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Abstract: Several attacks have been proposed against autonomous vehicles and their subsystems that
are powered by machine learning (ML). Road sign recognition models are especially heavily tested
under various adversarial ML attack settings, and they have proven to be vulnerable. Despite the
increasing research on adversarial ML attacks against road sign recognition models, there is little
to no focus on defending against these attacks. In this paper, we propose the first defense method
specifically designed for autonomous vehicles to detect adversarial ML attacks targeting road sign
recognition models, which is called ViLAS (Vision-Language Model for Adversarial Traffic Sign
Detection). The proposed defense method is based on a custom, fast, lightweight, and salable vision-
language model (VLM) and is compatible with any existing traffic sign recognition system. Thanks to
the orthogonal information coming from the class label text data through the language model, ViLAS
leverages image context in addition to visual data for highly effective attack detection performance.
In our extensive experiments, we show that our method consistently detects various attacks against
different target models with high true positive rates while satisfying very low false positive rates.
When tested against four state-of-the-art attacks targeting four popular action recognition models,
our proposed detector achieves an average AUC of 0.94. This result achieves a 25.3% improvement
over a state-of-the-art defense method proposed for generic image attack detection, which attains an
average AUC of 0.75. We also show that our custom VLM is more suitable for an autonomous vehicle
compared to the popular off-the-shelf VLM and CLIP in terms of speed (4.4 vs. 9.3 milliseconds),
space complexity (0.36 vs. 1.6 GB), and performance (0.94 vs. 0.43 average AUC).

Keywords: adversarial machine learning; autonomous vehicle security; vision-language models;
multimodal learning

1. Introduction

Adversarial machine learning (ML) attacks have been a very popular research topic
since the introduction of the fast gradient sign method (FGSM) [1]. While the initial research
on these attacks focused on general image recognition models, many recent works show
that adversarial ML attacks can be a threat to autonomous vehicles.

Autonomous vehicles consist of various modules in which machine learning models
are commonly used. These modules are often called advanced driver assistance systems
(ADASs), and they serve different vehicle capabilities, such as traffic sign recognition,
lane-keeping assistance, collision detection, and smart parking. Among these modules,
traffic sign recognition models have repeatedly been a target of successful adversarial
ML attacks. The increasing number of successful adversarial attacks against traffic sign
recognition models raises real-world security concerns.

Adversarial ML attacks are achieved by creating input data with perturbations that
are not obvious to the human eye but result in errors for the ML algorithms. It is suggested
that many early adversarial ML attacks that target image recognition models apply per-
turbations to the whole input [1,2] or a specific part of the input in the form of pixels or
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patches [3]. Natural aspects such as weather, lights, and shadows have also been considered
while generating perturbations in attacks against traffic sign recognition models [4,5].

However, compared to the attacks, forms of defense mechanisms against adversarial
ML attacks are scarce. Several defense mechanisms have suggested that robust training
with perturbed images or changing a model’s original architecture can help detect per-
turbed instances [6–8]. In addition, denoising methods were proposed to clean perturbed
images. Ref. [9] provides a popular image denoiser developed by Microsoft, which uses
randomized smoothing. In contrast to attacks, there is no defense method that is specially
crafted for traffic sign recognition models. In this paper, as illustrated in Figure 1, we
propose the first attack detection mechanism for traffic sign recognition models, which is
called Vision-Language Model for Adversarial Traffic Sign Detection (ViLAS).

AV

AV

AV
+

Detection

Stop Sign

Stop Sign with an 
adversarial attack

Stop Sign with an 
adversarial attack

Traffic sign detected correctly

Traffic sign detected incorrectly

Traffic sign detected as attacked

Figure 1. The proposed vision-language adversarial sign detection (ViLAS) method co-operates with
the traffic sign recognition model to detect adversarial ML attacks.

Attacks against traffic signs can be achieved in various ways. In addition to possible
perturbations suggested for images, physical adversarial patches and the angles of lights
or shadows can also be used to achieve successful adversarial machine learning attacks.
Therefore, we believe detecting adversarial attacks against traffic signs can be accomplished
by observing the inputs and the model outputs with a separate modality subsystem.

In our approach, we use a vision-language model (VLM) as an observing subsystem.
VLMs are gaining popularity with the introduction of CLIP [10] and have been used
for several ML applications [11–15]. In our method, instead of using off-the-shelf CLIP,
we train a smaller and faster VLM that is more suitable for timely decision-making in
autonomous driving.

The multimodal processing of VLM for visual and language features provides addi-
tional information space for detecting attacks based on only visual features. By leveraging
the capability of VLMs to make connections between texts and images, our method uti-
lizes the context of images by computing the similarity scores between the image and
the class labels. Then, it decides if the image is adversarial or clean based on the con-
sistency/inconsistency between the predictions by the image recognition model and the
similarity scores obtained by the VLM.

In this work, our contributions can be summarized as follows:

• We propose a custom VLM for universal attack detection, which can easily work with
any traffic sign recognition model;

• To the best of our knowledge, this is the first defense mechanism against adversarial
ML attacks that is specifically crafted for autonomous driving;

• We benchmark our method with extensive experiments and analyze its effectiveness
compared to existing generic defense methods for image recognition.
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2. Related Work

The robustness of deep neural networks and their vulnerability against adversarial ML
attacks have been investigated for several years since the introduction of FGSM [1]. Many
attacks for both white-box and black-box settings were proposed. In white-box settings, the
attacker has access to the target model, including its parameters. Hence, very effective and
strong methods were introduced, including C&W attacks [16] and PGD attacks [2]. For the
black-box setting, in which the attacker does not have any prior information about the target
model, different approaches have been proposed. One of the most common approaches
is introduced in [17]. The idea is to use a substitute model for generating adversarial
samples for an unknown target model, utilizing the transferability of adversarial samples
to different CNNs. Another black-box attack approach is to estimate gradients to generate
adversarial data without using a substitute model, e.g., ZOO [18], NES [19], and SPSA [20].

In addition to adversarial attacks developed for image recognition models, special
attacks that leverage natural conditions, such as lights, shadows, and physical patches,
have also been introduced for traffic sign recognition models [4,5,21–27]. Ref. [5] tries to
apply adversarial patches to traffic signs where the patches have pictures of other traffic
signs on them. Ref. [4] tries to investigate the effect of light on traffic signs and proves that,
under certain lighting, traffic sign recognition models can be deceived.

However, defense against adversarial ML attacks has not been sufficiently investigated
despite the increasing number and variety of attacks. Although early works suggest the
usage of adversarial training [2,28], these defense approaches cannot be effective against
the increasing number of adversarial attacks since they would require repeating the whole
training process for each new attack. For this reason, several defense approaches were
proposed, with the goal of inferring from the test images with no adversarial training.
Ref. [29] aims to improve classification performance by adding an adversarial attack module
and a data augmentation module to the model. Ref. [30] proposes a defense method in
which the common information between clean and perturbed data is analyzed. Ref. [31]
tries to remove perturbations with the help of adaptive compression and reconstruction.
Ref. [32] implements random resizing to inputs to achieve robustness. Ref. [33] uses
the compression of JPEG images to avoid any possible perturbations. In addition, some
adversarial benchmark datasets, such as [34], were proposed to evaluate robustness against
adversarial attacks. Ref. [9] tries to remove perturbation from input images by applying
randomized smoothing.

Vision-language models (VLMs) are gaining popularity in recent years with the in-
troduction of CLIP [10]. Many computer vision tasks benefit from VLMs, including object
detection [11,12], video action recognition [13,35], and video anomaly detection [36]. In
this work, we present the first use of a VLM for adversarial traffic sign detection.

3. Method

In this section, first, we discuss the threat model and then explain the details of
our proposed method. After we present our architectural design and choices, we will
conclude the section by demonstrating the implementation and real-world applicability of
the system.

3.1. Threat Model

We assume an image classifier, G(X), that is specially trained for recognizing traffic
signs, and this is placed in the autonomous vehicle. After a traffic sign is captured by the
vehicle, it is sent to the image classifier, G, as an input, X ∈ RH×W×C, which consists of
H×W pixels and C channels. The image classifier outputs the predicted class probabilities
pG = [p1, p2, p3, ..., pM], where M is the number of distinct class labels. By denoting the
true label of the input with y, the true classification by the image recognition model is given
by G(X) = y. However, an adversary can attack the system by generating an adversarial
version, Xadv, of the input, which might be classified as G(Xadv) = y′, where y ̸= y′. The
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adversarial image, Xadv, can be either physically created or created by using malicious
software in the autonomous vehicle.

3.2. Proposed Detection Workflow

There are many ways to generate successful image perturbations, such as adding
noise to all inputs, adding only a small patch, and leveraging natural conditions, such
as shadows. Due to the vastness of the attack space and the typical obliviousness of the
image recognition models to the attack strategy, a defense mechanism should not use any
bias regarding the attacks. Therefore, we propose a universal detection mechanism that
does not rely on any assumption about the attack method or image recognition model
and, hence, can work with any model to detect a broad range of adversarial attacks. An
overview of the proposed detection method is depicted in Figure 2.

T1 T2 T3 … TM

IX …

Class labels

p1 p2 p3 …
Detection 

Score 
Calculation*

softmax
Image

Encoder

Text
Encoder

Image
Classifier

IX.T1 IX.T2 IX.T3 IX.TM

X
pM

*Detection score 
calculated as 
described in Eq. 3

pG

pS

α > h ?

α

X is adversarial

X is clean

Yes

No

Figure 2. Overview of the proposed detection method, ViLAS. The predicted class, G(X), by the
image classifier is declared not valid if the attack detection statistic, α, is greater than the threshold, h.

In our detection mechanism, and in parallel with the image classification model, we
used a custom VLM to detect adversarial traffic signs. Similarly to demonstrations of
VLMs in existing works, our mechanism consists of a text encoder, ET , and an image
encoder, EI . L = [l1, l2, l3, ..., lM] is the label list that contains all possible labels that can be
detected by the image classifier, G. Label list L is sent to the text encoder, ET , in order to
obtain label embedding vectors ET(L) = T = [T1, T2, T3, ..., TM], which contain the vector
representations of each label.

In the next step, image X is sent to the image encoder, EI , to obtain the image em-
bedding vector, such that EI(X) = IX. Then, the cosine similarity, S, between the image
embedding vector and label embedding vectors is taken by calculating the dot product:

S = IX · T = [IX · T1, IX · T2, . . . , IX · TM]. (1)

By taking the softmax over S, we obtain the probability scores:

pS = softmax(S) = [pS1, pS2, . . . , pSM]. (2)

Similar to the score calculations in existing works [37,38], a final detection score, α, is
calculated by obtaining the average of the forward and reverse KL divergences between
the class probabilities, pG, predicted by the image classifier and pS predicted by the VLM:

α =
1
2
[DKL(pS||pG) + DKL(pG||pS)]. (3)

The detection score, α, is expected to be low for clean inputs and high for adversarial
inputs. A threshold, h, is decided by calculating the detection scores for a set of clean
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images, β = [α1, α2, . . . , αK], where K is the number of clean images and the scores in β
are sorted in ascending order. Threshold h is selected as the θth percentile of the clean
training scores:

h = β[⌊Kθ/100⌋], (4)

where ⌊·⌋ denotes the floor operator, and β[i] denotes the ith element of β.
After obtaining the detection score for an input, decision d is made as follows:

d =

{
X is adversarial if α > h
X is not adversarial if α ≤ h,

(5)

where α is computed, as per Equation (3).

3.3. Architectural Design

VLMs are very popular for solving various vision tasks since the introduction of
CLIP [10]. While an off-the-shelf pretrained CLIP is used directly in many of the existing
works, we designed and trained our custom VLM with ResNet50 [39] and DistillBERT [40].
This provided a smaller, faster, and more scalable VLM that is more suitable for use in
autonomous vehicles. More importantly, in Section 5.2, we demonstrate that our custom
VLM has better detection performance than a fine-tuned CLIP.

3.4. Implementation and Applicability

Our proposed method, ViLAS, is highly compatible with the existing image classifiers
or object detectors that are used for traffic sign recognition in autonomous driving. ViLAS
does not make any architectural changes to the existing models. Our method only needs
the classification probabilities from the image recognition model. Algorithm 1 describes
the overall workflow of our detection method. In addition, a Pytorch [41] implementation
of our detection method is provided at https://github.com/furkanmumcu/ViLAS.

Algorithm 1 Vision-language model for adversarial traffic sign detection (ViLAS)

Input: input image X, labels vector L = [l1, l2, ..., lM] containing class labels as text, image
classification model G, image encoder EI , text encoder ET , threshold h.

Output: detection result d.
1: image recognition model receives the input image, returns the classification probabili-

ties
pG = G(X)

2: EI calculates the image embedding vector
IX = EI(X)

3: ET calculates the text embedding vectors
[T1, T2, ..., TM] = ET(L)

4: calculate cosine similarity scores:
S = [IX · T1, IX · T2, . . . , IX · TM]

5: apply softmax to similarity scores to get the class probabilities by VLM
pS = softmax(S)

6: Calculate detection score
α = 1

2 [DKL(pG||pS) + DKL(pS||pG)]
7: if α > h then
8: d← adversarial
9: else

10: d← not adversarial
11: end if
12: return d

4. Experiments

In this section, we first provide the experimental settings and then present our results.

https://github.com/furkanmumcu/ViLAS
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4.1. Experimental Settings

Throughout the experiments, we used the following settings:
Datasets: We used the GTSRB [42] dataset, which includes traffic signs photographed

under various light conditions and distances, very similar to the images collected by the
front cameras of autonomous vehicles. GTSRB contains 43 classes of traffic signs, split into
39,209 training images and 12,630 test images.

VLM training: In our VLM, we used ResNet50 as the image encoder and DistillBERT
as the text encoder. First, we trained ResNet50 using the GTSRB dataset’s training split.
Then, the trained ResNET50 and DistillBERT were jointly trained. During the training
process, GTSRB dataset class labels were sent to the text encoder, and the corresponding
images were sent to the image encoder. The images were scaled to 224 × 224, and the
probability vectors from the image encoder were used as the image-embedding vectors.
The loss calculation and training were conducted as described in [10]. More details of our
VLM structure and loss calculations can be found in our official implementation code.

Target models: Adversarial ML attack transferability between image classifiers has
been studied in the literature, and it has been shown that similar architectures are more
vulnerable to transferability. Therefore, we chose three convolutional neural network
(CNN)-based image classifiers from different families, namely VGG16 [43], ResNet152 [39],
and InceptionV3 [44], and one transformer-based image classifier, ViT [45].

Target models training: We trained VGG16, ResNet152, InceptionV3, and ViT with
the training split of the GTSRB dataset. The networks were trained using the Adam
optimizer [46] for 10 epochs, using a learning rate of 0.003. During the training, only the
clean images were used, and no adversarial training method was applied. The detection
accuracies are 97%, 99%, 98%, and 98%, respectively. The correctly classified images from
the test split for each image classifier were used in our experiments.

Adversarial ML attacks: We chose two traditional adversarial ML attacks, which
were originally proposed for generic images, and two adversarial ML attacks, which
were proposed specifically for traffic signs. We use FGSM [1] and PGD [2] as traditional
adversarial ML attacks. Both of the methods take advantage of the model gradients and
apply perturbation to all the pixels of an image. On the other hand, the natural light
attack [4] simulates daylight or street lights on traffic signs, and the patch attack [5] inserts
adversarial patches into traffic sign images. A clean test image from the GTSRB dataset
and the adversarially attacked versions from all four attacks can be seen in Figure 3.

Clean FGSM PGD Patch Attack Light Attack

Figure 3. Samples of clean and attacked images.

During the experiments, all of the images that were correctly classified by the target
models were used as the clean set. For each attack target model combination, we created
an adversarial set by only taking the adversarial images misclassified by the target model.
Then, the combination of the clean and adversarial sets was used for the score calculations,
given by Equation (3).

Existing defense method: We used denoised smoothing [9] to compare our proposed
detection method. Since denoised smoothing is not originally a detection method, we
obtained a detection method from it by calculating the KL divergence between the image
classification model’s class probabilities for the original input image and the denoised
input image.
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Evaluation metric: In order to evaluate the attack detection performance of the defense
methods, we report the commonly used area under the curve (AUC) metric from the
receiver operating characteristic (ROC) curve, which shows a trade-off between the true
positive rate (i.e., the ratio of successfully detected adversarial videos to all adversarial
videos) and the false positive rate (i.e., the ratio of false alarms to all clean videos).

4.2. Results

In Table 1, we report the AUC scores for our method, ViLAS, and Denoise [9] against
PGD [2], FGSM [1], Patch Attack [5], and Light Attack [4], targeting four image recognition
models. Since it is known that different attacks might have different performances on differ-
ent architectures [47], we selected both the CNN-based (VGG16, ResNet152, InceptionV3)
and transformer-based (ViT) target models. We used the same parameter settings that were
reported in the original source of the attacks.

Table 1. Attack detection results (AUC) for our method and Denoise, considering four adversarial
ML attacks: (PGD [2], FGSM [1], Patch [5], and Light [4]) and four target models (VGG16 [43],
ResNet152 [39], ViT [45], and InceptionV3 [44]). Best performance for each case is highlighted
with bold.

Denoise [9] ViLAS

PGD [2]

VGG16 [43] 0.15 0.99
ResNet152 [39] 0.25 0.80

ViT [45] 0.81 0.98
InceptionV3 [44] 0.21 0.98

FGSM [1]

VGG16 [43] 0.87 0.99
ResNet152 [39] 0.87 0.93

ViT [45] 0.94 0.99
InceptionV3 [44] 0.91 0.99

Patch [5]

VGG16 [43] 0.88 0.90
ResNet152 [39] 0.82 0.84

ViT [45] 0.91 0.94
InceptionV3 [44] 0.84 0.85

Light [4]

VGG16 [43] 0.77 0.91
ResNet152 [39] 0.97 0.99

ViT [45] 0.98 0.99
InceptionV3 [44] 0.85 0.98

Average 0.75 0.94

Denoise performs worst against PGD, with AUC scores of 0.15, 0.25, 0.81, and 0.21
for target models VGG16, ResNet152, ViT, and InceptionV3, respectiveley. Compared to
the other target models, our method has lower performance against ResNet152, especially
against PGD and Patch attacks, with AUC scores of 0.80 and 0.84. This is expected since
ResNet152 is the most similar target model to the image encoder in our VLM (ResNet50),
which results in attack transferability.

For each test combination for every attack on each target model, our method out-
performs Denoise. While the average AUC score for Denoise is 0.75, ours is 0.94. The
AUC of Denoise is as low as 0.15, whereas our lowest AUC score is 0.8, indicating that our
method is robust against different types of adversarial ML attacks on different types of
image classifiers.

5. Ablation Study

In this section, we first evaluate our method’s performance against the transferability
of adversarial ML attacks. Next, we compare our custom VLM to an existing pretrained
VLM. Finally, we analyze the effect of the proposed KL divergence-based score calculation
by comparing it with a different score calculation technique.
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5.1. Transferability against ViLAS

Transferability is a common feature of adversarial ML attacks. It is known that there is
high transferability between similar architectures and low transferability between diverse
architectures. Table 2 shows our method’s AUC values averaged over all adversarial attacks
targeting each image recognition model. It can be observed that ResNet152 has the lowest
AUC at 0.89 since it is the closest architecture to ResNet50, which is used as image encoder
in our custom VLM.

Table 2. Average AUC performance of our defense method against all attacks. Larger values indicate
a more defensible model.

VGG16 [43] ResNet152 [39] ViT [45] InceptionV3 [44]

0.95 0.89 0.98 0.95

Because of the transferability of adversarial attacks, we recommend designing ViLAS
using different architectures for image encoders and traffic sign recognition models. As
an ablation study, in Table 3, we provide our detector’s AUC score when we use the same
architecture, namely ResNet50, as the traffic sign recognition model and the image encoder.
In this identical setup, our detection method achieves 0.13, 0.81, 0.84, and 0.92 for the
attacks, PGD, FGSM, Patch, and Light attacks, respectively. Except for the PGD attack, our
method performs above 0.80, even when using the exact same architecture for the image
encoder and traffic sign recognition model. This demonstrates the robustness provided by
the text encoder in the proposed multimodal VLM structure.

Table 3. Our method’s AUC scores against PGD, FGSM, Patch, and Light attacks when ResNet50 is
used as the traffic sign recognition model and the image encoder.

PGD [2] FGSM [1] Patch [5] Light [4]

0.13 0.81 0.84 0.92

5.2. Comparison to Pretrained VLMs

CLIP is a popular VLM that is used in several applications as a pretrained feature
extractor. In order to compare this against the custom VLM of ViLAS, we fine-tuned CLIP
(we used the official CLIP implementation with ViT-B/32 as the image encoder) using the
GTSRB dataset, and we denote the fine-tuned version as CLIP*. In Table 4, we report the
AUC scores for our detector, which are explained in Section 3.2, using pretrained CLIP and
fine-tuned CLIP* instead of our custom VLM (Section 3.3) under the same experiments that
were conducted in Section 4.

Interestingly, fine-tuning does not help to considerably increase the detection perfor-
mance of CLIP. While in some test cases, there is only a 0.01 increase from CLIP to CLIP*,
in most of the cases, the detection accuracy stays the same. As a result, CLIP and CLIP*
have an average AUC score of 0.431 and 0.438, respectively. This result (when compared
to our 0.94 average AUC) shows the necessity of building a custom VLM for traffic sign
recognition by training the image encoder on a relevant dataset. Fine-tuning the image
encoder together with the text encoder is, apparently, not sufficient. In Figure 4, we provide
the ROC curves for our method, Denoise, CLIP, and CLIP* under the experimental settings
of light attack on VGG16, ResNet152, InceptionV3, and ViT.



Electronics 2024, 13, 2172 9 of 14

Table 4. Attack detection results (AUC) for pretrained CLIP and fine-tuned CLIP*, considering four
adversarial attacks: (PGD [2], FGSM [1], Patch [5], and Light [4]) and four target models (VGG16 [43],
ResNet152 [39], ViT [45], and InceptionV3 [44]).

CLIP [10] CLIP*

PGD [2]

VGG16 [43] 0.38 0.39
ResNet152 [39] 0.94 0.95

ViT [45] 0.68 0.69
InceptionV3 [44] 0.90 0.90

FGSM [1]

VGG16 [43] 0.48 0.49
ResNet152 [39] 0.33 0.34

ViT [45] 0.41 0.42
InceptionV3 [44] 0.32 0.32

Patch [5]

VGG16 [43] 0.23 0.24
ResNet152 [39] 0.29 0.30

ViT [45] 0.43 0.44
InceptionV3 [44] 0.24 0.24

Light [4]

VGG16 [43] 0.29 0.29
ResNet152 [39] 0.13 0.14

ViT [45] 0.42 0.42
InceptionV3 [44] 0.44 0.45

Average 0.431 0.438
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Figure 4. ROC curves for our method (ViLAS), Denoise, CLIP, and CLIP* against light attack, which
targets VGG16, ResNet152, InceptionV3, and ViT. (a) VGG16; (b) ResNet152; (c) ViT; (d) InceptionV3.

In addition to performance gains, our VLM provides a more resource-efficient, scalable,
and faster solution compared to CLIP. While CLIP holds 1.6 GB on the disk, our VLM
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requires only 0.36 GB. More importantly, the image processing time of CLIP is more than
twice that of our model’s image processing time. CLIP calculates similarity scores for
12,630 images from the test split in GTSRB in 117.64 s using NVIDIA 4090 GPU (Santa
Clara, CA, USA), whereas our model accomplishes the same task in 55.24 s with the same
hardware configuration. Table 5 summarizes the differences between CLIP and our VLM
in terms of size, image processing time (IPT) in milliseconds, and the average AUC scores
in the experiments. We also present the IPT with an AMD Ryzen 9 7950X CPU.

Table 5. Comparison of CLIP and our custom VLM in terms of their size on the disk, image processing
time (IPT) in milliseconds, and the average AUC scores in the experiments. The first number for IPT
is the time when using NVIDIA 4090 GPU, and the second number is the time when using AMD
Ryzen 9 7950X CPU.

Size (GB) IPT (ms) AUC

CLIP [10] 1.6 9.3, 333.6 0.43

Our VLM 0.36 4.4, 18.5 0.94

5.3. Score Calculation

In Equation (3), we use KL divergence to compute the detection score. In addition to KL
divergence, in this ablation study, we considered another way to calculate the detection score.

In this version, instead of using probability vectors, we used the probability of the
predicted class directly and take the difference between the traffic sign recognition model’s
probability for the predicted class and the probability of VLM for the predicted class, such that

α1 = pG[y]− pS[y], (6)

where y is the predicted class by the traffic sign recognition model.
For this new score calculation, we repeat the experiments in Section 4.2 and report the

results in Table 6. While Denoise’s average AUC drops from 0.75 to 0.69 compared to the
original experiments using KL divergence-based score calculation, our average AUC score
drops by only 0.01, from 0.94 to 0.93. This result indicates that our method performs well
with different score calculations.

Table 6. Attack detection results (AUC) for our method and Denoise using a different attack score
calculation. The drop in Denoise’s performance is more significant than our model when compared
to Table 1. Best performance in each case is highlighted with bold.

Denoise [9] ViLAS

PGD [2]

VGG16 [43] 0.51 0.99
ResNet152 [39] 0.49 0.94

ViT [45] 0.39 0.97
InceptionV3 [44] 0.68 0.99

FGSM [1]

VGG16 [43] 0.66 0.99
ResNet152 [39] 0.72 0.90

ViT [45] 0.75 0.98
InceptionV3 [44] 0.83 0.99

Patch [5]

VGG16 [43] 0.70 0.90
ResNet152 [39] 0.74 0.82

ViT [45] 0.85 0.94
InceptionV3 [44] 0.82 0.85

Light [4]

VGG16 [43] 0.60 0.88
ResNet152 [39] 0.81 0.95

ViT [45] 0.89 0.95
InceptionV3 [44] 0.75 0.96

Average 0.69 0.93
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6. Discussions and Future Work

Our model’s superior performance across various attacks and target models is due to
two factors: extra information coming from the class labels regarding the image context,
which is typically not utilized in attack design, and the visual clues coming from the image
encoder in VLM, which is significantly differentiated from the targeted image recognition
model. By using an image encoder in VLM in addition to the one in the image recognition
model, we introduce an intentional redundancy for attack detection. The utility of having
two image models for attack detection stems from the fact that the architecture of the
image encoder in VLM should intentionally be chosen to be as distinct as possible from the
image recognition model, as summarized in Table 2. This choice is due to the lack of attack
transferability between significantly different architectures. The image encoder in ViLAS
is further differentiated from the image recognition model by jointly training it with the
text encoder. That is why it is still effective in detecting attacks when both image models in
ViLAS and the target model are ResNet (Table 2).

Thanks to its orthogonal features not being utilized by classical attacks, ViLAS can also
be used as a robust image recognition model. The fact that it is able to identify the true class
in the presence of attacks is the reason that enables superior attack detection performance.
It can be used as a standalone image classifier, as well as a backup decision-maker that can
override the original image classifier when needed (e.g., when an attack is detected or, for
some reason, the image classifier fails).

While we demonstrated that ViLAS does not burden an autonomous vehicle with
impractical load, as it only needs 360 MB of space and takes milliseconds to process an
image (note that the detection score computation time is insignificant compared to the
inference time of VLM), the computational footprint of ViLAS can be further reduced by
restricting its use to only a subset of classes that are vulnerable to attacks.

In our implementation of a custom VLM, we used ResNet50 [39] as the image encoder
and DistillBert [40] as the text encoder. Our aim when choosing this specific configura-
tion was to use small models for compactness and speed, which is suitable for the local
computing resources and response time requirements in an autonomous vehicle. Since our
detection framework is not restricted to any specific image/text encoder, the performance
when using other encoder models can also be evaluated under similar setups.

Since many existing traffic sign datasets contain images taken by standard optical
cameras [42], we evaluated our method by using a CNN-based image encoder with the
assumption of traffic signs recorded by standard optical cameras. However, it is possible
that some autonomous vehicles use different types of cameras (e.g., infrared) or sensors
(e.g., lidar and radar). Similarly, the experiments in this work are limited to the operating
conditions demonstrated in the GTSRB dataset. The proposed main idea of using a custom
VLM-based detector is potentially compatible with any input visual data type, but further
experiments are needed to study different data modalities.

An important limitation of ViLAS is that it can be targeted by query-based black-box
attacks, which iteratively design adversarial images in a data-driven fashion by sending
queries to the target model and computing the gradient of its decision with respect to
input modifications to optimize the attack. Since the final decision of autonomous vehicle
hosting ViLAS will be either suppressed or corrected for adversarial queries, a data-driven
black-box attack can learn specific noise masks to fool ViLAS. This can be an interesting
future study. We should also note here that such data-driven black-box attacks are known
to require large numbers of queries (on the order of millions) to design successful noise
masks, which can be a practical limitation in real-world scenarios.

7. Conclusions

The increasing number of successful attacks against traffic sign recognition models
are raising real-world security concerns. In addition to classical adversarial ML attacks
that target image classifiers, it has been shown in the literature that natural aspects, such
as weather, lights, or shadows, can be used to attack traffic sign recognition models. In
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contrast to the growing numbers of threatening adversarial ML attacks against traffic sign
recognition models, defending against these attacks was not studied sufficiently. In this
paper, we proposed the first attack detection mechanism for traffic sign recognition, ViLAS
(vision-language model for adversarial traffic sign detection).

ViLAS leverages the context of an image by computing the similarity scores between
the image and the class labels in a custom vision-language model (VLM), thereby deciding
if the image is adversarial or clean. By training the image encoder and VLM on a relevant
dataset, we showed that ViLAS provides protection against adversarial ML attacks that
target popular image classifiers, thanks to the orthogonal information coming from the
class label text data. In our extensive experiments, we demonstrated that our detection
method outperforms a state-of-the-art defense method by a wide margin (0.94 vs. 0.75
average AUC). Our ablation studies also proved the necessity of a custom VLM design
instead of using an off-the-shelf VLM. Our custom VLM requires a minimal overhead when
compared to the existing traffic sign recognition models (only 360 MB of disk space and an
ITS of as low as 4.4 ms), which can facilitate practical implementation in existing vehicular
technology. Furthermore, our detection mechanism is compatible with any existing traffic
sign recognition system since it can be applied without any modification to the existing
sign recognition models. Although being much smaller in size and faster than the widely
used VLM and CLIP, our custom VLM significantly outperforms the same detector based
on CLIP being fine-tuned on the same dataset.
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