S&P 500 Log Returns
0.5 1 0.5 1
0.0 ”.\-..-.. -.!--‘T_L..‘!. PP 0.04
—0.5 1 —0.51
-1.0— ; T y | . ; -1.0— ; T y T ! !
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Lags Lags

Figure 12. ACF comparison between the original Log Returns and the generated Log Returns.

Both ACF plots show that the autocorrelations across various lags are generally low,
tending towards zero and without statistical significance, which is consistent with the
properties of efficient financial markets where each Log Return is mostly independent of
the past. This leads to uncorrelated behavioral patterns due to the rationality of investors,
who make well-founded decisions based on all available information.

Moreover, entropy is also taken under consideration. It is a measure of the uncertainty
in the probability distribution of the Log Returns. A higher value of the entropy indicates
a more unpredictable distribution. In this case, both entropies are very close to each
other. Indeed, for the original logarithmic returns, the entropy is 3.1528, while that for
the generated data is 3.1289. This indicates that both data points have a similar degree
of randomness.

In addition, the Dynamic Time Warping (DTW) distance was computed between
the two time series. Despite having similar distributions, it is important to note that the
two series are not necessarily identical in their actual values, which can result in warping
or stretching along the time axis. The DTW distance measurement is valuable in this
context because it calculates the degree of similarity between the two time series while
accommodating for these nonlinear variations and potential temporal mismatches.

Figure 13 illustrates the DTW between the original series, represented on the y-axis,
and the generated series, depicted on the x-axis. The red line in the graph represents the
optimal warping path between the two series, with a window length set to 500. The warping
path represents how the two series are aligned against each other in time. It determines
how each point in one time series corresponds to one or more points in the other series.
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A perfect warping path is equal to a straight diagonal line. It is evident from the plot that
there is a noticeable time mismatch between the two series. This discrepancy suggests that
the generated series represents a different plausible scenario compared to the original series.
The DTW distance between the two series is computed to be 1.954. This relatively small
value indicates that, despite the warping and time misalignment, the two series exhibit
a significant degree of similarity. This similarity is reflected in the relatively low DTW
distance, suggesting that the generated series captures important aspects of the original
data and represents a plausible alternative scenario, even with temporal variations.

Original Time Series

0 500 1000 1500 2000

500

1000

1500

Generated Time Series

2000

Figure 13. DTW distance between the original Log Returns and the generated Log Returns.

To conclude the comparison analysis, a scatter plot was generated to illustrate the
two time series in a two-dimensional format. On the horizontal x-axis, the values of Log
Returns at time ¢ are represented, while on the vertical y-axis, the values of Log Returns at
the previous time step, denoted as t — 1, are depicted. This plot can be useful for detecting
complex patterns that cannot be visualized with the one-dimensional representation.

Figure 14 shows that both real and generated data points have a cluster around the
center, where the density of points is also higher, which suggests that the synthetic data
capture the general behavior of the real data well. Data points do not show any clear pattern;
it seems to be that they are randomly dispersed, confirming that there are no elements of
autocorrelation. However, real data show more spreads with a higher number of outliers
in the graph. This indicates a higher presence of extreme events in the real data than in
the generated data. The presence of a pronounced concentration of data points towards
the center, along with a significant occurrence of extreme events, implies the existence of a
volatility cluster, particularly in the real data. This phenomenon suggests that large returns
tend to follow large returns, and small returns tend to follow small returns, indicating a
clustering effect in volatility. However, it is worth noting that the synthetic data exhibit
fewer extreme values, and as a result, they may not entirely capture this specific aspect of
the original data’s behavior.
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Scatter Plot of Real vs. Synthetic Data
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Figure 14. Lagged value comparison between the original Log Returns and the generated Log Returns.

4.2. Prediction Models

This subsection delves into the practical applications of the data generated through
the QWGAN-GP model. Specifically, it explores various types of predictions, through
an LSTM model which leverages the synthetic data in two primary ways. Firstly, this is
accomplished as a feature incorporated into the model and secondly as a means to enhance
extreme events within the original time series.

The assessment of the data generated involve an evaluation of the modle’s effectiveness
in two main aspects. Initially, its performance is gauged in making general predictions on
the S&P 500 data. Then, a specific emphasis is placed on its ability to predict and handle
extreme events within the dataset.

The historical time series data for both the original and synthetic Log Returns are
combined in two distinct manners. Subsequently, these two combinations are subjected
to analysis and compared with a benchmark model, which involves solely using the
original series.

The first approach to using synthetic data involves incorporating the generated series
as a feature within the model. This decision stems from the observation that the generated
series closely approximates the distribution of the original data. By including the synthetic
series as a model feature, it introduces an alternative scenario for the evolution of the S&P
500 series. This approach allows for exploring potential variations in the data’s behavior,
which is especially useful for the ability to generalize well on the test set.

The second approach involves enriching the original time series by incorporating
extreme events from the synthetic series. Specifically, 82 extreme data points from the
generated time series are added to the original time series. This method is particularly
valuable for increasing the model’s capability to predict extreme events when applied to
the test set. With this method, the model gains greater exposure to extreme event scenarios,
potentially improving its ability to anticipate and handle such events during predictions.
In particular, an extreme event (EV) is defined as per Equation (5), where both y and ¢ are
calculated on the original logarithmic returns [21]:

EV =pu+20 )

Subsequently, a normalization step is performed, which involves scaling each feature
within the dataset to a range between 0 and 1, ensuring that the data are within a consistent
and standardized range, facilitating model training. Additionally, a transformation function
is applied to make the data suitable for use with the LSTM network. In particular, sequences
of 10 data points are created, and these sequences are used to predict the subsequent points
in the time series. Each prediction is evaluated with the actual value of the original time
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series, like a supervised ML problem. This approach allows the model to learn from
patterns and dependencies within these sequential data points.

All the above transformations were applied to each different prediction method.

The LSTM model is designed for a sequence prediction problem to predict the next
value in a sequence based on previous observations. In this problem, it used a sequential
model that arranges layers linearly. The same construction of the model was applied to
each prediction model to highlight the comparative performance of each one.

The input layer consists of an LSTM layer with 50 neurons, which feed the input data
with the shape of (10,1). The number 10 depends on the number of data points present in
each sequence, while the 1 depends on the number of features used. The only exception
was made for the feature model, which requires, for its nature, the addition of a second
feature, meaning that this parameter was set equal to two. Another LSTM layer with
100 neurons was applied. After each LSTM layer, a dropout layer was applied with a rate of
0.2 to prevent overfitting. Finally, a dense layer with a single unit was added as the output
layer, producing a single final value. The model was compiled with the Adam optimizer
and the mean squared error (MSE) as a loss function. In conclusion, each training was
performed for 100 epochs, updating the weights of the parameters after 32 samples.

5. Evaluation of the Results

The different models were evaluated by using the root mean squared error (RMSE)
and the Mean Absolute Error (MAE) defined in Equations (6) and (7), respectively:

1 R
MAE = — Y v — il (6)
j=1

where 7; is the predicted data point at time j, y; is the actual data point at time j, and 7 is
the total number of observations.

The results of the general S&P 500 predictions are presented in Table 1. These predictions
refer to the testing set, which is composed of 23 data points.

Table 1. General prediction results on the testing set of the S&P 500 with different methods.

Data RMSE MAE
Original 0.00644 0.00558
Feature 0.00411 0.00338
Oversampling 0.00615 0.00502

As indicated in Table 1, the most favorable outcome was achieved using the Feature
method, which appears to provide the best results. In contrast, employing solely the
original time series data and the Oversampling method does not seem to yield substantial
differences in performance.

It appears that the addition of extreme events to the training set did not result in
a significant improvement in the model’s performance. One potential explanation for
this outcome could be related to the relatively small number of extreme events added.
Specifically, incorporating 82 extreme events from a historical series comprising 2260 data
points may not have provided a substantial impact on the overall training process.

In contrast, the Feature method stands out as a significantly improved approach
compared to the benchmark. Indeed, it demonstrates an impressive increase in performance,
achieving a 36.2% improvement in the RSME and 39.4% in the MAE over the original
model. This notable performance improvement can be attributed to the inclusion of the
synthetically generated data, which share the same probability distribution as the original
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model. By incorporating generated data as a feature, the model is effectively trained on an
additional potential scenario of the S&P 500. As demonstrated by the results, this approach
leads to an enhancement in the model’s performance. It allows the model to consider and
learn from this supplementary scenario, contributing to its improved predictive accuracy.

Table 2 presents the results of the model in predicting extreme events, as discussed
earlier. The calculations were conducted on the training set, primarily due to the rarity of
extreme events in the test set. This approach ensures a more significant presence of these
specific events in the time series, facilitating the evaluation of the model’s ability to predict
and respond to extreme market occurrences.

Table 2. Extreme-event prediction results on the training set of the S&P 500 with different methods.

Data RMSE MAE
Original 0.04447 0.04134
Feature 0.02971 0.02764
Oversampling 0.04589 0.04355

The results align with the observations made in the general prediction analysis. Once
again, the Feature method stands out as the best model, showcasing a significant increase
in performance compared to the others. Specifically, both the RSME and MAE demonstrate
notable improvements, with a substantial increase of 33.1%. The observed improvement
can be attributed to the same principle as explained previously in the general prediction
analysis of the S&P 500. Specifically, exposing the model to additional potential scenarios,
as facilitated by the Feature method, has the potential to increase its performance.

On the contrary, the Oversampling method is even worse compared to the benchmark
model. Training the model on a limited number of additional extreme events may not yield
significant benefits, leading to higher RMSE and MAE values due to the increased presence
of extreme events within the series.

Additional Case Study

In addition to conducting a detailed examination of the primary case study, this
research extended its analysis to explore the Brazilian stock market index (BOVESPA).
The motivation for this expansion stems from the unique characteristics of emerging
markets, which differ significantly from established markets, exemplified by the S&P 500.

The time frame selected for this analysis was consistent with that of the previous
case. Nonetheless, several entries labeled as “NaN” were encountered within the dataset.
To ensure both continuity and accuracy, these missing values were rectified by substituting
them with a four-day moving average. This approach was employed to preserve the
integrity of the dataset and minimize the influence of missing data on further analyses.

The methodology retained the same model architecture used previously, applicable
to both the generation of synthetic data and the implementation of the Long Short-Term
Memory (LSTM) model.

Table 3 presents the general results obtained.

Table 3. General prediction results on the test set of the BOVESPA index with different methods.

Data RMSE MAE
Original 0.0177 0.0137
Feature 0.0092 0.0065
Oversampling 0.0241 0.0188

The results obtained for the general predictions are coherent with those observed for
the S&P 500 index. This convergence underscores the robustness and versatility of the
model across different market contexts for general predictions. Table 4 presents the results
of the model in predicting extreme events.
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Table 4. Extreme-event prediction results on the training set of the BOVESPA index with differ-
ent methods.

Data RMSE MAE
Original 0.0596 0.0564
Feature 0.0585 0.0552
Oversampling 0.0689 0.0670

The findings from the case study on the prediction of extreme events indicate an
improvement, albeit slightly less pronounced than that observed in the S&P 500 scenario.
This highlights the model’s capacity to generalize across various market contexts.

6. Conclusions and Future Work

This work discusses a QWGAN-GP constructed using a quantum generator and a
classical discriminator, creating a synthetic time series to replicate the statistical properties of
the 5&500. The results obtained from this model demonstrate its effectiveness in comparison
to the statistical properties of the original series. Various metrics, including Wasserstein
distance, DTW distance, entropy measures, and others, are calculated, and in each case,
the generated data perform robustly.

Furthermore, to reinforce the strength of the generated time series, an LSTM prediction
model is created. This model assesses the impact of the generated data on prediction perfor-
mance, both for general purposes and with a specific focus on extreme events. Remarkably,
in both prediction scenarios, a combination of synthetic and real data outperform the
benchmark established by only the original series.

The encouraging results obtained in this research open the way for ongoing work,
especially in the area of Quantum Machine Learning. Researchers are actively working
to address the limitations of quantum computation, such as the constraint imposed by a
limited number of qubits to guarantee the resilience of algorithms against high levels of
noise. In this specific case study, there is the potential to incorporate a quantum discrim-
inator instead of the classical one to increase computational speed and higher accuracy.
In addition, if the NISQ era limitations are surpassed, there will be the possibility to use
a greater number of qubits and layers, increasing the complexity of the Parametrized
Quantum Circuit.

Regarding future work, two aspects need to be considered. Firstly, the ability of the
QWGAN-GP to handle data from different periods depends significantly on its training.
A model trained on a diverse range of market conditions is more likely to generalize well
across different periods. If the training data lack representation of certain market dynamics,
the model’s effectiveness could decrease when faced with these unrepresented conditions in
separate periods. To enhance the model’s performance across various periods, adjustments
to the model parameters or the incorporation of period-specific features may be necessary.
This could involve optimizing quantum circuits or modifying the loss functions used
during the training phase. Secondly, it would be beneficial to explore the behavior across
varying timescales by segmenting the data into distinct periods—for instance, comparing
datasets spanning one year with those extending over five years. This approach will help
in understanding how trends and patterns evolve over different durations.
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